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Suffix trees – definition. Inefficient construction

Suffix trees – known efficient constructions

Solving above string problems with suffix trees

Compression (Lempel-Ziv) using suffix trees

An accelerated introduction to entropy and
relative entropy

Bio applications of suffix trees and suffix arrays

Gusfield’s book, chapters 5, 6, 7
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Entropy of a Distribution p

Let X = (x1, . . . , xn) be elements in a finite
probability space, and p(x1), . . . , p(xn) be their
probabilities (

∑n
i=1 p(xi) = 1).
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probability space, and p(x1), . . . , p(xn) be their
probabilities (

∑n
i=1 p(xi) = 1).

The Shannon entropy of the distribution p is
defined as
H(p) = −∑

x∈X p(x) log p(x) = Ep(log p(X)).

Informally, the entropy measures the amount of
surprise (in bits) when observing a single
occurrence of X .

Let p, q be two probability distributions on the
same probability space, X . If H(p) > H(q) then
p is more surprising than q. We also say that there
is more randomness in p.
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Entropy of a Distribution p

The Shannon entropy of the distribution p is
H(p) = −∑

x∈X p(x) log p(x) = Ep(log p(X)).

The entropy is always non-negative.

For a distribution over n elements, the entropy is
maximized when p(xi) = 1/n for all i.

Entropy is a fundamental tool in Shannon’s
information theory.

Also essential in communication, coding,
probability, combinatorics, . . .
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Entropy in Boolean Case

Suppose X has just two elements x0, x1. Denote
p = p(x1), then the probability of x0 is 1 − p.
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Relative Entropy of Two Distributions

The Kullback-Leibler (KL) relative entropy of two
distributions p, q over the same probability space X is
defined as

D(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

(
log

p(X)

q(X)

)
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defined as

D(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

(
log

p(X)

q(X)

)

Intuitively, relative entropy measures how far
apart two distributions are.

For example, if p = q then clearly D(p || q) = 0.

Turns out the other direction holds too, i.e.
D(p || q) = 0 =⇒ p = q.
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Relative Entropy of Two Distributions (2)

The Kullback-Leibler (KL) relative entropy of two
distributions p, q over probability space X is defined
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Relative Entropy of Two Distributions (2)

The Kullback-Leibler (KL) relative entropy of two
distributions p, q over probability space X is defined
as

D(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

(
log

p(X)

q(X)

)

In general D is not a distance metric.

Usually, D(p || q) �= D(q || p).

In many cases, triangle inequality is violated:
D(p1 || p3)>D(p1 || p2) + D(p2 || p3) is possible.
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4 ,

Then D(p || q) = 1
2 log

(
1/2
3/4

)
+ 1

2 log
(

1/2
1/4

)
,

while D(q || p) = 3
4 log

(
3/4
1/2

)
+ 1

4 log
(

1/4
1/2

)
.

D(p1 || p3)>D(p1 || p2) + D(p2 || p3).
Again, take X = x0, x1:

p1(x0) = 1/2, p1(x1) = 1/2,
p2(x0) = 1/4, p2(x1) = 3/4,
p3(x0) = 1/3, p3(x1) = 2/3.
Calculation shows ∆ inequality does not hold.
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Symmetric Relative Entropy

By taking the measure d(p, q) = D(p || q) + D(q || p)
we get a “symmetric” version of relative entropy. This
version
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Symmetric Relative Entropy

By taking the measure d(p, q) = D(p || q) + D(q || p)
we get a “symmetric” version of relative entropy. This
version

is clearly symmetric, d(p, q) = d(q, p),

tends to satisfy triangle inequality more often
(still, not always),

is more suitable as an “estimation” of distance
between two distributions.
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Estimating Distances between Genomes

Given two genomes g1, g2 (each is a very long string
over DNA alphabet, not necessarily of equal length),
is there a way to define their distance?

Motivation: Whole genome phylogenetic trees.
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Estimating Distances between Genomes

Given two genomes g1, g2 (each is a very long string
over DNA alphabet, not necessarily of equal length),
is there a way to define their distance?

Motivation: Whole genome phylogenetic trees.

Any suggestions?

Problem not well defined!

Can get clues from information theory, if think of
genomes as product of two distributions G1, G2.

For example, can take d(G1, G2) as desired
“distance”.
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Distances between Genomes (2)

Problems with approach:

Distributions d(G1, G2) unknown.
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Distances between Genomes (2)

Problems with approach:

Distributions d(G1, G2) unknown.

All we know is long samples of them, g1, g2.

Should look for operators that approximate
d(G1, G2).
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Useful Notations

Let (g1)
i+k+1
i+1 denotes the substring of g1 that

starts in position i + 1 and ends in position
i + k + 1.
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Useful Notations

Let (g1)
i+k+1
i+1 denotes the substring of g1 that

starts in position i + 1 and ends in position
i + k + 1.

Let Li(g2, g1) = maxk((g1)
i+k+1
i+1 ⊂ g2).

What is Li(g2, g1)?

This is the longest substring of g1, starting at i,
that is also a substring of g2.
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Intuition

Li(g2, g1) = maxk((g1)
i+k+1
i+1 ⊂ g2).

Strings g2, g1 that are close by will tend to have
long common substrings.
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Intuition

Li(g2, g1) = maxk((g1)
i+k+1
i+1 ⊂ g2).

Strings g2, g1 that are close by will tend to have
long common substrings.

Strings g2, g1 that are far away will tend to have
short common substrings.

Maybe some average can lead to desired distance.
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The Distance Operator

Let L̄(g2, g1) = 1
|g2|

∑
i Li(g2, g1) be the average over

i’s of Li(g2, g1).
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A theorem of Weiner states that as the length of g2, g1
increases,
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− log |g1|
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converges to D(G1 ||G2).
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|g2|

∑
i Li(g2, g1) be the average over

i’s of Li(g2, g1).

A theorem of Weiner states that as the length of g2, g1
increases,

log |g2|
L̄(g2, g1)

− log |g1|
L̄(g1, g1)

converges to D(G1 ||G2).

This gives a theoretical justification for using the aver-

age common string method.
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Average Common String Algorithm

Given two strings g2, g1

Use a suffix tree to efficiently compute∑
i Li(g2, g1),

∑
j Lj(g2, g1).
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Average Common String Algorithm

Given two strings g2, g1

Use a suffix tree to efficiently compute∑
i Li(g2, g1),

∑
j Lj(g2, g1).

Average to estimate d(g1, g2).

Repeat for any pair of genomes.

Apply a distance based tree reconstruction to
produce a “whole genome phylogeny”.

For real proteome and genome strings, triangle
inequality satisfied for all pairs.

Joint work with Burstein, Ulitsky, Tuller (2004).
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Prot. Tree (average 1M long), 191 Taxa
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Retroid Virus Tree
Part of 1837 virus forest. Average genome length 5K.
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