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Performance of MIMO Schemes with Partial

Channel Knowledge

S. Shilo, A. J. Weiss,Fellow, IEEE,and A. Averbuch

Abstract

Multiple antenna techniques are used to enhance wireless links and therefore have been studied

extensively. Many practical systems differ from the ideal schemes discussed in the literature. One

example is the lack of precise channel information at the transmitter. We evaluate analytically the perfor-

mance of several multiple input multiple output (MIMO) techniques that use partial channel knowledge.

Specifically, we analyze schemes which are used in Worldwide Inter-operability for Microwave Access

(WiMAX) and are also supported by Long Term Evolution (LTE) systems. All the results are supported

by simulations.
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I. I NTRODUCTION

Multiple input multiple output (MIMO) techniques have been incorporated in all specifications

of the recently developed wireless communications systems, including Long Term Evolution

(LTE) and Worldwide Inter-operability for Microwave Access (WiMAX) technologies. MIMO

schemes include Alamouti’s space-time coding [1], spatial multiplexing and a few transmit beam-

forming methods.

Multiple antennas are employed on both sides of the communications channel in most MIMO

systems. In time division duplex (TDD) the same frequency is used by both sides and the same
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antennas are used for transmission and reception. Thus, the channel matrix can be estimated by

each side based on the reception of a known waveform. However, due to cost considerations,

early generations of WiMAX and LTE restrict the mobile station (MS) to one transmit antenna

although two or more antennas are used for reception. Thus, the transmission from the MS can

be used to estimate the channel between one of the MS antennas and all the base station (BS)

antennas. The channel between the BS antennas and the other receive antennas of the MS is not

known to the BS. As a result, transmit beamforming schemes employed by the BS, are limited to

partial channel knowledge. This problem can be solved by allowing the MS to report its channel

estimates to the BS [2]. However, this closed loop scheme requires a rather complex receiver at

the MS.

Communications using partial state information has been thoroughly analyzed in the literature.

The performance of various scalar and vector quantizers has been discussed in [3]. It is shown

that a few feedback bits provide performance which is similar to that of beamforming with perfect

channel knowledge. Limited feedback and quantized codebook are discussed in [4]. It is shown

that the desired codebooks depend on the number of transmit antennas (but not on the number of

receive antennas) and on the number of code words. It is also shown that a sufficient condition

for full diversity is a codebook cardinality not less than the number of transmit antennas. The

relation between the signal to noise ratio (SNR) and the amount of the required feedback, for the

case of MIMO broadcast channels, is analyzed in [5]. It is shown that for zero forcing precoding

to achieve full multiplexing gain, the required number of feedback bits per user increases linearly

with the SNR. As the SNR increases, multi-user interference becomes more dominant and more

feedback bits are required to achieve the multiplexing gain. More analysis of feedback methods

and their impact have been thoroughly studied in [6], [7].

The partial knowledge, discussed in this paper, is different from the partial state information

considered so far. We assume here that only part of the channel matrix is perfectly known while

the other part is unknown. Our goal is to analyze practical transmission schemes using partial

channel knowledge.

In Section II, we describe two transmission schemes. In the first scheme the same waveform

is transmitted by all the antennas. The second scheme discusses spatial multiplexing where

one waveform is transmitted by one antenna pair and a different waveform is transmitted by a

different antenna pair. We evaluate the symbol error probability, the diversity order and the array
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gain for each scheme. Simulation results are presented in Section III.

II. A NALYSIS OF TRANSMISSIONSCHEMESUSING PARTIAL CHANNEL KNOWLEDGE

Assume a BS equipped with 4 antennas and a MS with only 2 antennas. One of the MS

antennas is used for transmission while both antennas are used for reception. This mode is

typical in the initial versions of the 4G networks such as LTE and WiMAX [8], [9]. Let us

denote the channel between thei-th MS antenna and thej-th BS antenna byhij where i ∈

{0, 1}; j ∈ {0, 1, 2, 3}. See Figure A.1.

The MS transmits a known sequence (sometimes called Uplink Sounding), which will be used

at the BS to estimate the channel, assuming channel reciprocity. This pertains mostly to TDD

systems. Since only one antenna is used in the MS for transmission, the sounding signal will be

transmitted from one antenna only. Assume that the channel estimation at the BS is perfect and

then channelsh00, h01, h02, h03 are known and the channelsh10, h11, h12, h13 are unknown.

There are several transmission schemes that can be used by the BS. The question is which

scheme is the most beneficial. We compare two schemes.

1) Single stream transmission using maximal ratio transmission (MRT) beamforming with

all 4 antennas at the BS and maximal ratio combining (MRC) at the MS receiver. Beam-

forming is performed towards the single transmitting MS antenna. This scheme is denoted

hereinafter by 4×2 MRT;

2) Two different streams transmission. Each steam is transmitted from a different antenna pair

at the BS. Each pair is using MRT beamforming. This is a type of spatial multiplexing

(SM) and therefore the scheme is denoted hereinafter by SM-MRT.

Since there is a single stream in the first scheme and two streams in the second, the same total

bit rate will be used for a fair comparison between the schemes. The same approach is used for

comparing Alamouti’s space-time coding with spatial multiplexing. See for example [10], [11].

A. 4×2 MRT

In this scheme, Uplink (UL) Sounding is performed from only one MS antenna. The BS is

able to estimateh∗0 = [h00, h01, h02, h03] whereash∗1 = [h10, h11, h12, h13] is unknown. We use

[·]∗ to denote conjugate transpose. Since only the channelh0 is known, the transmitter uses only

this partial information for beamforming towards the first antenna. The analysis in the sequel is
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done under the assumptions that the different channels experience independent Rayleigh fading

and quadrature phase shift keying (QPSK) modulation is used by the BS. Usingw = h0/‖h0‖

as the beamforming weighting, the transmitted4× 1 vector isws and the received vector at the

two receiver antennas is given by r0

r1

 =

 h∗0

h∗1

ws+ ρn =

 h∗0

h∗1

 h0

‖h0‖
s+ ρn = as+ ρn. (II.1)

Heres is the baseband QPSK signal,n is a zero mean, Gaussian vector with covariance equal

to the 2 × 2 identity matrix, andρ2 is the noise variance. The vectora represent the effect of

the beamforming and the channel on the signal and its entries can be deduced from the above

equation. Assuming that the MS knows the channel and thereforea one can left multiply the

above equation by the pseudo inverse ofa. This processing is known as MRC and the result is

ŝ = s+ ρ
(
‖h0‖2 + |h∗1h0|2‖h0‖−2

)−1
[
‖h0‖ , h∗1h0‖h0‖−1

]
n. (II.2)

The post processing SNR is then given by

γ = ρ−2(‖h0‖2 + |h∗1h0|2‖h0‖−2). (II.3)

The error probability, given the channel matrixH = [h0,h1]
∗, is

Pr {error|H} = 2Q (
√
γ)−Q2 (

√
γ) ≈

1

6
exp (−γ/2) +

1

2
exp (−2γ/3) . (II.4)

We used the approximation given in [12] for the Q-Function. Note that|h1h0
∗|2‖h0‖−2 can be

rewritten as

|h1
∗h0|2‖h0‖−2 = ‖h1‖2 cos2(α) = cos2(α)

3∑
i=0

|h1i|2, (II.5)

whereα, which is the angle between the vectorsh0 andh1, is defined bycosα = |h∗1h0|(‖h0‖ ‖h1‖)−1.

Substituting Eq. II.5 into Eq. II.4 and denotingξi = |h0i| andψi = |h1i|, then the error probability

for any givenα is

Pr {error|α} ≈
∫ ∞

0

· · ·
∫ ∞

0

[
1

6
exp

(
− 1

2ρ2

(
3∑

i=0

ξ2
i +

3∑
i=0

ψ2
i cos2 α

))

+
1

2
exp

(
− 2

3ρ2

(
3∑

i=0

ξ2
i +

3∑
i=0

ψ2
i cos2 α

))]
· 2ξ0 exp(−ξ2

0)dξ0 . . . 2ξ3 exp(−ξ2
3)dξ3

·2ψ0 exp(−ψ2
0)dψ0 . . . 2ψ3 exp(−ψ2

3)dψ3. (II.6)
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Since the vectorsh0 andh1 are i.i.d. circularly symmetric complex normal vectors, it follows

thatα is statistically independent ofξ andψ. From Eq. II.6 we get

Pr {error|α} ≈ 1

6

(
1 +

γ

2

)−4(
1 +

γ cos2 α

2

)−4

+
1

2

(
1 +

2γ

3

)−4(
1 +

2γ cos2 α

3

)−4

,(II.7)

whereγ = ρ−2. The error probability is found by integrating Eq. II.7 over all possible values

of α, which requires knowledge of the probability density function (pdf) ofα. The pdf ofα for

complex valued vectors of lengthn is given in [13]. In our case, whenn = 4, the pdf is given

by fα(α) = 6 sin5 α cosα, which yields the unconditional error probability

Pr {error} ≈

(
2

(
γ

2

)2

− γ + 2

)(
12

(
γ

2

)3(
1 +

γ

2

)4
)−1

−

(
4

(
γ

2

)2

+ 4γ + 4

)(
3

(
γ

2

)3(
1 +

γ

2

)4

(2 + γ)3

)−1

+

((
2γ

3

)2

− 2γ

3
+ 1

)(
2

(
2γ

3

)3(
1 +

2γ

3

)4
)−1

−

(
4

(
2γ

3

)2

+
16γ

3
+ 4

)((
2γ

3

)3(
1 +

2γ

3

)4(
2 +

4γ

3

)3
)−1

. (II.8)

According to Eq. (II.8), the diversity order, defined aslimγ→∞
− loge Pr {error}

loge γ
, is 5. The array

gain, defined as the expected value of the post processing SNR given in Eq. (II.3) over the

preprocessing SNR= γ, is 7.09dB. Comparison between the error rate obtained by simulating

this 4 × 2 MRT scheme and the theoretical error rate given by Eq. II.8, is shown in Fig. A.2.

As seen, the theoretical and the simulated performance plots in Fig. A.2 coincide.

B. SM-MRT

Spatial Multiplexing (SM) is a scheme where multiple streams are transmitted concurrently.

In the SM-MRT scheme considered here two data streams are transmitted concurrently, each

from a different pair of antennas. In other words, two BS antennas transmit one stream and the

other two transmit the second stream. As in the previous schemes,h0 is known to the BS while

h1 is unknown. Defineh∗0a = [h00, h01], h∗0b = [h02, h03], h∗1a = [h10, h11] and h∗1b = [h12, h13]

so thath∗0 = [h∗0a,h
∗
0b] andh∗1 = [h∗1a,h

∗
1b].
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The transmitted symbol vector is
1√
2
s wheres = [s0 s1]

T is a vector of two independent

QPSK symbols. The factor
1√
2

is introduced in order to maintain unit transmission power. The

precoding matrixW is given by

W =


h00

‖h0a‖
h01

‖h0a‖
0 0

0 0
h02

‖h0b‖
h03

‖h0b‖

, (II.9)

and the received vector is

r =
1√
2
HW ∗s + ρn =

1√
2


‖h0a‖ ‖h0b‖

‖h1a‖z1 exp (jθ) ‖h1b‖z2 exp (jβ)


︸ ︷︷ ︸

H̃

s + ρn (II.10)

whereH̃ is the equivalent channel matrix seen by the receiver,θ is the angle of the complex

valued inner product ofh0a and h1a, β is the angle of the complex valued inner product of

h0b andh1b, z1 andz2 correspond to the cosine of the angle between the vectors similar to that

defined in Eq. (II.5), and are distributed withp(z1) = 2z1 andp(z2) = 2z2 on [0, 1]. The angles

θ andβ are independent and uniformly distributed on[0, 2π] [14].

In order to gain some intuition, we inspect the special form of the equivalent channel matrix

H̃, and assume for simplicity that the absolute value of each entry ofH̃ is in the vicinity of

its expected value. In this case the matrix tends to be singular whenθ ≈ β. The dominant error

vector here is obviously an opposite sign error vector which brings the norm‖H̃e‖ close to

zero.

An upper (union) bound for spatial multiplexing error probability is given by [15]

Pr
{

error|H̃
}
≤
∑

e∈ B

Q
(
(2ρ)−1‖H̃e‖

)
(II.11)

wheree is an error vector andB is the set of all possible error vectors. Averaging with respect

to the joint density function ofH̃ gives

Pr {error} ≤
∑

e∈ B

E
{
Q
(
(2ρ)−1‖H̃e‖

)}
(II.12)
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In classical open loop spatial multiplexing schemes, error vectors including one or two non-zero

entries have similar likelihoods. In contrast to such classical schemes, in SM-MRT an error

vector of typee = a[
√

2,−
√

2]T wherea ∈ {±1,±j} is more likely than all other error vectors.

This phenomenon is demonstrated in this section by showing that the diversity order generated

by the contribution of all other error vector types is significantly higher than the diversity order

generated by the contribution of this error vector. The first step of this analysis is to evaluate

the error probability of each error vector type. This is concluded by comparing between the

error probabilities to show the dominance of the opposite sign error vector which are of type

e =
[
a −a

]T
. For simplicity, we definee1 = a

[ √
2 0

]T
, e2 = a

[ √
2

√
2
]T

and

e3 = a
[ √

2 −
√

2
]T

wherea ∈ {±1,±j}. Now we estimate the error probability of each

error vector type.

1) Error probability for an error vector of typee1: The error probability of the single er-

ror vector e1, which is similar to the single error probability of the open loop spatial

multiplexing, is

Pr {error of typee1} ≈ 1

6

(
1 +

γ

8

)−3

+
1

2

(
1 +

γ

6

)−3

. (II.13)

Thus, the diversity order generated by a single error vector of typee1 is 3.

2) Error probability for an error vector of typee2: The error probability for the same sign

error vectore2 is upper bounded by a bound similar to the error probability of the open

loop spatial multiplexing scheme. Since the rows ofH̃ in Eq. (II.10) are independent, it

suffices to look at the first row only in order to derive the bound. By approximating the Q-

Function using an exponent for an error vector with the same sign entries, the conditional

error probability becomes

Pr {error of typee2} ≈
∫ [

1

12
exp

(
−(8ρ2)−1(‖h0a‖+ ‖h0b‖)2

)
(II.14)

+
1

4
exp

(
−(6ρ2)−1(‖h0a‖+ ‖h0b‖)2

)]
· p(‖h0a‖)p(‖h0b‖)d(‖h0a‖)d(‖h0b‖).
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The r.h.s. of Eq. (II.14) is bounded by∫ [
1

12
exp

(
−(8ρ2)−1(‖h0a‖2 + ‖h0b‖2)

)
+

1

4
exp

(
−(6ρ2)−1(‖h0a‖2 + ‖h0b‖2)

)]
· p(‖h0a‖)p(‖h0b‖)d(‖h0a‖)d(‖h0b‖)

=
1

6

(
1 +

γ

8

)−4

+
1

2

(
1 +

γ

6

)−4

, (II.15)

which implies that the error probability for an error of typee2 generates a diversity order

of at least 4.

3) Error probability for an error vector of typee3: Inserting an error vector of typee3 into

Eq. (II.11) results in

Pr
{

error of typee3|H̃
}

= Q

(
(2ρ)−1‖H̃a

[ √
2 −

√
2
]T
‖
)
, a ∈ {±1,±j}.(II.16)

Unlike the case in Eq. (II.15) of an error vector of typee2 where the integral’s bound

was easily found, this case is more complicated. The error probability for this scheme is

approximated by (see Appendix A)

Pr {error of typee3} ≈ 9π−72−10γ10(1 + γ)−6.5(1 + 0.0062γ2)−2.5, (II.17)

which implies a diversity order of 1.5 generated by an error vector of typee3.

4) Comparison between error vector types: Comparing the error probability associated with

each error vector type, the diversity order of an error vector of typee3 is the smallest,

hence error of typee3 is most dominant at high SNR. Therefore, we can write the error

probability for this scheme as

Pr {error} ≈ Pr {error of typee3}

≈ 9π−72−10γ10(1 + γ)−6.5(1 + 0.0062γ2)−2.5. (II.18)

The diversity order, which was derived from Eq. (II.18), is 1.5. In order to evaluate the

scheme’s array gain, we use the fact that when the error rate of a spatial multiplexing

scheme is given by

Pr {error} =

(
1 +

γ

2M

)−N

, (II.19)
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then the array gain is
N

M
. We ignore non dominant terms in the high SNR regime to rewrite

Eq. (II.18) in the form of Eq. (II.19). The resulting array gain is 4.97dB. The dominance

of the error vector of typee3 in high SNR regime, as observed in simulations, is seen in

Fig. A.3.

Simulation results for the SM-MRT scheme that uses Eq. (II.18) and its comparison to

theoretical results are given in Fig. A.4. As we see, theoretical and practical performance plots

are overlaid in the high SNR regime.

III. S IMULATION RESULTS

The optimal solution in the SNR sense when full channel knowledge is available at the

transmitter is the well known eigenbeamforming scheme [16]. The diversity order of this scheme

with M transmit antennas andN receive antennas isMN and the array gain is bounded by

MN andmax(M,N) [17]. Specifically, whenM = 4 andN = 2, the array gain is analytically

calculated as 7.91dB. A comparison between the performances of the two analyzed techniques

and the optimal eigenbeamforming technique in uncorrelated Rayleigh fading channels is given

in Fig. A.6. We see that the4 × 2 Eigen Beamformer provides a higher diversity order and

higher array gain than what the other schemes achieve. Although the4 × 2 MRT scheme has

a higher diversity order than what the SM-MRT scheme achieves, we keep in mind that the

SM-MRT scheme provides double throughput when compared to the4 × 2 MRT scheme. In

order to compare between the schemes with the same throughput, the simulations were repeated

for twice the bit rate of single stream schemes that use 16QAM modulation. Results are given

in Fig. A.5. As expected, the results for both single stream schemes were shifted to the right by

approximately 6-7 dB, while maintaining identical diversity order.

The performance of the suboptimal4×2 MRT scheme is close to the optimal scheme especially

at low SER values. For example, the performance degradation of the suboptimal4 × 2 MRT

scheme at SER= 10−6 is approximately 4dB. This scheme has relatively high array gain and

high diversity order.

After the analysis and simulation of the suboptimal schemes in classical uncoded Rayleigh

fading channels were completed, we now analyze the performance of these schemes in benchmark

WiMAX channels. These results will provide us with an insight into the performance in real

situations. It will also corroborate the results obtained earlier by showing similar characteristics.
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Several channel models were defined by the International Telecommunications Union (ITU)

[18]. Each assumes a different number of taps, delays, powers and Doppler spectrum. One of the

most popular channel models, which was used within the WiMAX community as a benchmark

to validate results, is the Pedestrian B channel model. We compare between the results of the

three schemes in the Pedestrian B channel when all the channels are uncorrelated and forward

error correction is not used. Then, we compare between them utilizing error correction. In order

to be consistent with the flat fading case, orthogonal frequency division multiplexing (OFDM)

modulation was employed and sufficiently long guard interval was assumed. For simplicity,

results derived from the use of the encoder are shown in terms of bit error rate and not by

symbol error rate. Results for the uncoded case are given in Fig. A.7. The results are similar

to those from uncorrelated Rayleigh fading channel as was presented in Fig. A.5. We simulate

now the three schemes in uncorrelated Pedestrian B channels when error correction is employed.

The convolutional Turbo Code (CTC) encoder, as defined in the 802.16 standard [19], is used

in these simulations. Initially, a low rate coding scheme at low SNR values is used. Then, we

compare between the three schemes when we assign high modulations and high coding rates to

the schemes, while maintaining equal throughput among the schemes.

Fig. A.8 shows that by using error correction with low coding rate, the schemes function well

in very low SNR. However, the qualitative relationship between the schemes still holds. The

suboptimal4× 2 MRT scheme performs similarly to the optimal scheme, whereas there is still

a large gap compared to the suboptimal SM-MRT scheme.

Fig. A.9 shows a comparison between the performance of these schemes that have high

throughput and high coding rates. In this case of high coding rate, the gaps between them

are small when the schemes operate at high SNR values. The suboptimal SM-MRT scheme is

approximately 1dB worse than the suboptimal4× 2 MRT scheme at BER=10−4. It is expected

that as the SNR becomes high, the performance of high throughput spatial multiplexing schemes

becomes better. This is shown for example in [11]. However, since the WiMAX standard does not

support modulation higher than 64QAM, it is impossible to compare between equal throughput

schemes at a high SNR range. At high SNR values, where single stream schemes are capped

at throughput, it is advantageous to employ the suboptimal SM-MRT scheme. In addition, if

modulations higher than 64QAM were supported, it is expected that SM-MRT outperforms the

other schemes at high SNR values.
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The analysis and the simulations in this paper were based on averaging of all channel real-

izations (without any selection mechanism). There may be occasions where a specific channel

realization will enable the suboptimal SM-MRT scheme to outperform other schemes. Since

mode selection modules in practical systems (specifically those optimized for low mobility)

often select the mode that is optimal for the measured channel realization at hand (and not

according to the statistics of the channel), it is possible to employ the SM-MRT scheme for

such channel realizations.

IV. CONCLUSIONS

In this paper, we analyzed the performance of suboptimal MIMO schemes which are common

in WiMAX and in LTE systems. The optimal eigen-beamforming scheme acted as a reference

for performance comparisons of the sub-optimal schcmes in terms of error probability, diversity

order and array gain. The results from these comparisons are surprising - the array gain of the

4 × 2 MRT scheme is similar to the array gain of the optimal scheme. Although the diversity

order of this sub-optimal scheme is lower than the high diversity order of the optimal scheme

(5 and 8, respectively), it is still significantly high, while resulting in low error rates.

The SM-MRT scheme, on the other hand, displays far worse results. Its diversity order (1.5)

is even lower than2×2 open loop spatial multiplexing (for which the diversity order is 2). Thus,

in high SNR values it is better to use open loop spatial multiplexing than to use the SM-MRT

scheme. Even in coded systems, the SM-MRT scheme performs worse than the4 × 2 MRT

scheme, although the gap between these two schemes becomes low as the SNR increases. The

array gain of the SM-MRT scheme is also lower than the array gain of the optimal and the4×2

MRT schemes.

The optimal scheme for a specific MIMO scenario discussed here requires the MS to transmit

using two antennas, which increases the cost and the complexity of an MS. Furthermore, the

optimal scheme requires a singular value decomposition (SVD) calculation at the transmitter,

which adds to the complexity of the implementation. The performance analysis and the com-

parisons in this paper show that low complexity sub-optimal schemes, such as the4 × 2 MRT

scheme, can replace high complexity optimal schemes without causing a major performance

degradation.
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APPENDIX A

EVALUATION OF THE ERRORPROBABILITY FOR AN ERROR VECTOR OF TYPEe3

In this appendix, we calculate the expectation of Eq. (II.16) w.r.t.H̃. We begin by giving an

overview of the solution, followed by calculating the kernel integral which corresponds to the

first row of H̃. We then extend this solution to the second row ofH̃, and combine both to get

the overall error probability.

1) Overview of the solution for error probability of typee3: Before we evaluate the bound in

Eq. (II.16), we examine the structure of̃H defined in Eq. (II.10). After the multiplication

of the first row ofH̃ by the error vectore3, the numerator within the exponent, which

approximates the Q-Function, is

|h̃(1)
e3|2 = 2

[
‖h0a‖2 + ‖h0b‖2 − 2‖h0a‖‖h0b‖

]
, (A.1)

where h̃
(i)

corresponds to thei-th row of H̃. Similarly, after the multiplication of the

second row ofH̃ by the error vectore3, the numerator within the exponent becomes

|h̃(2)
e3|2 = |

[
‖h1a‖z1 exp (jθ) ‖h1b‖z2 exp (jβ)

]
e3|2

= 2
[
‖h1a‖2z2

1 + ‖h1b‖2z2
2 − 2‖h1a‖‖h1b‖z1z2 cos(δ)

]
, δ = θ − β. (A.2)

Sinceθ andβ are uniformly and independently distributed on[0, 2π], p(δ) =
(2π − |δ|)

4π2

on [−2π, 2π]. Thus, the result for the second row of̃H is an extension (via the angle

δ) of the contribution of the first row ofH̃. In other words, since the rows of̃H are

independent, we can integrate Eq. (II.16) on the contribution of the first row ofH̃ and

then reuse it for the second row by integrating over the angleδ. The kernel integral to be

solved, which corresponds to the first row of̃H, becomes

Pr {error of typee3} =

∫∫
a,b∈C2

exp
(
(−2ρ2)−1(‖a‖ − ‖b‖)2

)
p(a)p(b)dadb , I1, (A.3)

wherea andb are complex Gaussian vectors of length 2.

2) Evaluation of the kernel integral: The kernel integralI1, defined in Eq. (A.3), is solved

for both rows ofH̃. Since both rows are independent, we solve for the first row and

afterwards this solution is extended to the second row. Consider the kernel integral in Eq.

(A.3), wherea = (x1 + iy1, x2 + iy2), b = (u1 + iv1, u2 + iv2), and

p(a) , (2πσ2)−2 exp
(
−(2σ2)−1(x2

1 + y2
1 + x2

2 + y2
2)
)
, σ2 =

1

2
. (A.4)
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By changing the integral in Eq. (A.3) to spherical coordinates inR4 , we get

I1(α, η) = (η2 − α)4π−4

∞∫
0

∞∫
0

x3 exp
(
2αxy − η2x2

)
y3 exp

(
−η2y2

)
dxdy, (A.5)

whereα = (2ρ2)−1, andη2 = (2σ2)−1 + α. The variablesx andy are the radial variables

in spherical representation. The result of the integral in Eq. (A.5) is

I1(α, η) = 25π−4
[
2(η4 − α2)4

]−1

[
−22α4 + 12α3 arctan

(
α√

η4 − α2

)√
η4 − α2

+ 6α3π
√
η4 − α2 + 14α2η4 + 9απ

√
η4 − α2η4

+ 18αη4
√
η4 − α2 arctan

(
α√

η4 − α2

)
+ 8η8

]
. (A.6)

At high SNR values, which form the regime we are most interested in, the values ofα

andη2 are almost identical, and the integral can be approximated by

I1(α) ≈ 375π−3α3(1 + 2α)−3.5 = 375 (γ/2π)3 (1 + γ)−3.5, (A.7)

implying a diversity order of
1

2
generated by the first row of̃H.

3) Extension to the second row of̃H: Incorporating the second row of̃H given by Eq. (A.2),

we extend the kernel integral to give

I2(α, η) =

∞∫
x=0

∞∫
y=0

1∫
z1=0

1∫
z2=0

2π∫
δ=−2π

exp

{
−x

2z2
1 + y2z2

2 − 2xyz1z2 cos(δ)

2ρ2

}

· π−4x3y3 exp
{
−(x2 + y2)

}
2z12z2

(2π − |δ|)
4π2

dx dy dz1 dz2 dδ. (A.8)

We begin by analyzing the impact of the angleδ on the integrand, by numerically inte-

grating for fixed values ofδ. As can be seen in Fig. A.10, the integrand’s contribution is

most dominant whenδ approaches zero.

We continue by looking at the impact ofz1 andz2 on the integrand for a fixedδ, numerically

integrating over all values ofx andy. The value of the integrand as a function ofz1 and

z2 when δ = 0 and SNR=30dB is shown in Fig. A.11. As can be seen, the integrand’s

contribution is most dominant whenz1 and z2 approach one. Intuitively, this point is

dominant because the resulting equivalent channel matrixH̃ is made up of same sign

entries in the second row, resulting fromδ = 0, and gain that tends to be similar, resulting

from z1 = z2 = 1. Such a structure tends to decrease the condition number, increasing the
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error probability. We compare these results with the value of the integral whenδ = 0.1π,

as shown in Fig. A.12. As can be seen, for a slightly increasedδ, the main contribution

of the integrand is now centered aroundz1 and z2 much closer to zero. However, the

integrand’s value is orders of magnitude smaller. This phenomenon is more pronounced

asδ is increased.

We may thus focus onz1, z2 −→ 1 in order to compute the integral in Eq. (A.8), rewriting

it in the following form,

I2(α, η) = π−6

∞∫
0

∞∫
0

2π∫
δ=−2π

x3y3 exp

{
−x

2 + y2 − 2xy cos δ

2ρ2

}
exp

{
−(x2 + y2)

}
· (2π − |δ|)dxdydδ, (A.9)

which is an upper bound on the error probability since the maximum value ofz1 and z2

was incorporated. The result of this integral, givenδ, may be derived by extending the

kernel integral in Eq. (A.7), replacingα in Eq. (A.6) by α̃ = α cos(δ) whereη2 is not

modified. At high SNR values, whereη2 ≈ α, and looking at the dominant terms, the

integral overδ becomes

I2(α) ≈ 150α3π−6

2π∫
−2π

(2π − |δ|)(1 + 2α+ α2 sin δ2)−3.5 cos δ

· arctan (α(1− 0.5δ2)(1 + 2α+ α2δ2)−0.5)(2 cos δ2 + 3)dδ. (A.10)

The integrand in Eq. (A.10) is Taylor expanded aroundδ = 0. We use the approximations

cos2(δ) ≈ 1−δ2, cos(δ) ≈ 1−0.5δ2, sin2(δ) ≈ δ2 andarctan(x) ≈ −18.02x3 +11.79x2−

3.37x + 1.499, where the last approximation holds for|δ| < 0.05π (implying a large

x) which is where the integrand is most dominant. Incorporating all approximations, the

integral can be shown to be

I2(α) ≈ 0.012π−4α7(1 + 2α)−3(1 + 0.0247α2)−2.5, (A.11)

which implies a diversity order of 1 generated by the second row ofH̃.

4) Combined error probability for an error vector of typee3: This scheme’s error probability,

as defined in Eq. (II.16), consists of two independent components: a) One is derived from

the first row ofH̃ and is given by Eq. (A.7). b) The second component is generated by the

second row ofH̃ and is given by Eq. (A.11). Combination of the two components yields
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the scheme’s error probability. Since both rows ofH̃ are independent, we can multiply

both results. We have to take into account the error vector’s magnitude of two, thus, the

scheme’s combined error probability is given by

Pr {error of typee3} ≈ 2I1I2

= 9π−72−10γ10(1 + γ)−6.5(1 + 0.0062γ2)−2.5, (A.12)

which implies a diversity order of 1.5 generated by an error vector of typee3.
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Fig. A.1. Basic 4× 2 antenna scheme.
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Fig. A.2. Performance comparison between theoretical and simulation results for the suboptimal 4×2 MRT scheme.

Fig. A.3. Comparison between the error probabilities of the SM-MRT scheme for all the errors and errors of typese1, e2 and

e3, as observed in simulations.
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Fig. A.4. Performance comparison between theoretical and simulation results for the suboptimal SM-MRT scheme.

Fig. A.5. Performance comparison between all the three schemes in uncorrelated Rayleigh fading channels with equal throughput.
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Fig. A.6. Performance comparison between all the three schemes in uncorrelated Rayleigh fading channels using QPSK

modulation.

Fig. A.7. Performance comparison between the three schemes in uncorrelated Pedestrian B channels without error coding.
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Fig. A.8. Performance comparison between the three schemes in uncorrelated Pedestrian B channels with low rate error coding

while maintaining an equal throughput.
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Fig. A.9. Performance comparison between the three schemes in uncorrelated Pedestrian B channels with high rate error coding

while maintaining an equal throughput.

Fig. A.10. Value of the integrand in Eq. (A.8) as a function ofδ.
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Fig. A.11. Value of the integrand in Eq. (A.8) as a function ofz1 andz2 for SNR= 30dB andδ = 0.

Fig. A.12. Value of the integrand in Eq. (A.8) as a function ofz1 andz2 for SNR= 30dB andδ = 0.1π.
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