0368.3049.01 Introduction to Modern Cryptography Fall 2001
Assignment #2, due before class on Jan. 9, 2002

This assignment contains 4 ”dry” problems and 2 ”wet” ones. The answers to the latter should be
given as the output of an XMAPLE session. Queries will be answered only if mailed till Jan. 3.

Problem 1: Cryptographic Hash Functions
Let m = mymsz...m, where for every ¢ (i = 1,...,n), m; is a 128 bits binary string. Define a hash
function, H to operate on messages of this form.

e )y is defined as the all zero string of length 128.
e for every ¢, 1 <i < n, define h; = AFS,,,(hi—1).
e H(m)=h,.

a. Show how to find collisions for H (namely two different messages that are mapped by H to the
same string) using approximately 264 AES applications.

b. Given a random string m, show how to find a different string m’ such that H(m) = H(m’),
using approximately 264 AES applications.
Hint: Recall the attack on double DES.

Problem 2: Claw Free Permutations

Two permutations fg, fi : D — D is called claw free if it is infeasible to find z,y € D such that
Jo(z) = fi(y).

a. Let p be a prime number, g a primitive element in Z,, and @ € Z;. Define the two permutations
Jos fr 2 2 = Z5 by fo(z) = g% (mod p) and fi(y) = ag? (mod p). Assume it is infeasible to
find a z such that ¢* = a.

Prove that fy, fi are claw free permutations.

b. Let m = bybs...b, be an n bit message (the b;’s are bits). Let fo, fi be claw free permutations
on D. Define the function H by

H(m) = fo, (foo - (F,(IV) )

where IV is the all zero string in D. For example, if m = 011 then H(m) = fo(fi(f1(IV))).
Assume that it is infeasible to find a z € D such that fo(z) = IV or fi(2) = IV. Prove that H is
a collision resistant hash functions. In other words, show that if my # my and H(m1) = H(m3),
then we can efficiently either find a pair 2,y € D such that fo(z) = fi(y), or a z € D such that
fo(z) =1V or fi(z) = IV. Note that m; and mgy can have different lengths.

Problem 3: CBC MACSs and variable length messages
In this problem we will explore the security of CBC MACs when the length of the message is
allowed to vary. The constructions use a block cipher, E : {0,1}* x {0,1}" ~ {0,1}" which you
should assume to be secure (F (t) is the encryption of n length ¢ under k length key K).

In general, let x = 2y, x3,..., ¢, where for each ¢, 2; € {0,1}". For all the variants considered

in this problem, the authentication of the message x is defined as the concatanation of x with
MACK (x), where K is the secret key (shared by Alice and Bob), and M ACK (x) is of length n.



We say that Fred, the forging adversary, succeeds if after seeing a small number of messages

Z1,Z2,...,%g of his choice and their MACs under the unknown secret key K, he can produce a
new message w (w ¢ {z1,22,...,2s}) together with M ACk(w). We emphasize that w can, and
typically will, be constructed out of pieces depending on the z;’s. By small number we mean s is
either a constant or at most a (fixed) polynomial in n, the block length of x. In addition to the
number s of message/MAC pairs, Fred is also limited to polynomial time computations (polynomial
in n).
Remark: This type of forgery is called adaptive existential forgery (adaptive since the choice of each
zi+1 can depend on all previous ¢ message/MAC pairs, and existential because it demonstrates the
existence of a message whose MAC can be forged). This is the strongest form of “reasonable
adversary” considered in the crypto world.

a. Consider the application of “regular” CBC MAC to messages of arbitrary length. Formally,
given X = x1,%g,...,2s, we define yop = 0”7, and for 0 < ¢ < 0 — 1, yiy1 = Fr(y: D ziq1). Then
CBC — MACk(x) = y;. Show that this MAC is completely insecure: Break it with a constant
number of queries.

b. In order to overcome the problem of applying “regular” CBC MAC to messages of arbitrary
length, consider the following patch:

MACK (21, 22,...,2¢) = CBC — MACk (21, 22,...,2¢,0) ,

where £, the number of blocks in x is written in binary using n bits. Show that this patch does not
hold water either: Break it with a constant number of queries.

c. Consider the following attempt to allow one to MAC messages of arbitrary length. The domain
for the MAC is ({0,1}")*. To MAC the message x = 21, x3,..., 2y under the secret key (K, K'),
compute C'BC' — MACk (x) @ K', where K has k bits and K’ has n bits. Show that this MAC is

completely insecure: Break it with a constant number of queries.

Problem 4: Orders

a. Let a,m be two positive integers, with 1 < ¢ < m — 1. The order of @ modulo m, ord,,a, is
defined as the minimum positive integer ¢ such that a‘ =1 (mod m), and oo if no such ¢ exists.
Prove that ord,,a < oo if and only if ged(a, m) = 1.

b. Let  be an integer, and let p be an odd prime divisor of #!¢ 4 1. Prove that p=1 (mod 32).

Problem 5: Primitive Elements in 7,

a. Let p > 2 be a prime number and let g be a primitive element in Z7. Find a characterization
of all integers e, 1 < e < p — 2 such that g° mod p is also a primitive element in Z7. Prove the
characterization.

b. Find the two largest prime numbers that are smaller than 2'27 — 1, using Maple’s isprime (m)

for efficient primality testing. Let p; and p, denote these two primes. Print p; and ps in a compact
manner (not the 40 digit representations). Let py denote 2'27 — 1 (verify for yourself that it is
indeed a prime number). Find and print the factorizations of p; — 1 for ¢ = 0, 1, 2. Does any of the
p; — 1 have a prime factor larger than «/p; — 1 7 Take p = p; with the largest factor of the three.
What is the largest power of 2 smaller than the largest factor of p — 17

c. For p of section (b), find at random an integer g, ¢ > 107, such that ¢ is a primitive element

of Z, but g 4+ 1 is not a primitive element of Z,. Print a Maple session that explicitly proves both
statements.



Hint: You can make the search easier by using Maple’s commands
FF :=GF(p,1);

z := F'F[ConvertIn](g);
FF[isPrimitiveElement](z);

for verifying ¢’s ”primitivity status” in the field Z, = GF(p,1). However in your ”explicit proof”
you should not use such FF implementation, but rather use only the mod p function and &" (expo-
nentiation) to appropriate powers.

Problem 6: Primality Testing

a. Let N = (217 — 1) x (2127 — 801). Clearly N is composite, and we have just given you a short
proof of this fact. Come up with the simplest proof you can think of for N being composite, which
does not use the factorization. You are encouraged to use Maple, but using Maple’s isprime (N) is
obviously not acceptable.

b. Find the smallest prime number p that is larger than 2'27. Run the Miller-Rabin primality test
on p with three independent random integers aq, as, 3. Submit all relevant equalities.

c. For every odd integers N in the range 227 < N < p, supply the shortest ”explicit proofs” you
can think of for NV being composite.



