Various problems on strings

- Various problems on strings
- Cost of naive solutions

- Various problems on strings
- Cost of naive solutions
- Suffix trees definition. Inefficient construction

- Various problems on strings
- Cost of naive solutions
- Suffix trees definition. Inefficient construction
- Suffix trees known efficient constructions

- Various problems on strings
- Cost of naive solutions
- Suffix trees definition. Inefficient construction
- Suffix trees known efficient constructions
- Solving above string problems with suffix trees

- Various problems on strings
- Cost of naive solutions
- Suffix trees definition. Inefficient construction
- Suffix trees known efficient constructions
- Solving above string problems with suffix trees
- Compression (Lempel-Ziv) using suffix trees

- Various problems on strings
- Cost of naive solutions
- Suffix trees definition. Inefficient construction
- Suffix trees known efficient constructions
- Solving above string problems with suffix trees
- Compression (Lempel-Ziv) using suffix trees
- An accelerated introduction to entropy and relative entropy

- Various problems on strings
- Cost of naive solutions
- Suffix trees definition. Inefficient construction
- Suffix trees known efficient constructions
- Solving above string problems with suffix trees
- Compression (Lempel-Ziv) using suffix trees
- An accelerated introduction to entropy and relative entropy
- Bio applications of suffix trees and suffix arrays

- Various problems on strings
- Cost of naive solutions
- Suffix trees definition. Inefficient construction
- Suffix trees known efficient constructions
- Solving above string problems with suffix trees
- Compression (Lempel-Ziv) using suffix trees
- An accelerated introduction to entropy and relative entropy
- Bio applications of suffix trees and suffix arrays

- Various problems on strings
- Cost of naive solutions
- Suffix trees definition. Inefficient construction
- Suffix trees known efficient constructions
- Solving above string problems with suffix trees
- Compression (Lempel-Ziv) using suffix trees
- An accelerated introduction to entropy and relative entropy
- Bio applications of suffix trees and suffix arrays
- Gusfield's book, chapters 5, 6, 7

Let $X = (x_1, \dots, x_n)$ be elements in a finite probability space, and $p(x_1), \dots, p(x_n)$ be their probabilities $(\sum_{i=1}^n p(x_i) = 1)$.

Let $X = (x_1, \dots, x_n)$ be elements in a finite probability space, and $p(x_1), \dots, p(x_n)$ be their probabilities $(\sum_{i=1}^n p(x_i) = 1)$.

• The Shannon entropy of the distribution *p* is defined as

$$H(p) = -\sum_{x \in X} p(x) \log p(x) = E_p(\log p(X)).$$

Let $X = (x_1, \dots, x_n)$ be elements in a finite probability space, and $p(x_1), \dots, p(x_n)$ be their probabilities $(\sum_{i=1}^n p(x_i) = 1)$.

• The Shannon entropy of the distribution *p* is defined as

$$H(p) = -\sum_{x \in X} p(x) \log p(x) = E_p(\log p(X)).$$

• Informally, the entropy measures the amount of surprise (in bits) when observing a single occurrence of X.

Let $X = (x_1, \dots, x_n)$ be elements in a finite probability space, and $p(x_1), \dots, p(x_n)$ be their probabilities $(\sum_{i=1}^n p(x_i) = 1)$.

• The Shannon entropy of the distribution *p* is defined as

$$H(p) = -\sum_{x \in X} p(x) \log p(x) = E_p(\log p(X)).$$

- Informally, the entropy measures the amount of surprise (in bits) when observing a single occurrence of X.
- Let p, q be two probability distributions on the same probability space, X. If H(p) > H(q) then p is more surprising than q. We also say that there is more randomness in p.

The Shannon entropy of the distribution p is

$$H(p) = -\sum_{x \in X} p(x) \log p(x) = E_p(\log p(X)).$$

The entropy is always non-negative.

The Shannon entropy of the distribution p is

$$H(p) = -\sum_{x \in X} p(x) \log p(x) = E_p(\log p(X)).$$

- The entropy is always non-negative.
- For a distribution over n elements, the entropy is maximized when $p(x_i) = 1/n$ for all i.

The Shannon entropy of the distribution p is

$$H(p) = -\sum_{x \in X} p(x) \log p(x) = E_p(\log p(X)).$$

- The entropy is always non-negative.
- For a distribution over n elements, the entropy is maximized when $p(x_i) = 1/n$ for all i.
- Entropy is a fundamental tool in Shannon's information theory.

The Shannon entropy of the distribution p is

$$H(p) = -\sum_{x \in X} p(x) \log p(x) = E_p(\log p(X)).$$

- The entropy is always non-negative.
- For a distribution over n elements, the entropy is maximized when $p(x_i) = 1/n$ for all i.
- Entropy is a fundamental tool in Shannon's information theory.
- Also essential in communication, coding, probability, combinatorics, ...

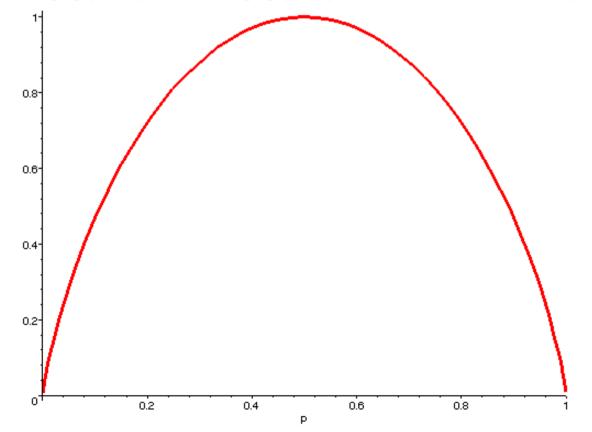
Suppose X has just two elements x_0, x_1 . Denote $p = p(x_1)$, then the probability of x_0 is 1 - p.

Suppose X has just two elements x_0, x_1 . Denote $p = p(x_1)$, then the probability of x_0 is 1 - p. In this case $H(p) = -p \log(p) - (1 - p) \log(1 - p)$, and is maximized at p = 1/2.

Suppose X has just two elements x_0, x_1 . Denote $p = p(x_1)$, then the probability of x_0 is 1 - p. In this case $H(p) = -p \log(p) - (1 - p) \log(1 - p)$, and is maximized at p = 1/2. In addition, H is convex.

Suppose X has just two elements x_0, x_1 . Denote $p = p(x_1)$, then the probability of x_0 is 1 - p. In this case $H(p) = -p \log(p) - (1 - p) \log(1 - p)$, and is maximized at p = 1/2. In addition, H is convex.

plot(-p*log[2](p)-(1-p)*log[2](1-p),p=0..1,thickness=3);



The Kullback-Leibler (KL) relative entropy of two distributions p, q over the same probability space X is defined as

$$D(p || q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)} = E_p \left(\log \frac{p(X)}{q(X)} \right)$$

The Kullback-Leibler (KL) relative entropy of two distributions p, q over the same probability space X is defined as

$$D(p || q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)} = E_p \left(\log \frac{p(X)}{q(X)} \right)$$

Intuitively, relative entropy measures how far apart two distributions are.

The Kullback-Leibler (KL) relative entropy of two distributions p, q over the same probability space X is defined as

$$D(p || q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)} = E_p \left(\log \frac{p(X)}{q(X)} \right)$$

- Intuitively, relative entropy measures how far apart two distributions are.
- For example, if p = q then clearly D(p || q) = 0.

The Kullback-Leibler (KL) relative entropy of two distributions p, q over the same probability space X is defined as

$$D(p || q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)} = E_p \left(\log \frac{p(X)}{q(X)} \right)$$

- Intuitively, relative entropy measures how far apart two distributions are.
- For example, if p = q then clearly D(p || q) = 0.
- Turns out the other direction holds too, *i.e.* $D(p || q) = 0 \Longrightarrow p = q$.

The Kullback-Leibler (KL) relative entropy of two distributions p, q over probability space X is defined as

$$D(p || q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)} = E_p \left(\log \frac{p(X)}{q(X)} \right)$$

The Kullback-Leibler (KL) relative entropy of two distributions p, q over probability space X is defined as

$$D(p || q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)} = E_p \left(\log \frac{p(X)}{q(X)} \right)$$

• In general D is *not* a distance metric.

The Kullback-Leibler (KL) relative entropy of two distributions p, q over probability space X is defined as

$$D(p || q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)} = E_p \left(\log \frac{p(X)}{q(X)} \right)$$

- In general D is *not* a distance metric.
- Usually, $D(p || q) \neq D(q || p)$.

The Kullback-Leibler (KL) relative entropy of two distributions p, q over probability space X is defined as

$$D(p || q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)} = E_p \left(\log \frac{p(X)}{q(X)} \right)$$

- In general D is *not* a distance metric.
- Usually, $D(p || q) \neq D(q || p)$.
- In many cases, triangle inequality is violated: $D(p_1 || p_3) > D(p_1 || p_2) + D(p_2 || p_3)$ is possible.

• $D(p || q) \neq D(q || p)$. Take $X = \{x_0, x_1\}$:

• $D(p || q) \neq D(q || p)$. Take $X = \{x_0, x_1\}$:

•
$$p(x_0) = \frac{1}{2}, p(x_1) = \frac{1}{2}, q(x_0) = \frac{1}{4}, q(x_1) = \frac{3}{4},$$

- $D(p || q) \neq D(q || p)$. Take $X = \{x_0, x_1\}$:
- $p(x_0) = \frac{1}{2}, p(x_1) = \frac{1}{2}, q(x_0) = \frac{1}{4}, q(x_1) = \frac{3}{4},$

Then
$$D(p || q) = \frac{1}{2} \log \left(\frac{1/2}{3/4} \right) + \frac{1}{2} \log \left(\frac{1/2}{1/4} \right)$$
, while $D(q || p) = \frac{3}{4} \log \left(\frac{3/4}{1/2} \right) + \frac{1}{4} \log \left(\frac{1/4}{1/2} \right)$.

- $D(p || q) \neq D(q || p)$. Take $X = \{x_0, x_1\}$:
- $p(x_0) = \frac{1}{2}, p(x_1) = \frac{1}{2}, q(x_0) = \frac{1}{4}, q(x_1) = \frac{3}{4},$ Then $D(p || q) = \frac{1}{2} \log \left(\frac{1/2}{3/4} \right) + \frac{1}{2} \log \left(\frac{1/2}{1/4} \right),$ while $D(q || p) = \frac{3}{4} \log \left(\frac{3/4}{1/2} \right) + \frac{1}{4} \log \left(\frac{1/4}{1/2} \right).$
- $D(p_1 || p_3) > D(p_1 || p_2) + D(p_2 || p_3)$. Again, take $X = x_0, x_1$:

- $D(p || q) \neq D(q || p)$. Take $X = \{x_0, x_1\}$:
- $p(x_0) = \frac{1}{2}, p(x_1) = \frac{1}{2}, q(x_0) = \frac{1}{4}, q(x_1) = \frac{3}{4},$ Then $D(p || q) = \frac{1}{2} \log \left(\frac{1/2}{3/4} \right) + \frac{1}{2} \log \left(\frac{1/2}{1/4} \right),$ while $D(q || p) = \frac{3}{4} \log \left(\frac{3/4}{1/2} \right) + \frac{1}{4} \log \left(\frac{1/4}{1/2} \right).$
- $D(p_1 || p_3) > D(p_1 || p_2) + D(p_2 || p_3)$. Again, take $X = x_0, x_1$:
- $p_1(x_0)=1/2, p_1(x_1)=1/2,$ $p_2(x_0)=1/4, p_2(x_1)=3/4,$ $p_3(x_0)=1/3, p_3(x_1)=2/3.$ Calculation shows Δ inequality does not hold.

Symmetric Relative Entropy

By taking the measure d(p,q) = D(p||q) + D(q||p) we get a "symmetric" version of relative entropy. This version

Symmetric Relative Entropy

By taking the measure d(p,q) = D(p||q) + D(q||p) we get a "symmetric" version of relative entropy. This version

• is clearly symmetric, d(p,q) = d(q,p),

Symmetric Relative Entropy

By taking the measure d(p,q) = D(p||q) + D(q||p) we get a "symmetric" version of relative entropy. This version

- is clearly symmetric, d(p,q) = d(q,p),
- tends to satisfy triangle inequality more often (still, not always),

Symmetric Relative Entropy

By taking the measure d(p,q) = D(p||q) + D(q||p) we get a "symmetric" version of relative entropy. This version

- is clearly symmetric, d(p,q) = d(q,p),
- tends to satisfy triangle inequality more often (still, not always),
- is more suitable as an "estimation" of distance between two distributions.

Given two genomes g_1 , g_2 (each is a very long string over DNA alphabet, not necessarily of equal length), is there a way to define their distance?

Motivation: Whole genome phylogenetic trees.

- Motivation: Whole genome phylogenetic trees.
- Any suggestions?

- Motivation: Whole genome phylogenetic trees.
- Any suggestions?
- Problem not well defined!

- Motivation: Whole genome phylogenetic trees.
- Any suggestions?
- Problem not well defined!
- Can get clues from information theory, if think of genomes as product of two distributions G_1, G_2 .

- Motivation: Whole genome phylogenetic trees.
- Any suggestions?
- Problem not well defined!
- Can get clues from information theory, if think of genomes as product of two distributions G_1, G_2 .
- For example, can take $d(G_1, G_2)$ as desired "distance".

Distances between Genomes (2)

Problems with approach:

• Distributions $d(G_1, G_2)$ unknown.

Distances between Genomes (2)

Problems with approach:

- Distributions $d(G_1, G_2)$ unknown.
- All we know is long samples of them, g_1, g_2 .

Distances between Genomes (2)

Problems with approach:

- Distributions $d(G_1, G_2)$ unknown.
- All we know is long samples of them, g_1, g_2 .
- Should look for operators that approximate $d(G_1, G_2)$.

Let $(g_1)_{i+1}^{i+k+1}$ denotes the substring of g_1 that starts in position i+1 and ends in position i+k+1.

- Let $(g_1)_{i+1}^{i+k+1}$ denotes the substring of g_1 that starts in position i+1 and ends in position i+k+1.
- Let $L_i(g_2, g_1) = \max_k ((g_1)_{i+1}^{i+k+1} \subset g_2)$.

- Let $(g_1)_{i+1}^{i+k+1}$ denotes the substring of g_1 that starts in position i+1 and ends in position i+k+1.
- Let $L_i(g_2, g_1) = \max_k ((g_1)_{i+1}^{i+k+1} \subset g_2)$.
- What is $L_i(g_2, g_1)$?

- Let $(g_1)_{i+1}^{i+k+1}$ denotes the substring of g_1 that starts in position i+1 and ends in position i+k+1.
- Let $L_i(g_2, g_1) = \max_k ((g_1)_{i+1}^{i+k+1} \subset g_2)$.
- What is $L_i(g_2, g_1)$?
- This is the longest substring of g_1 , starting at i, that is also a substring of g_2 .

Intuition

$$L_i(g_2, g_1) = \max_k ((g_1)_{i+1}^{i+k+1} \subset g_2).$$

• Strings g_2 , g_1 that are close by will tend to have long common substrings.

Intuition

$$L_i(g_2, g_1) = \max_k ((g_1)_{i+1}^{i+k+1} \subset g_2).$$

- Strings g_2 , g_1 that are close by will tend to have long common substrings.
- Strings g_2 , g_1 that are far away will tend to have short common substrings.

Intuition

$$L_i(g_2, g_1) = \max_k ((g_1)_{i+1}^{i+k+1} \subset g_2).$$

- Strings g_2 , g_1 that are close by will tend to have long common substrings.
- Strings g_2, g_1 that are far away will tend to have short common substrings.
- Maybe some average can lead to desired distance.

The Distance Operator

Let
$$\bar{L}(g_2, g_1) = \frac{1}{|g_2|} \sum_i L_i(g_2, g_1)$$
 be the average over
i's of $L_i(g_2, g_1)$.

The Distance Operator

Let $\bar{L}(g_2, g_1) = \frac{1}{|g_2|} \sum_i L_i(g_2, g_1)$ be the average over i's of $L_i(g_2, g_1)$.

A theorem of Weiner states that as the length of g_2 , g_1 increases,

$$\frac{\log|g_2|}{\bar{L}(g_2,g_1)} - \frac{\log|g_1|}{\bar{L}(g_1,g_1)}$$

converges to $D(G_1 || G_2)$.

The Distance Operator

Let $\bar{L}(g_2, g_1) = \frac{1}{|g_2|} \sum_i L_i(g_2, g_1)$ be the average over i's of $L_i(g_2, g_1)$.

A theorem of Weiner states that as the length of g_2 , g_1 increases,

$$\frac{\log|g_2|}{\bar{L}(g_2,g_1)} - \frac{\log|g_1|}{\bar{L}(g_1,g_1)}$$

converges to $D(G_1 || G_2)$.

This gives a theoretical justification for using the average common string method.

Given two strings g_2, g_1

Use a suffix tree to efficiently compute

$$\sum_{i} L_{i}(g_{2}, g_{1}), \sum_{j} L_{j}(g_{2}, g_{1}).$$

- Use a suffix tree to efficiently compute $\sum_{i} L_{i}(g_{2}, g_{1}), \sum_{j} L_{j}(g_{2}, g_{1}).$
- Average to estimate $d(g_1, g_2)$.

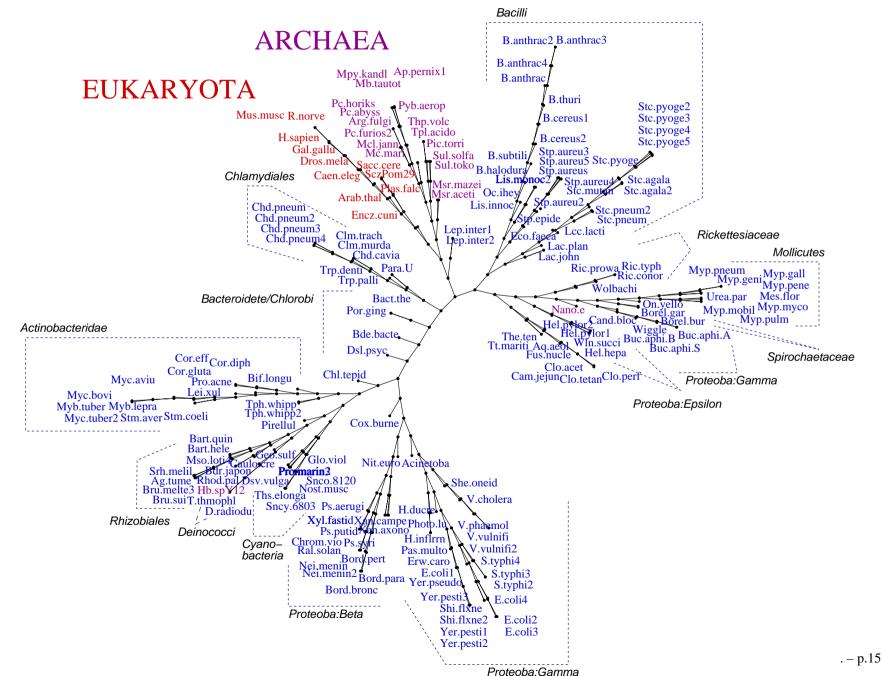
- Use a suffix tree to efficiently compute $\sum_{i} L_{i}(g_{2}, g_{1}), \sum_{j} L_{j}(g_{2}, g_{1}).$
- Average to estimate $d(g_1, g_2)$.
- Repeat for any pair of genomes.

- Use a suffix tree to efficiently compute $\sum_i L_i(g_2, g_1), \sum_j L_j(g_2, g_1).$
- Average to estimate $d(g_1, g_2)$.
- Repeat for any pair of genomes.
- Apply a distance based tree reconstruction to produce a "whole genome phylogeny".

- Use a suffix tree to efficiently compute $\sum_{i} L_{i}(g_{2}, g_{1}), \sum_{j} L_{j}(g_{2}, g_{1}).$
- Average to estimate $d(g_1, g_2)$.
- Repeat for any pair of genomes.
- Apply a distance based tree reconstruction to produce a "whole genome phylogeny".
- For real proteome and genome strings, triangle inequality satisfied for all pairs.

- Use a suffix tree to efficiently compute $\sum_{i} L_{i}(g_{2}, g_{1}), \sum_{j} L_{j}(g_{2}, g_{1}).$
- Average to estimate $d(g_1, g_2)$.
- Repeat for any pair of genomes.
- Apply a distance based tree reconstruction to produce a "whole genome phylogeny".
- For real proteome and genome strings, triangle inequality satisfied for all pairs.
- Joint work with Burstein, Ulitsky, Tuller (2004).

Prot. Tree (average 1M long), 191 Taxa



Retroid Virus Tree

Part of 1837 virus forest. Average genome length 5K.

