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Various problems on strings

Cost of naive solutions

Suffix trees — definition. Inefficient construction
Suffix trees — known efficient constructions
Solving above string problems with suffix trees
Compression (Lempel-Ziv) using suffix trees

An accelerated introduction to entropy and
relative entropy

Bio applications of suffix trees and suffix arrays

Gusfield’s book, chapters 5, 6, 7
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Entropy of a Distribution p

et X = (x1,...,2,) bedementsin afinite
probability space, and p(x1), . .., p(x,) bether
probabilities (O, p(z;) = 1).

o The Shannon entropy of the distribution p Is
defined as

H(p) = =3 ,ex p(x)logp(x) = E,(log p(X)).
o Informally, the entropy measures the amount of
surprise (in bits) when observing asingle
occurrence of X.
o Letp, q betwo probability distributions on the

same probability space, X. If H(p) > H(q) then

p Ismore surprising than ¢. We also say that there
IS more randomnessin p.
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Entropy of a Distribution p

The Shannon entropy of the distribution p Is
H(p) = =2 pex p(x)logp(z) = Ep(log p(X)).

o

K

The entropy Is always non-negative.

For adistribution over n elements, the entropy is
maximized when p(z;) = 1/n for al 1.

Entropy Is afundamental tool in Shannon’s
Information theory.

Also essential in communication, coding,
probability, combinatorics, ...
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Entropy in Boolean Case

Suppose X has just two eements x, ;. Denote
p = p(x1), then the probability of xyis1 — p. Inthis

case H(p) = —plog(p) — (1 —p)log(l —p),andis
maximized at p = 1/2. Inaddition, H is convex.

ploE(—p*log[E](p)—(l—p)*log[ﬂ]{1—p),p=0..1,thickness=3};
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Relative Entropy of Two Distributions

The Kullback-Leibler (KL) relative entropy of two
distributions p, ¢ over the same probability space X Is

defined as

- 2wy = ()

reX

o Intuitively, relative entropy measures how far
apart two distributions are.

o For example, if p = g thenclearly D(p||q) =

o Turns out the other direction holds too, i1.e.
D(pllq) =0=p=gq.
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Relative Entropy of Two Distributions (2)

The Kullback-Leibler (KL) relative entropy of two
distributions p, ¢ over probability space X Is defined
as

- 2wy = ()

reX

» Ingenera D isnot adistance metric.
o Usudly, D(p||q) # D(q||p):
» |n many cases, triangle inequality is violated:

D(p1 || ps)>D(p1 || p2) + D(p2 || ps) ispossible.

.—p.6



Examples
s D(pllq) # D(q||p). Take X = {xg, 71}




Examples

D(pllq) # D(q Hp) Teke X' = {z, 21}
s p(xo) = gap(fl) 2 q(o) = 411761(3?1)22,




Examples
D(pllq) # D(q||p). Take X' = {xo, 21}

s p(xg) = gap(fl) % To) = 1 q(71) = %

47
Then D(p —1log< ) I% (ﬁ)

while D(q || p) = 3log(?7§) ilog(%).




Exampl es

D(pllq) # D(q||p). Take X = {zo, z1}
® p(l’o)zgap(%) 5 q(xo) =

27 179(5’71):%’
Then D(p || ) = log (3%) + 410z (1)
while D(g||p) = $1og (#/3) + Llog (1)

s D( )>D(p1 || p2) + D(p2 || p3)-
Again, take X = xg, x1:
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Examples
s D(pllq) # D(q||p). Take X = {xg, 71}

4
Then D(p|l ) = 31og (1) + 3 1og (1),
while D(q]|p) = 31og (1) + Loz (12):

®» D(p1llp3)>D(p1l|p2) + D(p2 | p3)-
Again, take X = zg, x1:

s pi(xo) = 1/2,p1(z1) = 1/2,
p2(xo) = 1/4, pa(x1) = 3/4,
pg(il?o) — 1/3,]?3(371) = 2/3
Calculation shows A 1nequality does not hold.
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Symmetric Relative Entropy

By taking the measure d(p, q) = D(p||q) + D(q|| p)
we get a“symmetric’ version of relative entropy. This
Version

o isclearly symmetric, d(p, q) = d(q,p),

» tendsto satisfy triangle inequality more often
(still, not always),

# ISsmore suitable as an “estimation” of distance
between two distributions.
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Estimating Distances between Genomes

Given two genomes g1, g» (each iIsavery long string
over DNA alphabet, not necessarily of equal length),
IS there away to define their distance?

o Motivation: Whole genome phylogenetic trees.
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Estimating Distances between Genomes

Given two genomes g1, g» (each iIsavery long string
over DNA alphabet, not necessarily of equal length),
IS there away to define their distance?

e o o @

°

Motivation: Whole genome phylogenetic trees.
Any suggestions?
Problem not well defined!

Can get clues from information theory, if think of
genomes as product of two distributions GG, Gs.

For example, cantake d(G, G5) asdesired
“distance’.
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Distances between Genomes (2)

Problems with approach:
o Distributions d(G1, GG5) unknown.
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Distances between Genomes (2)

Problems with approach:
o Distributions d(G1, GG5) unknown.
» All weknow islong samples of them, ¢, gs.

o Should look for operators that approximate
d(Gy, Go).
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Useful Notations

» Let (gy) 7" denotes the substring of ¢; that
starts in position : + 1 and ends in position

r + k + 1.
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Useful Notations

» Let (gy) 7" denotes the substring of ¢; that
starts in position : + 1 and ends in position

1+ k + 1.
o Let Li(go,91) = maxk((m)ﬁff“ C g2).
o Whatis Li(gg, 91)7

o Thisisthelongest substring of ¢, starting at ¢,
that Is also a substring of ¢s.
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| ntuition

Li(QQagl) = man((gl)gffH C 92)-

& Sltrings g-, g; that are close by will tend to have
long common substrings.
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| ntuition

Li(QQagl) = man((gl)gffH C 92)-

& Sltrings g-, g; that are close by will tend to have
long common substrings.

o Slrings g1, g; that are far away will tend to have
short common substrings.

o Maybe some average can lead to desired distance.
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The Distance Operator

Let L(g2agl) \gg\ Z (92791) be the average over
i'sof L;(g2, g1)-
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The Distance Operator

Let L(g2agl) \gg\ Z (92791) be the average over

i'sof Li(ga, g1)-

A theorem of Welner states that as the length of ¢, ¢4
INCreases,

log|ga| — log|gi]
L(92791) L(legl)

convergesto D (G4 || Gs).

This gives atheoretical justification for using the aver-
age common string method.
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Average Common String Algorithm

Given two strings ¢-, g;

» Use asuffix tree to efficiently compute
Zi Li(g% gl)i Z] LJ(QQ, gl)
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Average Common String Algorithm

Given two strings ¢-, g;

o

°

Use a suffix tree to efficiently compute
>i Lilg2,91), 225 Li(92, 91).

Average to estimate d( g1, g-).

Repeat for any pair of genomes.

Apply adistance based tree reconstruction to
produce a “whole genome phylogeny”.

For real proteome and genome strings, triangle
Inequality satisfied for all pairs.
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Average Common String Algorithm

Given two strings ¢-, g;

9o

°

Use a suffix tree to efficiently compute
>i Lilg2,91), 225 Li(92, 91).

Average to estimate d( g1, g-).

Repeat for any pair of genomes.

Apply adistance based tree reconstruction to
produce a “whole genome phylogeny”.

For real proteome and genome strings, triangle
Inequality satisfied for all pairs.

Joint work with Burstein, Ulitsky, Tuller (2004).
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Prot. Tree (average 1M long), 191 Taxa
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Retroid Virus Tree
Part of 1837 virus forest. Average genome length 5K.
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