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Better short-seed quantum-proof extractors

Avraham Ben-Aroya∗ Amnon Ta-Shma†

Abstract

We construct a strong extractor against quantum storage that works for every min-entropyk, has
logarithmic seed length, and outputsΩ(k) bits, provided that the quantum adversary has at mostβk
qubits of memory, for anyβ < 1

2
. The construction works by first condensing the source (withmini-

mal entropy-loss) and then applying an extractor that workswell against quantum adversaries when the
source is close to uniform.

We also obtain an improved construction of a strong quantum-proof extractor in the high min-entropy
regime. Specifically, we construct an extractor that uses a logarithmic seed length and extractsΩ(n) bits
from any source over{0, 1}n, provided that the min-entropy of the source conditioned onthe quantum
adversary’s state is at least(1− β)n, for anyβ < 1

2
.

1 Introduction

In theprivacy amplificationproblem Alice and Bob share information that is only partially secret with re-
spect to an eavesdropper Charlie. Their goal is to distill this information to a shorter string that is completely
secret. The problem was introduced in [2, 1] for classical eavesdroppers. An interesting variant of the prob-
lem, where the eavesdropper is allowed to keep quantum information rather than just classical information,
was introduced by König, Maurer and Renner [15]. This situation naturally occurs in analyzing the security
of some quantum key-distribution protocols [4] and in bounded-storage cryptography [18, 16].

The shared information between Alice and Bob is modeled as a shared stringx ∈ {0, 1}n, sampled
according a distributionX. The information of the eavesdropper is modeled as a mixed state,ρ(x), which
might correlated withx.

The privacy amplification problem can be solved by Alice and Bob, but only by using a (hopefully short)
random seedy, which can be public. Thus, Alice and Bob look for a functionE : {0, 1}n × {0, 1}t →
{0, 1}m that acts on their shared inputx and the public random stringy, and extracts “true randomness”
for any “allowed” classical distributionX and side informationρ(X). More formally, E is an ǫ-strong
extractor for a family of inputsΩ, if for any distributionX and any quantum systemρ such that(X; ρ) ∈ Ω,
the distributionY ◦E(X,Y )◦ρ is ǫ-close toU◦ρ, whereU denotes the uniform distribution. (See Section 2.2
for precise details.)

Clearly, no randomness can be extracted if, for everyx, it is possible to recoverx from the side informa-
tion ρ(x). We say theconditional min-entropyof X with respect toρ(X) is k, if an adversary holding the
stateρ(x) cannot guess the stringx with probability higher than2−k. Roughly speaking, if one can extractk
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no. of truly no. of classical quantum-proof
random bits output bits

O(n) m = k −O(1) Pair-wise independence, [14] X[15]
O(n− k + log n) m = n Fourier analysis, collision [7] X[10]
Θ(m) m = k −O(1) Almost pair-wise ind., [22, 12] X, [25]

O( log
2 n

log(k)) k1−ζ Designs, [26] X, [6]

O(log n) m = Ω(n) [19, 3] X, This paper, providedk > (12 + ζ)n

log n+O(1) m = k −O(1) Lower bound [19, 20] X

Table 1: Explicit quantum-proof(n, k, ǫ) strong extractors. To simplify parameters, the errorǫ is a constant.

almost uniform bits from a sourceX in spite of the side informationρ(X), then the stateX ◦ ρ(X) is close
to another state with conditional min-entropy at leastk.1 Thus, in a very concrete sense, the ultimate goal
is finding extractors for sources with high conditional min-entropy.2 We sayE is aquantum-proof(n, k, ǫ)
strong extractor if it extracts randomness from every input(X; ρ) with conditional min-entropy at leastk.

Not every classical extractor3 is quantum-proof, as was shown by Gavinsky et al. [11]. On thepositive
side, several well-known classical extractors are quantum-proof. Table 1 lists some of these constructions.
We remark that the best explicit classical extractors [13, 9, 8] achieve significantly better parameters than
those known to be quantum-proof.

A simpler adversarial model is the “bounded storage model” where the adversary may store a limited
number of qubits. The only advantage of the bounded storage model for extractors is that it simplifies the
proofs, and allows us to achieve results which currently we cannot prove in the general model. We sayE is
an(n, k, b, ǫ) strong extractoragainst quantum storageif it extracts randomness from every pair(X; ρ) for
whichX has at leastk min-entropy and for everyx, ρ(x) is a mixed state with at mostb qubits.

In this paper we work with a slight generalization of the bounded storage model. We sayE is aquantum-
proof (n, f, k, ǫ) strong extractor forflat distributionsif it extracts randomness from every input(X; ρ) for
which X is a flat distribution (meaning it is uniform over its support) with exactlyf min-entropy and the
conditional min-entropy is at leastk. In Lemma 2.4 we prove the easy observation that any quantum-proof
(n, f, k, ǫ) strong extractor for flat distributions is also a(n, f, f − k, ǫ) strong extractor against quantum
storage.

We show a generic reduction from the problem of constructingquantum-proof(n, f, k, ǫ) strong extrac-
tors for flat distributions to the problem of constructing quantum-proof((1 + α)f, f, k, ǫ) strong extractors
for flat distributions, and a similar reduction for the bounded storage model. In other words, in our model
the quantum adversary may have two types of information about the source: first, it may have some classical
knowledge about it, reflected in the fact that the inputx is taken from some classical flat distributionX, and
second, it holds a quantum state that contains some information about the source. The reduction shows that
without loss of generality we may assume the classical inputdistribution is almost uniform. The reduction
uses a purely classical object called astrong lossless condenserand extends work done in [24] on extractors
to quantum-proof extractors. This reduction holds for any setting of the parameters.

We then augment this with a simple construction that shows how to obtain a quantum-proof((1 +
α)f, f, k = (1−β)f, ǫ) strong extractor for flat distributions, provided thatβ < 1

2 . The argument here builds

1Such a source is said to have conditionalsmoothmin-entropyk.
2A simple argument shows an extractor for sources with high conditional min-entropy is also an extractor for sources withhigh

conditional smooth min-entropy.
3We refer to extractors that extract randomness when the sideinformation is classical as classical extractors.
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on work done in [19] on composition of extractors and extendsit to quantum-proof extractors. Together,
these two reductions give:

Theorem 1.1. For any β < 1
2 and ǫ ≥ 2−k

β
, there exists an explicit quantum-proof(n, k, (1 − β)k, ǫ)

strong extractor for flat sourcesE : {0, 1}n × {0, 1}t → {0, 1}m with seed lengtht = O(log n+ log ǫ−1)
and output lengthm = Ω(k).

Consequently,

Theorem 1.2. For anyβ < 1
2 and ǫ ≥ 2−k

β
, there exists an explicit(n, k, βk, ǫ) strong extractor against

quantum storage,E : {0, 1}n × {0, 1}t → {0, 1}m, with seed lengtht = O(log n + log ǫ−1) and output
lengthm = Ω(k).

This gives the first logarithmic seed length extractor against b quantum storage that works for every
min-entropyk and extracts a constant fraction of the entropy, and it is applicable wheneverb = βk for
β < 1

2 .
We would like to stress that in most practical applications,and in particular in cryptographic applications

such as quantum key distribution, it is generally impossible to bound thesizeof the side information. For
example, in quantum key distribution where extractors are used for privacy amplification, the conditional
min-entropy of the source can be estimated by measuring the noise on the channel, whereas any estimate on
the adversary’s memory is an unproven assumption. Thus, an extractor proven to work only against quantum
storage cannot be used in quantum key distribution protocols. We nevertheless feel that proving a result in
the bounded storage model may serve as a first step towards solving the general question.

In fact, the second component in the above construction alsoworks in the general quantum-proof setting.
Specifically, this gives an extractor with seed lengtht = O(log n+log ǫ−1) that extractsΩ(n) bits from any
source with conditional min-entropy at least(1− β)n for β < 1

2 .

Theorem 1.3. For anyβ < 1
2 andǫ ≥ 2−n

β
, there exists an explicit quantum-proof(n, (1 − β)n, ǫ) strong

extractorE : {0, 1}n × {0, 1}t → {0, 1}m, with seed lengtht = O(log n + log ǫ−1) and output length
m = Ω(n).

The rest of the paper is organized as follows. Section 2 contains all the necessary preliminaries, including
the formal definitions of min-entropy, quantum-proof extractors and extractors against quantum storage. In
Section 3 we give the reduction which shows it is sufficient toconstruct extractors for sources with nearly
full min-entropy, when working in the bounded storage or flatsources settings. In Section 4 we describe the
construction of quantum-proof extractors when the conditional min-entropy is more than half, and give the
proof of Theorem 1.3. The proofs of Theorems 1.1 and 1.2 are given in Section 5.

2 Preliminaries

Distributions. A distribution D on Λ is a functionD : Λ → [0, 1] such that
∑

a∈Λ D(a) = 1. We
denote byx∼D samplingx according to the distributionD. Let Ut denote the uniform distribution over
{0, 1}t. We measure the distance between two distributions with thevariational distance|D1 − D2|1 =
1
2

∑
a∈Λ |D1(a)−D2(a)|. The distributionsD1 andD2 areǫ-closeif |D1 −D2|1 ≤ ǫ.
The min-entropy ofD is denoted byH∞(D) and is defined to be

H∞(D) = min
a:D(a)>0

− log(D(a)).
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If H∞(D) ≥ k then for alla in the support ofD it holds thatD(a) ≤ 2−k. A distribution isflat if it is
uniformly distributed over its support. Every distribution D with H∞(D) ≥ k can be expressed as a convex
combination

∑
αiDi of flat distributions{Di}, each with min-entropy at leastk. We sometimes abuse

notation and identify a setX with the flat distribution that is uniform overX.
If X is a distribution overΛ1 andf : Λ1 → Λ2 thenf(X) denotes the distribution overΛ2 obtained

by samplingx from X and outputtingf(x). If X1 andX2 arecorrelateddistributions we denote their joint
distribution byX1 ◦X2. If X1 andX2 areindependentdistributions we replace◦ by× and writeX1 ×X2.

Mixed states. A pure state is a vector in some Hilbert space. A general quantum system is in amixed state
— a probability distribution over pure states. Let{pi, |φi〉} denote the mixed state where the pure state|φi〉
occurs with probabilitypi. The behavior of the mixed state{pi, |φi〉} is completely characterized by its
density matrixρ =

∑
i pi |φi〉〈φi|, in the sense that two mixed states with the same density matrix have the

same behavior under any physical operation. Notice that a density matrix over a Hilbert spaceH belongs
to Hom(H,H), the set of linear transformation fromH to H. Density matrices are positive semi-definite
operators and have trace1.

The trace distancebetween density matricesρ1 andρ2 is ‖ρ1 − ρ2‖tr = 1
2

∑
i |λi|, where{λi} are

the eigenvalues ofρ1 − ρ2. The trace distance coincides with the variational distance whenρ1 andρ2 are
classical states (ρ is classical if it is diagonal in the standard basis). Similarly to probability distributions,
the density matricesρ1 andρ2 areǫ-closeif the trace distance between them is at mostǫ.

A positive operator valued measure (POVM) is the most general formulation of a measurement in quan-
tum computation. A POVM on a Hilbert spaceH is a collection{Fi} of positive semi-definite operators
Fi : Hom(H,H) → Hom(H,H) that sum-up to the identity transformation, i.e.,Fi � 0 and

∑
Fi = I.

Applying a POVMF = {Fi} on a density matrixρ results in the distributionF (ρ) that outputsi with
probabilityTr(Fiρ).

A Boolean measurement{F, I − F} ǫ-distinguishesρ1 andρ2 if |Tr(Fρ1)− Tr(Fρ2)| ≥ ǫ.
We shall need the following facts regarding the trace distance.

Fact 2.1. If ‖ρ1 − ρ2‖tr = δ then there exists a Boolean measurement thatδ-distinguishesρ1 andρ2.

Fact 2.2. If ρ1 andρ2 are ǫ-close thenE(ρ1) andE(ρ2) are ǫ-close, for any physically realizable transfor-
mationE .

2.1 Min-entropy

To define the notion of quantum-proof extractors we first needthe notion of quantum encoding of classical
states.

Definition 2.1. LetX be a distribution over some setΛ.

• AnencodingofX is a collectionρ = {ρ(x)}x∈Λ of density matrices.

• An encodingρ is a b-storage encodingif ρ(x) is a mixed state overb qubits, for allx ∈ Λ.

• An encoding isclassicalif ρ(x) is classical for allx.

The average encoding is denoted byρ̄X = Ex∼X [ρ(x)].
Next we define the notion of conditional min-entropy. The conditional min-entropy ofX givenρ(X)

measures the average success probability of predictingx given the encodingρ(x). Formally,
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Definition 2.2. Theconditional min-entropy ofX given an encodingρ is

H∞(X; ρ) = − log sup
F

E
x∼X

[Tr(Fxρ(x))],

where the supremum ranges over all POVMsF = {Fx}x∈Λ.

We remark that there exists another definition of conditional min-entropy in the quantum setting, which
is more algebraic in flavor. However, the two definitions are equivalent, as shown in [17].

Proposition 2.1([18, Proposition 2]). If ρ is a b-storage encoding ofX thenH∞(X; ρ) ≥ H∞(X) − b.

We shall need the following standard lemmas regarding min-entropy that can be found, e.g., in [21]. The
first lemma says that cuttingℓ bits from a source cannot reduce the min-entropy by more thanℓ.

Lemma 2.1. LetX = X1◦X2 be a distribution over bit strings andρ be an encoding such thatH∞(X; ρ) ≥
k, and suppose thatX2 is of lengthℓ. Letρ′ be the encoding ofX1 defined byρ′(x1) = Ex∼(X|X1=x1)[ρ(x)].
Then,H∞(X1; ρ

′) ≥ k − l.

Proof: Given any predictorP ′ which predictsX1 from ρ′, we can construct a predictorP for X (from ρ)
as follows:P simply runsP ′ to obtain a prediction for the prefixx1, and then appends it with a randomly
chosen string from{0, 1}ℓ. Then,

Pr
x1◦x2∼X

[P (ρ(x1 ◦ x2)) = x1 ◦ x2] = Pr
x1◦x2∼X

[P ′(ρ(x1 ◦ x2)) = x1] · 2
−ℓ

= Pr
x1∼X1

[P ′(ρ′(x1)) = x1] · 2
−ℓ.

Thus, ifH∞(X1; ρ
′) < k − l then there would have been a predictor which predictsX with probability

greater than2−k and this cannot be the case sinceH∞(X; ρ) ≥ k.

The second lemma says that if a source has high min-entropy, then revealing a short prefix (with high
probability) does not change much the min-entropy. The lemma is a generalization of a well known classical
lemma.

Lemma 2.2. LetX = X1◦X2 be a distribution andρ be an encoding such thatH∞(X; ρ) ≥ k, and suppose
thatX1 is of lengthℓ. For a prefixx1, let ρx1 be the encoding ofX2 defined byρx1(x2) = ρ(x1 ◦ x2). Call
a prefixx1 badif H∞(X2 | X1 = x1; ρx1) ≤ r and denote byB the set of bad prefixes. Then,

Pr[X1 ∈ B] ≤ 2ℓ · 2r · 2−k.

Proof: Let the prefixx′1 ∈ B be the one with the largest probability mass. Then,Pr[X1 = x′1] ≥ Pr[X1 ∈
B] · 2−ℓ. For anyz ∈ B, let Az denote the optimal predictor that predictsX2 from ρz, conditioned on
X1 = z. By the definition of min-entropy, for anyz ∈ B,

E
x2∼(X2|X1=z)

Pr[Az(ρz(x2)) = x2] ≥ 2−r.

In particular this holds forz = x′1.
Now, define a predictorP for X from ρ by

P (ρ(x)) = x′1 ◦ Ax′
1
(ρ(x)),
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that is,P simply “guesses” that the prefix isx′1 and then applies the optimal predictorAx′
1
. The average

success probability ofP is

E
x∼X

[
Pr[P (ρ(x)) = x]

]
= E

x1∼X1

[

E
x2∼(X2|X1=x1)

[
δx1,x′

1
· Pr[Ax′

1
(ρx′

1
(x2)) = x2]

]]

= Pr[X1 = x′1] · E
x2∼(X2|X1=x′

1)

[
Pr[Ax′

1
(ρx′

1
(x2)) = x2]

]

≥ Pr[X1 ∈ B] · 2−ℓ · 2−r

On the other hand, sinceH∞(X; ρ) ≥ k, the average success probability ofP is at most2−k. Altogether,
Pr[X1 ∈ B] ≤ 2ℓ · 2r · 2−k.

2.2 Quantum-proof extractors

We now define the three different classes of extractors against quantum adversaries that we deal with in this
paper. We begin with the most general (and natural) definition:

Definition 2.3. A functionE : {0, 1}n × {0, 1}t → {0, 1}m is aquantum-proof(n, k, ǫ) strong extractorif
for every distributionX over{0, 1}n and every encodingρ such thatH∞(X; ρ) ≥ k,

‖Ut ◦E(X,Ut) ◦ ρ(X)− Ut+m × ρ̄X‖tr ≤ ǫ.

We use◦ to denote correlated values. Thus,Ut ◦ E(X,Ut) ◦ ρ(X) denotes the mixed state obtained by
samplingx∼X, y∼Ut and outputting|y,E(x, y)〉〈y,E(x, y)| ⊗ρ(x). Notice that all 3 registers are corre-
lated. When a register is independent of the others we use× instead of◦. Thus,Ut+m × ρ̄X denotes the
mixed state obtained by samplingx∼X,w∼Ut+m and outputting|w〉〈w| ⊗ρ(x).

Next we define quantum-proof extractors forflat distributions:

Definition 2.4. A functionE : {0, 1}n × {0, 1}t → {0, 1}m is a quantum-proof(n, f, k, ǫ) strong extrac-
tor for flat distributionsif for everyflat distributionX over {0, 1}n with exactlyf min-entropy and every
encodingρ ofX with H∞(X; ρ) ≥ k,

‖Ut ◦E(X,Ut) ◦ ρ(X)− Ut+m × ρ̄X‖tr ≤ ǫ.

We remark that in the classical setting every extractor for flat distributions is also an extractor for general
distributions, since every distribution with min-entropyk can be expressed as a convex combination of flat
distributions over2k elements.

Finally we define extractors against quantum storage:

Definition 2.5. A functionE : {0, 1}n × {0, 1}t → {0, 1}m is an (n, k, b, ǫ) strong extractor against
quantum storageif for every distributionX over{0, 1}n withH∞(X) ≥ k and everyb-storage encodingρ
ofX,

‖Ut ◦E(X,Ut) ◦ ρ(X)− Ut+m × ρ̄X‖tr ≤ ǫ.

The next lemma shows it sufficient to consider only flat distributions when arguing about the correctness
of extractors against quantum storage.
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Lemma 2.3. If E is notan (n, k, b, ǫ) strong extractor against quantum storage then there existsa setX of
cardinality 2k and ab-storage encodingρ such thatE fails on(X; ρ), that is,

‖Ut ◦E(X,Ut) ◦ ρ(X)− Ut+m × ρ̄X‖tr > ǫ.

Proof: We prove the contrapositive, i.e., we assume thatE works for flat distributions of min-entropy
exactlyk and prove that it also works for general distributions with at leastk min-entropy.

SupposeX is a distribution withH∞(X) ≥ k. ThenX can expressed as a convex combination of
flat distributionsXi each withH∞(Xi) = k. If ρ is a b-storage encoding ofX then it is also ab-storage
encoding of each of these flat distributionsXi. Thus, by assumption,

‖Ut ◦E(Xi, Ut) ◦ ρ(Xi)− Ut+m × ρ̄Xi‖tr ≤ ǫ.

Now by convexity,
‖Ut ◦E(X,Ut) ◦ ρ(X)− Ut+m × ρ̄X‖tr ≤ ǫ,

as desired.

Combining this with Proposition 2.1 we get:

Lemma 2.4. Every quantum-proof(n, f, k, ǫ) strong extractor for flat distributions, is an(n, f, f − k, ǫ)
strong extractor against quantum storage.

2.3 Lossless condensers

Definition 2.6 (strong condenser). A mappingC : {0, 1}n × {0, 1}d → {0, 1}n
′

is an(n, k1) →ǫ (n
′, k2)

strong condenserif for every distributionX with k1 min-entropy,Ud ◦ C(X,Ud) is ǫ-close to a distribution
with d+ k2 min-entropy.

One typically wants to maximizek2 and bring it close tok1 while minimizingn′ (it can be as small as
k1 +O(log ǫ−1)) andd (it can be as small aslog((n− k)/(n′ − k)) + log ǫ−1 +O(1)). For a discussion of
the parameters, see [3, Appendix B]. We call the condenserlosslessif k2 = k1.

The property of lossless condensers that we shall use is the following.

Fact 2.3 ([23, Lemma 2.2.1]). Let C : {0, 1}n × {0, 1}d → {0, 1}n
′

be an(n, k) →ǫ (n′, k) lossless
condenser. Consider the mapping

C ′ : {0, 1}n × {0, 1}d → {0, 1}n
′

× {0, 1}d

C ′(x, y) = C(x, y) ◦ y.

Then, for every setX ⊆ {0, 1}n of size|X| ≤ 2k, there exists a mappingC ′′ : {0, 1}n × {0, 1}d →

{0, 1}n
′

× {0, 1}d that is injective onX × {0, 1}d and agrees withC ′ on at least1 − ǫ fraction of the set
X × {0, 1}d.
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3 A reduction to full classical entropy

A popular approach for constructing explicit extractors inthe classical setting is as follows:

• Construct an explicit extractor for thehigh min-entropy regime, i.e. for sourcesX distributed over
{0, 1}n that havek min-entropy for some largek close ton, and,

• Show a reduction from the general case to the high min-entropy case.

In the classical setting this is often achieved by composingan extractor for the high min-entropy regime
with a classical lossless condenser. Specifically, assume:

• C : {0, 1}n × {0, 1}d → {0, 1}n
′

is an(n, k) →ǫ1 (n′, k) strong lossless condenser, and,

• E : {0, 1}d+n′

× {0, 1}t → {0, 1}m is a(d+ n′, d+ k, ǫ2) strong extractor.

DefineEC : {0, 1}n × ({0, 1}d × {0, 1}t) → {0, 1}m by

EC(x, (y1, y2)) = E((C(x, y1), y1), y2).

In the classical setting, [24, Section 5] prove thatEC is a strong(n, k, ǫ1 + ǫ2) extractor. In this section
we try to generalize this result to the quantum setting. We prove:

Theorem 3.1. LetC andEC be as above.

• If E is a quantum-proof(d + n′, d + k, k2, ǫ2) strong extractor for flat distributions, thenEC is a
(n, k, k2, ǫ = ǫ2 + 2ǫ1) strong extractor for flat distributions.

• If E is a(d+n′, d+k, d+b, ǫ2) strong extractor against quantum storage, thenEC is an(n, k, b, ǫ =
ǫ2 + 2ǫ1) strong extractor against quantum storage.

The intuition behind the theorem is the following. When the condenserC is applied on a flat source, it is
essentially a one-to-one mapping between the sourceX and its imageC(X). Therefore, roughly speaking,
any quantum information aboutx can be translated to quantum information aboutC(x) and vice-versa. To
make this precise we need to take care of the condenser’s seed, and this incurs a small loss in the parameters.

We first prove the second item.

Proof (second item): Assume, by contradiction thatEC is not an(n, k, b, ǫ = ǫ2 + 2ǫ1) strong extractor
against quantum storage. Then, by Lemma 2.3, there exists a subsetX ⊆ {0, 1}n of cardinality2k and a
b-storage encodingρ of X such that, given this encoding, the output of the extractorEC is not ǫ-close to
uniform. That is,

‖Ut+d ◦EC(X,Ut+d) ◦ ρ(X) − Ut+d+m × ρ̄X‖tr > ǫ.

In particular, by Fact 2.1, there exists some Boolean measurement thatǫ-distinguishes the two distri-
butions. Since the first two components are classical, we canrepresent this measurement as follows. For
everyy ∈ {0, 1}t+d andz ∈ {0, 1}m there exists a Boolean measurement{F y,z, I − F y,z} on the quantum
component such that

∣∣∣∣ E
x∼X, y∼U

[
Tr

(
F y,EC(x,y)ρ(x)

)]
− E

y,z∼U

[
Tr

(
F y,z ρ̄X

)]∣∣∣∣ > ǫ.
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We now show how this can be used to break the extractorE. Consider the setA = X × {0, 1}d. By
Fact 2.3, there exists a mappingD that is injective onA and agrees with the condenser on at least1 − ǫ1
fraction ofA. DenotingB = D(A), it is clear thatH∞(B) ≥ d+ k.

For (x̃, ỹ) ∈ B we define the encoding

ρ′(x̃, ỹ) = |y1〉〈y1| ⊗ρ(D←(x̃, ỹ)),

where(x, y1) = D−1(x̃, ỹ) ∈ A is the unique element such thatD(x, y1) = (x̃, ỹ), andD←(x̃, ỹ) = x.
Next, we define a measurement

{
F

y2,z, I − F
y2,z} that given the inputy2 ∈ {0, 1}t, z ∈ {0, 1}m and

ρ′(x̃, ỹ) = |y1〉〈y1| ⊗ρ(x), setsy = (y1, y2) and applies the measurement{F y,z, I − F y,z} on the quantum
registerρ(x).

Now,
∣∣∣∣ E
b∼B, y2∼Ut

[
Tr

(
F

y2,E(b,y2)ρ′(b)
)]

− E
x∼X, y∼Ud+t

[
Tr

(
F y,EC(x,y)ρ(x)

)]∣∣∣∣ ≤ ǫ1,

since the flat distribution overB is ǫ1-close to the distribution obtained by samplingx ∈ X, y1 ∈ Ud and
outputting(C(x, y1), y1). For the same reason, averaging overB for F is almost as averaging overX for
F . Namely,

∣∣∣∣ E
y2,z∼U

[
Tr

(
F

y2,zρ̄′B
)]

− E
y,z∼U

[
Tr

(
F y,z ρ̄X

)]∣∣∣∣ ≤ ǫ1.

It follows that
∣∣∣∣ E
b∼B, y2∼U

[
Tr

(
F

y2,E(b,y2)ρ′(b)
)]

− E
y2,z∼U

[
Tr

(
F

y2,zρ̄′B
)]∣∣∣∣ ≥

∣∣∣∣ E
x∼X, y∼U

[
Tr

(
F y,EC(x,y)ρ(x)

)]
− E

y,z∼U

[
Tr

(
F y,z ρ̄X

)]∣∣∣∣− 2ǫ1 > ǫ− 2ǫ1 = ǫ2.

Clearlyρ′ is a(d+b)-storage encoding ofB. This contradicts the fact thatE is a strong extractor against
d+ b quantum storage.

We now prove the first item.

Proof (first item): Assume, for contradiction, thatEC is not a quantum-proof(n, k, k2, ǫ) strong extractor
for flat distributions. Then there exists a subsetX ⊆ {0, 1}n of cardinality exactly2k and an encodingρ
of X such that the conditional min-entropy is at leastk2 but given this encoding the output of the extractor
EC is notǫ-close to uniform. The proof proceeds as before, defining theBoolean measurementF , the sets
A andB, the encodingρ′ and the measurementF . If we can show thatH∞(B; ρ′) ≥ k2 then we break the
extractorE and reach a contradiction. Indeed:

Claim 3.1. H∞(B; ρ′) ≥ k2.

Proof: Assume, for contradiction, thatH∞(B; ρ′) < k2. Then, there exists a predictorW ′ such that

Pr
b∼B

[W ′(ρ′(b)) = b] > 2−k2 .

Define a new predictor,W , that givenρ(x) works as follows. FirstW choosesy∼Ud and runsW ′ on
|y〉〈y| ⊗ρ(x) to get some answer̃b. It then outputsD←(̃b).

9



The success probability of the predictorW is

Pr
x∼X

[W (ρ(x)) = x] = Pr
x∼X,y∈{0,1}d

[D←(W ′(|y〉〈y| ⊗ρ(x))) = x]

≥ Pr
x∼X,y∈{0,1}d

[W ′(|y〉〈y| ⊗ρ(x)) = D(x, y)]

= Pr
b∼B

[W ′(ρ′(b)) = b] > 2−k2 .

This contradicts the fact thatH∞(X; ρ) ≥ k2.

We remark that we do not know how to extend the proof to work with lossy condensers.

4 An explicit quantum-proof extractor for the high-entropy regime

In this section we describe a construction of a short-seed quantum-proof(n, k, ǫ) strong extractor that works
wheneverk ≫ n/2. In the classical setting this scenario was studied in [3], developing and improving
techniques from [19] and other papers. Here we only need the techniques developed in [19].

Intuitively, the extractorE that we construct works as follows. First, it divides the source to two parts of
equal length. Since the min-entropy is larger thann/2, for almost any fixing of the first part of the source,
the distribution on the second part hasΩ(n) min-entropy. Hence, applying an extractorE2 on the second
part results in output bits that are close to uniform. Since this is true for almost every fixing of the first part,
these output bits are essentially independent of the first part of the source. Therefore, these output bits can
serve as a seed for another extractor,E1, that is applied on the first part of the source.

Formally, assume:

• E1 : {0, 1}
n/2 × {0, 1}d1 → {0, 1}m1 is a quantum-proof(n2 ,

n
2 − b, ǫ1) strong extractor, and,

• E2 : {0, 1}
n/2 × {0, 1}d2 → {0, 1}d1 is a quantum-proof(n2 , k, ǫ2) strong extractor.

DefineE : {0, 1}n × {0, 1}d2 → {0, 1}m1 by

E(x, y) = E1(x1, E2(x2, y)),

wherex = x1 ◦ x2 andx1, x2 ∈ {0, 1}n/2.

Theorem 4.1. Let E1, E2 and E be as above withk = n
2 − b − log ǫ−1. ThenE is a quantum-proof

(n, n− b, ǫ+ ǫ1 + ǫ2) strong extractor.

Proof: Let X = X1 ◦ X2 be a distribution on{0, 1}n = {0, 1}n/2 × {0, 1}n/2 andρ be an encoding
such thatH∞(X; ρ) ≥ n − b. For a prefixx1 ∈ {0, 1}n/2, let ρx1 be the encoding ofX2 defined by
ρx1(x2) = ρ(x1 ◦ x2). A prefix x1 is said to bebad if H∞(X2 | X1 = x1; ρx1) ≤ k. By Lemma 2.2, the
probabilityx1 (sampled fromX1) is bad is at most

2n/2 · 2k

2n−b
=

2n/2 · 2n/2−b−log ǫ
−1

2n−b
= ǫ.

10



Wheneverx1 is not bad,H∞(X2 | X1 = x1; ρx1) > k, that is, the extractorE2 is applied on a distribu-
tion with k min-entropy. Therefore, by the assumption onE2, its output isǫ2-close to uniform. That is, for
every goodx1,

‖Ud2 ◦ x1 ◦E2(X2, Ud2) ◦ ρx1(X2)− Ud2 ◦ x1 ◦ Ud1 ◦ ρx1(X2)‖tr ≤ ǫ2.

Hence, the distributionUd2 ◦X1 ◦ E2(X2, Ud2) ◦ ρ(X) is (ǫ+ ǫ2)-close toUd2 ◦X1 ◦ Ud1 ◦ ρ(X). In
particular,

‖Ud2 ◦E(X,Ud2) ◦ ρ(X) − Ud2+d1 ◦ ρ̄X‖tr
= ‖Ud2 ◦E1(X1, E2(X2, Ud2)) ◦ ρ(X) − Ud2+d1 ◦ ρ̄X‖tr
≤ ǫ+ ǫ2 + ‖Ud2 ◦ E1(X1, Ud1) ◦ ρ(X) − Ud2+d1 ◦ ρ̄X‖tr ,

where the last inequality follows from Fact 2.2.
Since,H∞(X; ρ) ≥ n−b, by Lemma 2.1, if we define an encodingρ′ ofX1 byρ′(x1) = Ex∼(X|X1=x1)[ρ(x)],

thenH∞(X1; ρ
′) ≥ n− b− n/2 = n/2− b. Therefore, by the assumption onE1 we get

‖E1(X1, Ud1) ◦ ρ(X)− Um1⊗ρ̄X‖tr ≤ ǫ1,

and thus

‖Ud2 ◦E(X,Ud2) ◦ ρ(X) − Ud2+d1⊗ρ̄X‖tr ≤ ǫ+ ǫ1 + ǫ2.

4.1 Plugging in explicit constructions

We use Trevisan’s extractor, which was already shown to be quantum-proof in [6, 5]. Specifically, we use
the following two instantiations of this extractor:

Theorem 4.2([5]). For every constantδ > 0, there existsE1 : {0, 1}
n
2×{0, 1}O(log2(n/ǫ1)) → {0, 1}(1−δ)(

n
2
−b)

which is a quantum-proof(n2 ,
n
2 − b, ǫ1) strong extractor.

Theorem 4.3 ([5]). For every constantsγ1, γ2 > 0, there existsE2 : {0, 1}
n
2 × {0, 1}O(log(n/ǫ2)) →

{0, 1}k
1−γ1 which is a quantum-proof(n2 , k, ǫ2) strong extractor, fork > nγ2.

Plugging these two constructions into Theorem 4.1 gives Theorem 1.3 which we now restate.

Theorem 1.3. For anyβ < 1
2 , γ > 0 and ǫ ≥ 2−n

(1−γ)/2
, there exists an explicit quantum-proof(n, (1 −

β)n, ǫ) strong extractorE : {0, 1}n × {0, 1}t → {0, 1}m, with seed lengtht = O(log n + log ǫ−1) and
output lengthm = Ω(n).

Proof: We setǫ1 = ǫ2 = ǫ, b = βn, k = n
2 − βn − log ǫ−1, γ2 = δ = 1

2 andγ1 < γ. In order to apply
Theorem 4.1 we need to verify that the output length ofE2 is not shorter than the seed length ofE1. This is
indeed the case since

k1−γ1 ≥ (
n

2
− βn− n

1−γ
2 )1−γ1 ≥ n1−γ ≥ O(log2(

n

ǫ
)).

The output length ofE is 1
2(

1
2 − β)n = Ω(n).
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5 The final extractor for the bounded storage model

We need the classical lossless condenser of [13].

Theorem 5.1([13]). For everyα > 0 there exists an(n, k) →ǫ ((1 + α)k, k) strong lossless condenserC
with seed lengthO(log n+ log ǫ−1).

Plugging the condenserC and the extractorE of Theorem 1.3 into Theorem 3.1 gives Theorem 1.2,
which we now restate.

Theorem 1.2. For anyβ < 1
2 and ǫ ≥ 2−k

β
, there exists an explicit(n, k, βk, ǫ) strong extractor against

quantum storage,E : {0, 1}n × {0, 1}t → {0, 1}m, with seed lengtht = O(log n + log ǫ−1) and output
lengthm = Ω(k).

Proof: Let ζ > 0 be a constant to be fixed later. The extractorE from Theorem 1.3, when the source length
is set to be2(1−β)(1−ζ)k, is a quantum-proof

(
2(1−β)(1−ζ)k, (1−β)k, ǫ

)
strong extractor. In particular,

it is a
(
2(1− β)(1− ζ)k, k, βk, ǫ

)
strong extractor against quantum storage. Its output length isΩ(k). The

theorem follows by applying Theorem 3.1, using the condenser of Theorem 5.1 withα = 2(1−β)(1−ζ)−1.
Sinceβ < 1

2 there is a way to fixζ such thatα > 0.

Since Theorem 3.1 works in the more general model of flat distributions, and since the extractor from
Theorem 1.3 already works in the most general setting, we getTheorem 1.1:

Theorem 1.1.For anyβ < 1
2 andǫ ≥ 2−k

β
, there exists an explicit quantum-proof(n, k, (1−β)k, ǫ) strong

extractor for flat distributions,E : {0, 1}n × {0, 1}t → {0, 1}m, with seed lengtht = O(log n + log ǫ−1)
and output lengthm = Ω(k).
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