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Abstract

We construct a strong extractor against quantum storagembrks for every min-entropy;, has
logarithmic seed length, and outpu®$k) bits, provided that the quantum adversary has at mast
qubits of memory, for any < % The construction works by first condensing the source (witti-
mal entropy-loss) and then applying an extractor that werb against quantum adversaries when the
source is close to uniform.

We also obtain an improved construction of a strong quanumef extractor in the high min-entropy
regime. Specifically, we construct an extractor that usegarlthmic seed length and extra€té») bits
from any source ovef0, 1}", provided that the min-entropy of the source conditionedhenquantum
adversary’s state is at legdgt— 3)n, for any < 1.

1 Introduction

In the privacy amplificationproblem Alice and Bob share information that is only paliglecret with re-
spect to an eavesdropper Charlie. Their goal is to distdlitiformation to a shorter string that is completely
secret. The problem was introduced/in([2, 1] for classicaesdroppers. An interesting variant of the prob-
lem, where the eavesdropper is allowed to keep quantunmiaiion rather than just classical information,
was introduced by Konig, Maurer and Renrier [15]. This situnanaturally occurs in analyzing the security
of some quantum key-distribution protocdls [4] and in baeshdtorage cryptography [18,/16].

The shared information between Alice and Bob is modeled dweed stringr € {0,1}", sampled
according a distributionX. The information of the eavesdropper is modeled as a mixad,s(x), which
might correlated withe.

The privacy amplification problem can be solved by Alice amthBout only by using a (hopefully short)
random seed, which can be public. Thus, Alice and Bob look for a functign: {0,1}" x {0,1}" —
{0,1}™ that acts on their shared inputand the public random string, and extracts “true randomness”
for any “allowed” classical distributionrX and side informatiorp(X). More formally, E' is ane-strong
extractor for a family of input$, if for any distributionX and any quantum systeprsuch tha{ X; p) € Q,
the distributionY o £ (X, Y )op is e-close tol/ o p, whereU denotes the uniform distribution. (See Seclion 2.2
for precise details.)

Clearly, no randomness can be extracted if, for eugliyis possible to recover from the side informa-
tion p(x). We say theconditional min-entropyf X with respect tqp(X) is k, if an adversary holding the
statep(z) cannot guess the stringwith probability higher tha2—*. Roughly speaking, if one can extract
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no. of truly no. of classical guantum-proof

random bits output bits

O(n) m =k — O(1) | Pair-wise independence, [14] v'[15]

O(n—k+logn) | m=n Fourier analysis, collision [7] | v/[10]

O(m) m =k — O(1) | Almost pair-wise ind.,[[22, 12] v/, [25]

O(1EE) J1=¢ Designs, [25] v, [6]

O(logn) m = Q(n) [19,13] v, This paper, provided > (3 + ()n
logn + O(1) m =k — O(1) | Lower bound[[19,20] v

Table 1: Explicit quantum-proadfn, k, €) strong extractors. To simplify parameters, the eergra constant.

almost uniform bits from a sourc¥ in spite of the side informatiop(X ), then the stat& o p(X) is close

to another state with conditional min-entropy at lefast Thus, in a very concrete sense, the ultimate goal
is finding extractors for sources with high conditional ne'mtirop)g We sayF is aquantum-proof(n, k, )
strong extractor if it extracts randomness from every ifpltp) with conditional min-entropy at least

Not every classical extracfrs guantum-proof, as was shown by Gavinsky et all [11]. Omptheitive
side, several well-known classical extractors are quastmof. Tabld 1 lists some of these constructions.
We remark that the best explicit classical extractors [18]%chieve significantly better parameters than
those known to be quantum-proof.

A simpler adversarial model is the “bounded storage modéiéne the adversary may store a limited
number of qubits. The only advantage of the bounded storaggeifior extractors is that it simplifies the
proofs, and allows us to achieve results which currently arenot prove in the general model. We days
an(n, k, b, €) strong extractoagainst quantum storagéit extracts randomness from every péx; p) for
which X has at least min-entropy and for every, p(z) is a mixed state with at mostqubits.

In this paper we work with a slight generalization of the badech storage model. We s&yis aquantum-
proof (n, f, k, €) strong extractor foflat distributionsif it extracts randomness from every ingut’; p) for
which X is a flat distribution (meaning it is uniform over its supposiith exactly f min-entropy and the
conditional min-entropy is at least In Lemmd 2.4 we prove the easy observation that any quaptoof-
(n, f, k, €) strong extractor for flat distributions is alsq®a, f, f — k, €) strong extractor against quantum
storage.

We show a generic reduction from the problem of construagimantum-proofn, f, k, €) strong extrac-
tors for flat distributions to the problem of constructingagtum-proof((1 + «) f, f, k, €) strong extractors
for flat distributions, and a similar reduction for the boaddstorage model. In other words, in our model
the quantum adversary may have two types of information tahewsource: first, it may have some classical
knowledge about it, reflected in the fact that the inpiig taken from some classical flat distributiéf, and
second, it holds a quantum state that contains some infmmalbout the source. The reduction shows that
without loss of generality we may assume the classical iditibution is almost uniform. The reduction
uses a purely classical object callestang lossless condensand extends work done in [24] on extractors
to quantum-proof extractors. This reduction holds for agiyirsg of the parameters.

We then augment this with a simple construction that shows twobtain a quantum-proof(1 +
a)f, f, k= (1-p)f,¢€) strong extractor for flat distributions, provided titak % The argument here builds

1Such a source is said to have conditiosiloothmin-entropyk.

2/ simple argument shows an extractor for sources with higtditimnal min-entropy is also an extractor for sources witfh
conditional smooth min-entropy.

3We refer to extractors that extract randomness when thérsikenation is classical as classical extractors.



on work done in[[19] on composition of extractors and extehds quantum-proof extractors. Together,
these two reductions give:

Theorem 1.1. For any 8 < % ande > 2"“5, there exists an explicit quantum-pro@f, k, (1 — B)k,¢)
strong extractor for flat sourceg : {0,1}" x {0,1}" — {0,1}" with seed length = O(logn + log e~ 1)
and output lengthn = Q(k).

Consequently,

Theorem 1.2. For any 5 < % ande > 2-k" there exists an explicitn, k, Sk, €) strong extractor against
quantum storageF : {0,1}" x {0,1} — {0,1}™, with seed length = O(log n + loge~') and output
lengthm = Q(k).

This gives the first logarithmic seed length extractor agfaimquantum storage that works for every
min-entropyk and extracts a constant fraction of the entropy, and it idieadge wheneveb = Sk for
g < i

V\2/e would like to stress that in most practical applicatiarg] in particular in cryptographic applications
such as quantum key distribution, it is generally imposstbl bound thesizeof the side information. For
example, in quantum key distribution where extractors aeduor privacy amplification, the conditional
min-entropy of the source can be estimated by measuringadise on the channel, whereas any estimate on
the adversary’s memory is an unproven assumption. Thusteacr proven to work only against quantum
storage cannot be used in quantum key distribution pratodte nevertheless feel that proving a result in
the bounded storage model may serve as a first step towaxdisgsthie general question.

In fact, the second component in the above constructiornvadsks in the general quantum-proof setting.
Specifically, this gives an extractor with seed length O(log n + log 1) that extract$)(n) bits from any
source with conditional min-entropy at leg$t— 3)n for 5 < %

Theorem 1.3. For any 3 < % ande > 27", there exists an explicit quantum-proef, (1 — 3)n, €) strong
extractor £ : {0,1}" x {0,1}" — {0,1}", with seed lengtlt = O(logn + loge™!) and output length
m = Q(n).

The rest of the paper is organized as follows. Secfion 2 amnédl the necessary preliminaries, including
the formal definitions of min-entropy, quantum-proof egtoas and extractors against quantum storage. In
Section B we give the reduction which shows it is sufficientaastruct extractors for sources with nearly
full min-entropy, when working in the bounded storage ordtairces settings. In Sectibh 4 we describe the
construction of quantum-proof extractors when the coodéi min-entropy is more than half, and give the
proof of Theorend 113. The proofs of Theoremg 1.1[and 1.2 aengh Section 5.

2 Preliminaries

Distributions. A distribution D on A is a functionD : A — [0,1] such thaty _, D(a) = 1. We
denote byx~D samplingz according to the distributio®. Let U, denote the uniform distribution over
{0,1}*. We measure the distance between two distributions withvéhiational distancéD; — Dy|; =
23 sen |D1(a) — Da(a)|. The distributionsD; and D, aree-closeif | Dy — Da|y < e.

The min-entropy ofD is denoted byH (D) and is defined to be

H (D) = in —log(D(a)).
(D)= min - log(D(@)
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If Hoo(D) > k then for alla in the support ofD it holds thatD(a) < 27*. A distribution isflat if it is
uniformly distributed over its support. Every distributi® with H.,(D) > k can be expressed as a convex
combination_ «; D; of flat distributions{ D;}, each with min-entropy at leagt We sometimes abuse
notation and identify a seX with the flat distribution that is uniform ovex.

If X is a distribution over\; andf : A; — A, then f(X) denotes the distribution ovex, obtained
by samplingz from X and outputtingf (x). If X; and X, arecorrelateddistributions we denote their joint
distribution by X o X. If X; and X, areindependentistributions we replace by x and write X; x Xo.

Mixed states. A pure state is a vector in some Hilbert space. A general guasiystem is in anixed state
— a probability distribution over pure states. ek, |¢;)} denote the mixed state where the pure state
occurs with probabilityp;. The behavior of the mixed stafg;, |¢;)} is completely characterized by its
density matrixo = > . p; |¢i)(¢;], in the sense that two mixed states with the same densityxihaive the
same behavior under any physical operation. Notice thahaityematrix over a Hilbert spacH belongs
to Hom(H, H), the set of linear transformation frofd to . Density matrices are positive semi-definite
operators and have trate

The trace distancebetween density matrices and ps is ||p1 — pall, = 5 >.; |\, where{\;} are
the eigenvalues gf; — p,. The trace distance coincides with the variational distambenp,; andp, are
classical stateso(is classical if it is diagonal in the standard basis). Simil#o probability distributions,
the density matriceg; andp, aree-closeif the trace distance between them is at most

A positive operator valued measure (POVM) is the most gémemaulation of a measurement in quan-
tum computation. A POVM on a Hilbert spaé¢ is a collection{ F;} of positive semi-definite operators
F; : Hom(H,H) — Hom(H,H) that sum-up to the identity transformation, i.€;,= 0 and>_ F; = I.
Applying a POVM F' = {F;} on a density matrix results in the distributior¥'(p) that outputsi with
probability Tr(F;p).

A Boolean measuremeRt, I — F'} e-distinguishes; andps if |Tr(Fp1) — Tr(Fp2)| > e.

We shall need the following facts regarding the trace distan

Fact 2.1. If |p1 — p2||,, = J then there exists a Boolean measurement dhdistinguishes; and p,.

Fact 2.2. If p; and p» are e-close ther€(p;) and&(p2) are e-close, for any physically realizable transfor-
mationé&.

2.1 Min-entropy

To define the notion of quantum-proof extractors we first ribechotion of quantum encoding of classical
states.

Definition 2.1. Let X be a distribution over some sat
¢ Anencodingof X is a collectionp = {p(x)},., of density matrices.
e An encoding is ab-storage encoding p(z) is a mixed state ovérqubits, for allz € A.
e An encoding ixlassicalf p(x) is classical for allz.

The average encoding is denotedy = E.~ x[p(z)].
Next we define the notion of conditional min-entropy. Theditional min-entropy ofX given p(X)
measures the average success probability of predictoigen the encoding(z). Formally,



Definition 2.2. Theconditional min-entropy ofX given an encoding is
Hoo(X;p) = —log Sup E [Tr(Fap(@))],

where the supremum ranges over all POVMs- {F,}, .

We remark that there exists another definition of conditiomia-entropy in the quantum setting, which
is more algebraic in flavor. However, the two definitions ayeiealent, as shown in [17].

Proposition 2.1([18, Proposition 2]) If p is ab-storage encoding ok then H(X; p) > Hoo(X) — b.

We shall need the following standard lemmas regarding mtrepy that can be found, e.g., In]21]. The
first lemma says that cuttingbits from a source cannot reduce the min-entropy by morethan

Lemma2.1.Let X = X;0X5 be adistribution over bit strings anebe an encoding such that.(X; p) >
k, and suppose thaX, is of length?. Lety’ be the encoding ok defined by (21) = Ez(x|x,=21) [0()].
Then,Hoo(X1;p0") > k — 1.

Proof: Given any predicto”’ which predictsX; from p/, we can construct a predictdt for X (from p)
as follows: P simply runsP’ to obtain a prediction for the prefix;, and then appends it with a randomly
chosen string fronf0, 1}“. Then,

Pr [P(p(z1omg)) =x10me] = Pr [P'(p(z10x2)) = 1] - 2¢
z10 L2~ X zr10x9~X
= P [P((an) =] 2
r1~X1

Thus, if Hy(X7;p") < k — [ then there would have been a predictor which predictwith probability
greater tharz—* and this cannot be the case siriég, (X; p) > k. ]

The second lemma says that if a source has high min-entrogy, revealing a short prefix (with high
probability) does not change much the min-entropy. The larrsa generalization of a well known classical
lemma.

Lemma2.2.LetX = X;0X, be adistribution ang be an encoding such thai, (X; p) > k, and suppose
that X is of length?. For a prefixz, let p,,, be the encoding ok, defined by, (z2) = p(x1 o x2). Call
a prefixzy badif Hoo (X2 | X1 = x1; ps, ) < 7 and denote byB the set of bad prefixes. Then,

Pr[X; € B] <2¢.27 .27

Proof: Let the prefixx) € B be the one with the largest probability mass. THern X, = 2] > Pr[X; €
B]- 2. Foranyz € B, let A, denote the optimal predictor that predicts from p., conditioned on
X1 = z. By the definition of min-entropy, for any € B,

zo~(X2| X1=2)

In particular this holds for = 2.
Now, define a predictoP for X from p by

P(p(z)) = x7 0 Ay (p(x)),
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that is, P simply “guesses” that the prefix is; and then applies the optimal predic'uégc/1 . The average
success probability aP is

;pINEX [Pr[P(p(x)) = ‘TH = mlgxl IQN(XE‘EX1:(E1) [6r1,$'1 ’ Pr[A:B’l (pm’l (z2)) = xZ]}]
= PrXi=al)s B [Prldy (o (e2)) = o]

xzo~(X2| X1=2))
> Pr[X;eB]-27¢.27"

On the other hand, sindé..(X; p) > k, the average success probability®fis at most2—*. Altogether,
Pr[X; € B} <2f.2r.27k n

2.2 Quantum-proof extractors

We now define the three different classes of extractors aggirantum adversaries that we deal with in this
paper. We begin with the most general (and natural) defmitio

Definition 2.3. A functionE : {0,1}" x {0,1}" — {0,1}™ is aquantum-proofn, k, ¢) strong extractoif
for every distributionX over {0, 1}" and every encoding such thatH . (X; p) > k,

|Ut 0 E(X,Ut) 0 p(X) = Upgm % pxlly < €.

We useo to denote correlated values. Thig,o E(X,U;) o p(X) denotes the mixed state obtained by
samplingz~X, y~U; and outputtingy, E(x,y))(y, E(x,y)| ®p(z). Notice that all 3 registers are corre-
lated. When a register is independent of the others wexugestead ofo. Thus,U;,, x gx denotes the
mixed state obtained by sampling-X, w~U;,, and outputtingw) (w| @p(x).

Next we define quantum-proof extractors fiat distributions

Definition 2.4. A functionE : {0,1}" x {0,1}* — {0,1}"™ is aquantum-proof(n, f, k, €) strong extrac-
tor for flat distributionsif for everyflat distribution X over {0, 1}" with exactly f min-entropy and every
encodingp of X with H.(X; p) > k,

1Us 0 B(X,U3) 0 p(X) ~ Upem % pix e < .

We remark that in the classical setting every extractor &drdistributions is also an extractor for general
distributions, since every distribution with min-entropyan be expressed as a convex combination of flat
distributions ove* elements.

Finally we define extractors against quantum storage:

Definition 2.5. A function £ : {0,1}" x {0,1} — {0,1}" is an (n, k, b, €) strong extractor against
quantum storagi for every distributionX over{0, 1}" with H,,(X) > k and every-storage encoding
of X,

|Uro E(X,Uy) 0 p(X) = Upym X px|ly, <€

The next lemma shows it sufficient to consider only flat disttions when arguing about the correctness
of extractors against quantum storage.



Lemma 2.3. If E'isnotan (n, k, b, €) strong extractor against quantum storage then there eaiststX of
cardinality 2 and ab-storage encoding such thatF fails on (X p), that is,

Ui o E(X,Uy) 0 p(X) = Upym X px|ly, > €

Proof: We prove the contrapositive, i.e., we assume thatvorks for flat distributions of min-entropy
exactlyk and prove that it also works for general distributions witkeastk min-entropy.

SupposeX is a distribution withH.,(X) > k. ThenX can expressed as a convex combination of
flat distributionsX; each withH . (X;) = k. If p is ab-storage encoding ok then it is also &-storage
encoding of each of these flat distributioNs. Thus, by assumption,

”Ut o E(Xi7 Ut) o p(XZ) — Uty ¥ ﬁXi|’tr S €.

Now by convexity,
|Ut 0 E(X,Ut) 0 p(X) = Upm X pxlly <6

as desired. [ ]

Combining this with Proposition 2.1 we get:

Lemma 2.4. Every quantum-proofn, f, k, €) strong extractor for flat distributions, is afn, f, f — k, €)
strong extractor against quantum storage.

2.3 Lossless condensers

Definition 2.6 (strong condenser)A mappingC : {0,1}" x {0,1}¢ — {0,1}" is an (n, k1) —¢ (0, k2)
strong condensef for every distributionX with k&, min-entropy,U,; o C'(X, Uy) is e-close to a distribution
with d + k2 min-entropy.

One typically wants to maximizg, and bring it close td:; while minimizingn’ (it can be as small as
k1 + O(log e~ 1)) andd (it can be as small dsg((n — k)/(n’ — k)) + loge~! + O(1)). For a discussion of
the parameters, se€ [3, Appendix B]. We call the conddpsslessf ko = k;.

The property of lossless condensers that we shall use isfibeing.

Fact 2.3([23, Lemma 2.2.1]) Let C : {0,1}" x {0,1}% — {0,1}" be an(n,k) — (n/,k) lossless
condenser. Consider the mapping

C':{0,1}" x {0,1}* — {0,1}" x {0,1}¢

C'(z,y) = Clz,y) o y.

Then, for every sek C {0,1}" of size|X| < 2%, there exists a mapping” : {0,1}" x {0,1}* —
{0,1}" x {0,1} that is injective onX x {0, 1}% and agrees withC’ on at leastl — ¢ fraction of the set
X x {0,1}<.



3 Areduction to full classical entropy

A popular approach for constructing explicit extractorstia classical setting is as follows:

e Construct an explicit extractor for tHggh min-entropy regime, i.e. for source$ distributed over
{0, 1}" that havek min-entropy for some largk close ton, and,

e Show a reduction from the general case to the high min-eyptrape.

In the classical setting this is often achieved by compoaimgxtractor for the high min-entropy regime
with a classical lossless condenser. Specifically, assume:

e C:{0,1}" x {0,1}¢ — {0, 1}"’ isan(n, k) —, (n, k) strong lossless condenser, and,
o E:{0, 1} x {0,1} = {0,1}™is a(d + n/,d + k, e;) strong extractor.
Define EC : {0,1}" x ({0,1}% x {0,1}") — {0,1}™ by

EC(‘T’ (ylayZ)) = E((C(x7y1)7y1)7y2)'

In the classical setting, [24, Section 5] prove that' is a strongn, k, €1 + €2) extractor. In this section
we try to generalize this result to the quantum setting. Vdegr

Theorem 3.1. LetC and EC be as above.

e If F is a quantum-proofd + n',d + k, k2, €2) strong extractor for flat distributions, theBC' is a
(n, k, ko, e = €2 + 2¢1) strong extractor for flat distributions.

o If Eisa(d+n/,d+k,d+b, ez) strong extractor against quantum storage, the@' is an(n, k, b, e =
€9 + 2¢1) strong extractor against quantum storage.

The intuition behind the theorem is the following. When tbadenser' is applied on a flat source, itis
essentially a one-to-one mapping between the soliread its image” (X). Therefore, roughly speaking,
any quantum information aboutcan be translated to quantum information ab@(t) and vice-versa. To
make this precise we need to take care of the condenser’'saswkthis incurs a small loss in the parameters.

We first prove the second item.

Proof (second item): Assume, by contradiction thd(C' is not an(n, k,b,e = €3 + 2¢;) Strong extractor
against quantum storage. Then, by Lenima 2.3, there existBsats¥ C {0,1}" of cardinality2* and a
b-storage encoding of X such that, given this encoding, the output of the extra&tofis note-close to
uniform. That is,

||Ut+d o EC(X7 Ut+d) © p(X) - Ut+d+m X ﬁXHtr > €

In particular, by Fadt 211, there exists some Boolean measemt that-distinguishes the two distri-
butions. Since the first two components are classical, weeamesent this measurement as follows. For
everyy € {0,117 andz € {0,1}™ there exists a Boolean measuremght*, I — F¥=} on the quantum
component such that

y7EC($7y) — Y,z 5
xNXIFJyNU[Tr(F p(z))] yg}vU[Tr(F px)]| > e



We now show how this can be used to break the extraEto€onsider the setl = X x {0, 1}d. By
Fact2.8, there exists a mappiiythat is injective onA and agrees with the condenser on at ldaste;
fraction of A. DenotingB = D(A), itis clear thatd.(B) > d + k.

For (z,y) € B we define the encoding

P'(Z,9) = |y1) (1| @p(D (%, 7)),

where(xz,y,) = D~1(&,) € Alis the unique element such thA(z,y;) = (%, ), andD* (%, j) = .
Next, we define a measuremep”*”, I — F'*°} that given the inpuys € {0,1}", 2 € {0,1}" and
0'(Z,9) = |y1)(y1| @p(x), setsy = (y1, y2) and applies the measuremdit?*, I — F¥*} on the quantum
registerp(x).
Now,

o E U[TT(FyQ’E(b’y”p’(b))]— <E, [Tf(Fy’EC(m’y)p(w))]‘ < e,
~B, ya~Uy x~ X, y~Uqgyt

since the flat distribution oveB is ¢;-close to the distribution obtained by samplinge X, y; € Uz and
outputting (C(x, 1), y1). For the same reason, averaging ofgefor F is almost as averaging ovéf for
F'. Namely,

B ()] - B ]| < a
y2,2~U y,z~U

It follows that

T Fy27E(b,y2) "] — T (FY>% ‘ >
L EEO ) - g )|

B [P0 @)] - B ()] -2 > 2o
o~ X, y~U y,z~U

Clearlyy’ is a(d+0b)-storage encoding d8. This contradicts the fact tht is a strong extractor against
d + b quantum storage. [ |

We now prove the first item.

Proof (first item): Assume, for contradiction, th&C' is not a quantum-prodfn, k, ko, €) strong extractor
for flat distributions. Then there exists a sub&etC {0,1}" of cardinality exactly2* and an encoding

of X such that the conditional min-entropy is at lekstut given this encoding the output of the extractor
EC is note-close to uniform. The proof proceeds as before, definin@tt@lean measuremeft, the sets

A and B, the encoding’ and the measurement If we can show thafi..(B;p’) > ks then we break the
extractorE and reach a contradiction. Indeed:

Claim 3.1. Hoo(B;p') > ko.
Proof: Assume, for contradiction, thdf..(B; p') < ko. Then, there exists a predictdr’ such that

Pr W/ (/1) = 8] > 27,

Define a new predictor{V/, that givenp(x) works as follows. First?” choosesy~Uy and runsiw’ on
ly)(y| @p(z) to get some answer It then outputsD* (b).
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The success probability of the prediclaf is

Pr [W(p(z)) = 2] = Pr  [DT(W'(ly)yl@p(x))) = 2]
T~ xNvae{Ovl}
> Pr  [W(ly)(yl@p(z)) = D(,y)]

z~X,ye{0,1}¢
= PrW(p ) =4 > 27"

This contradicts the fact thdf . (X; p) > ko. ]

We remark that we do not know how to extend the proof to worklassy condensers.

4  An explicit quantum-proof extractor for the high-entropy regime

In this section we describe a construction of a short-seadtgqm-proof(n, k, €) strong extractor that works
wheneverk > n/2. In the classical setting this scenario was studied in [8}etbping and improving
techniques from [19] and other papers. Here we only neecetiimitques developed in [19].

Intuitively, the extractor that we construct works as follows. First, it divides therseuo two parts of
equal length. Since the min-entropy is larger thgi2, for almost any fixing of the first part of the source,
the distribution on the second part Has») min-entropy. Hence, applying an extract®s on the second
part results in output bits that are close to uniform. Simigis true for almost every fixing of the first part,
these output bits are essentially independent of the firsigbéhe source. Therefore, these output bits can
serve as a seed for another extractor, that is applied on the first part of the source.

Formally, assume:

o B :{0,1}"% x {0,1}"" - {0,1}™ isa quantum-proof%, & — b, ¢1) strong extractor, and,
o By :{0,1}"? % {0,1}* — {0,1}"" is a quantum-proofZ, k, e;) strong extractor.
DefineE : {0,1}" x {0,1}% — {0,1}™ by

E(x,y) = Ei(x1, Ex(22,v)),

wherez = 21 o 25 anday, 2o € {0,112
Theorem 4.1. Let 4, E> and E be as above witk = § — b — log e~!. ThenE is a quantum-proof
(n,n — b, e + €1 + €2) strong extractor.

Proof: Let X = X; o X, be a distribution on{0,1}" = {0,1}"/? x {0,1}"/? and p be an encoding
such thatH,(X;p) > n — b. For a prefixz; € {0,1}"/?, let p,, be the encoding o, defined by
Pay (22) = p(x1 0 22). A prefix xy is said to bébadif Hoo (X2 | X1 = 215 p4,) < k. By Lemmd 2.2, the
probability z1 (sampled fromX;) is bad is at most

on/2 , ok on/2 , gn/2—b—log et

on—b on—b =&

10



Wheneverr; is not badH, (X2 | X1 = z1; p2,) > k, that is, the extractoEs is applied on a distribu-
tion with £ min-entropy. Therefore, by the assumptionigy its output iseo-close to uniform. That is, for
every goodr,

|Udy © 21 0 E2(X2,Uq,) © pay (X2) — Ugy 0 21 0 Ugy © pry (X2)fy, < €2

Hence, the distributiod/y, o X1 o Ea(X2,Uy,) o p(X) is (€ + €2)-close toUy, o X1 o Uy, o p(X). In
particular,

HUd2 0 E(X7 Ud2) o p(X) - Ud2+d1 0 ﬁX”tr
= ||Uay o E1 (X1, E2(X2,Ug,)) © p(X) — Udgytay © px ||y
< etext [|Us 0 E1(X1,Uqy) 0 p(X) = Udydy © px iy »
where the last inequality follows from Fact P.2.

Since,Hoo(X; p) > n—b, by LemmdZ2.1L, if we define an encodip@of X by p'(21) = Eyro(x|x, =a1) [0(2)],
thenHo(X1;0') > n—b—n/2 =n/2 — b. Therefore, by the assumption @i we get

1E1(X1,Ugy) 0 p(X) = Uy @px ||y < €1,

and thus

HUd2 0 E(X’ Ud2) 0 p(X) - Ud2+d1®p_XHtr < e+et+ e

4.1 Plugging in explicit constructions

We use Trevisan’s extractor, which was already shown to laatgu-proof in[[6| 5]. Specifically, we use
the following two instantiations of this extractor:

Theorem 4.2([5]). For every constani > 0, there existsZ; : {0,1}2 x {0, 1}00&" /<)) _, 1o 1}(1-9(5-b)
which is a quantum-proof3, & — b, 1) strong extractor.

Theorem 4.3([5]). For every constantsy;, v, > 0, there existsE, : {0,1}% x {0,1}°0se/e) _,
{0, 1}'Clﬂl which is a quantum-proafs, k, €2) strong extractor, fok > n2.

Plugging these two constructions into Theofem 4.1 giveofdra[ 1.8 which we now restate.

Theorem[1.3. For any 8 < %,fy > 0 ande > 21" “there exists an explicit quantum-propf, (1 —
B)n, €) strong extractorE : {0,1}" x {0,1}' — {0,1}™, with seed length = O(logn + loge~!) and
output lengthm = Q(n).

Proof: We sete; = €2 =¢, b=n, k=5 — n —log el p=06= % and~v; < «. In order to apply
Theoreni 4.1l we need to verify that the output lengtleis not shorter than the seed lengthfgf. This is
indeed the case since

B> (2 g 2 0t 2 0flog(L)).
€
The output length o is 1 (5 — B)n = Q(n). n

11



5 The final extractor for the bounded storage model

We need the classical lossless condenser of [13].

Theorem 5.1([13]). For everya > 0 there exists arin, k) —. ((1 + «)k, k) strong lossless condensér
with seed lengti® (log n + log e~ 1).

Plugging the condensér and the extracto#s of Theoren 1B into Theorem 3.1 gives Theoflen 1.2,
which we now restate.

Theorem[1.2. For any 3 < % ande > 27*”, there exists an explicitn, k, Sk, €) strong extractor against
quantum storageF : {0,1}" x {0,1}* — {0,1}™, with seed length = O(logn + log e~ ') and output
lengthm = Q(k).

Proof: Let( > 0 be a constant to be fixed later. The extraditirom Theoreni 1.3, when the source length
is setto be(1—3)(1—(¢)k, is a quantum-proof2(1—3)(1—¢)k, (1—B)k, €) strong extractor. In particular,
itisa (2(1 — B)(1 — )k, k, Bk, €) strong extractor against quantum storage. Its outputheisg?(k). The
theorem follows by applying Theordm 8.1, using the condenfs€heoreni 5.11 withy = 2(1—8)(1—¢)—1.
Sinces < % there is a way to fiX such thaix > 0. [

Since Theorerh 31 works in the more general model of flatidigtons, and since the extractor from
Theoreni 1.B already works in the most general setting, wé&lgedreni 1.1:

Theorem[I.1.Foranys < 3 ande > 2-% there exists an explicit quantum-prdef, k, (1— 3)k, €) strong
extractor for flat distributions £ : {0,1}" x {0,1}" — {0,1}™, with seed length = O(logn + loge™!)
and output lengthn = Q(k).
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