
Comp. Genomics - Lectures 4 & 5

Various problems on strings

. – p.1

Comp. Genomics - Lectures 4 & 5

Various problems on strings

Cost of naive solutions

. – p.1

Comp. Genomics - Lectures 4 & 5

Various problems on strings

Cost of naive solutions

Suffix trees – definition. Inefficient construction

. – p.1

Comp. Genomics - Lectures 4 & 5

Various problems on strings

Cost of naive solutions

Suffix trees – definition. Inefficient construction

Suffix trees – known efficient constructions

. – p.1

Comp. Genomics - Lectures 4 & 5

Various problems on strings

Cost of naive solutions

Suffix trees – definition. Inefficient construction

Suffix trees – known efficient constructions

Solving above string problems with suffix trees

. – p.1

Comp. Genomics - Lectures 4 & 5

Various problems on strings

Cost of naive solutions

Suffix trees – definition. Inefficient construction

Suffix trees – known efficient constructions

Solving above string problems with suffix trees

Compression (Lempel-Ziv) using suffix trees

. – p.1

Comp. Genomics - Lectures 4 & 5

Various problems on strings

Cost of naive solutions

Suffix trees – definition. Inefficient construction

Suffix trees – known efficient constructions

Solving above string problems with suffix trees

Compression (Lempel-Ziv) using suffix trees

An accelerated introduction to entropy and
relative entropy

. – p.1

Comp. Genomics - Lectures 4 & 5

Various problems on strings

Cost of naive solutions

Suffix trees – definition. Inefficient construction

Suffix trees – known efficient constructions

Solving above string problems with suffix trees

Compression (Lempel-Ziv) using suffix trees

An accelerated introduction to entropy and
relative entropy

Bio applications of suffix trees and suffix arrays

. – p.1

Comp. Genomics - Lectures 4 & 5

Various problems on strings

Cost of naive solutions

Suffix trees – definition. Inefficient construction

Suffix trees – known efficient constructions

Solving above string problems with suffix trees

Compression (Lempel-Ziv) using suffix trees

An accelerated introduction to entropy and
relative entropy

Bio applications of suffix trees and suffix arrays

. – p.1

Comp. Genomics - Lectures 4 & 5

Various problems on strings

Cost of naive solutions

Suffix trees – definition. Inefficient construction

Suffix trees – known efficient constructions

Solving above string problems with suffix trees

Compression (Lempel-Ziv) using suffix trees

An accelerated introduction to entropy and
relative entropy

Bio applications of suffix trees and suffix arrays

Gusfield’s book, chapters 5, 6, 7
. – p.1

Entropy of a Distribution p

Let X = (x1, . . . , xn) be elements in a finite
probability space, and p(x1), . . . , p(xn) be their
probabilities (

∑n
i=1 p(xi) = 1).

. – p.2

Entropy of a Distribution p

Let X = (x1, . . . , xn) be elements in a finite
probability space, and p(x1), . . . , p(xn) be their
probabilities (

∑n
i=1 p(xi) = 1).

The Shannon entropy of the distribution p is
defined as
H(p) = −∑

x∈X p(x) log p(x) = Ep(log p(X)).

. – p.2

Entropy of a Distribution p

Let X = (x1, . . . , xn) be elements in a finite
probability space, and p(x1), . . . , p(xn) be their
probabilities (

∑n
i=1 p(xi) = 1).

The Shannon entropy of the distribution p is
defined as
H(p) = −∑

x∈X p(x) log p(x) = Ep(log p(X)).

Informally, the entropy measures the amount of
surprise (in bits) when observing a single
occurrence of X .

. – p.2

Entropy of a Distribution p

Let X = (x1, . . . , xn) be elements in a finite
probability space, and p(x1), . . . , p(xn) be their
probabilities (

∑n
i=1 p(xi) = 1).

The Shannon entropy of the distribution p is
defined as
H(p) = −∑

x∈X p(x) log p(x) = Ep(log p(X)).

Informally, the entropy measures the amount of
surprise (in bits) when observing a single
occurrence of X .

Let p, q be two probability distributions on the
same probability space, X . If H(p) > H(q) then
p is more surprising than q. We also say that there
is more randomness in p.

. – p.2

Entropy of a Distribution p

The Shannon entropy of the distribution p is
H(p) = −∑

x∈X p(x) log p(x) = Ep(log p(X)).

The entropy is always non-negative.

. – p.3

Entropy of a Distribution p

The Shannon entropy of the distribution p is
H(p) = −∑

x∈X p(x) log p(x) = Ep(log p(X)).

The entropy is always non-negative.

For a distribution over n elements, the entropy is
maximized when p(xi) = 1/n for all i.

. – p.3

Entropy of a Distribution p

The Shannon entropy of the distribution p is
H(p) = −∑

x∈X p(x) log p(x) = Ep(log p(X)).

The entropy is always non-negative.

For a distribution over n elements, the entropy is
maximized when p(xi) = 1/n for all i.

Entropy is a fundamental tool in Shannon’s
information theory.

. – p.3

Entropy of a Distribution p

The Shannon entropy of the distribution p is
H(p) = −∑

x∈X p(x) log p(x) = Ep(log p(X)).

The entropy is always non-negative.

For a distribution over n elements, the entropy is
maximized when p(xi) = 1/n for all i.

Entropy is a fundamental tool in Shannon’s
information theory.

Also essential in communication, coding,
probability, combinatorics, . . .

. – p.3

Entropy in Boolean Case

Suppose X has just two elements x0, x1. Denote
p = p(x1), then the probability of x0 is 1 − p.

. – p.4

Entropy in Boolean Case

Suppose X has just two elements x0, x1. Denote
p = p(x1), then the probability of x0 is 1 − p. In this
case H(p) = −p log(p) − (1 − p) log(1 − p), and is
maximized at p = 1/2.

. – p.4

Entropy in Boolean Case

Suppose X has just two elements x0, x1. Denote
p = p(x1), then the probability of x0 is 1 − p. In this
case H(p) = −p log(p) − (1 − p) log(1 − p), and is
maximized at p = 1/2. In addition, H is convex.

. – p.4

Entropy in Boolean Case

Suppose X has just two elements x0, x1. Denote
p = p(x1), then the probability of x0 is 1 − p. In this
case H(p) = −p log(p) − (1 − p) log(1 − p), and is
maximized at p = 1/2. In addition, H is convex.

. – p.4

Relative Entropy of Two Distributions

The Kullback-Leibler (KL) relative entropy of two
distributions p, q over the same probability space X is
defined as

D(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

(
log

p(X)

q(X)

)

. – p.5

Relative Entropy of Two Distributions

The Kullback-Leibler (KL) relative entropy of two
distributions p, q over the same probability space X is
defined as

D(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

(
log

p(X)

q(X)

)

Intuitively, relative entropy measures how far
apart two distributions are.

. – p.5

Relative Entropy of Two Distributions

The Kullback-Leibler (KL) relative entropy of two
distributions p, q over the same probability space X is
defined as

D(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

(
log

p(X)

q(X)

)

Intuitively, relative entropy measures how far
apart two distributions are.

For example, if p = q then clearly D(p || q) = 0.

. – p.5

Relative Entropy of Two Distributions

The Kullback-Leibler (KL) relative entropy of two
distributions p, q over the same probability space X is
defined as

D(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

(
log

p(X)

q(X)

)

Intuitively, relative entropy measures how far
apart two distributions are.

For example, if p = q then clearly D(p || q) = 0.

Turns out the other direction holds too, i.e.
D(p || q) = 0 =⇒ p = q.

. – p.5

Relative Entropy of Two Distributions (2)

The Kullback-Leibler (KL) relative entropy of two
distributions p, q over probability space X is defined
as

D(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

(
log

p(X)

q(X)

)

. – p.6

Relative Entropy of Two Distributions (2)

The Kullback-Leibler (KL) relative entropy of two
distributions p, q over probability space X is defined
as

D(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

(
log

p(X)

q(X)

)

In general D is not a distance metric.

. – p.6

Relative Entropy of Two Distributions (2)

The Kullback-Leibler (KL) relative entropy of two
distributions p, q over probability space X is defined
as

D(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

(
log

p(X)

q(X)

)

In general D is not a distance metric.

Usually, D(p || q) �= D(q || p).

. – p.6

Relative Entropy of Two Distributions (2)

The Kullback-Leibler (KL) relative entropy of two
distributions p, q over probability space X is defined
as

D(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

(
log

p(X)

q(X)

)

In general D is not a distance metric.

Usually, D(p || q) �= D(q || p).

In many cases, triangle inequality is violated:
D(p1 || p3)>D(p1 || p2) + D(p2 || p3) is possible.

. – p.6

Examples

D(p || q) �= D(q || p). Take X = {x0, x1}:

. – p.7

Examples

D(p || q) �= D(q || p). Take X = {x0, x1}:

p(x0) = 1
2, p(x1) = 1

2 , q(x0) = 1
4 , q(x1) = 3

4 ,

. – p.7

Examples

D(p || q) �= D(q || p). Take X = {x0, x1}:

p(x0) = 1
2, p(x1) = 1

2 , q(x0) = 1
4 , q(x1) = 3

4 ,

Then D(p || q) = 1
2 log

(
1/2
3/4

)
+ 1

2 log
(

1/2
1/4

)
,

while D(q || p) = 3
4 log

(
3/4
1/2

)
+ 1

4 log
(

1/4
1/2

)
.

. – p.7

Examples

D(p || q) �= D(q || p). Take X = {x0, x1}:

p(x0) = 1
2, p(x1) = 1

2 , q(x0) = 1
4 , q(x1) = 3

4 ,

Then D(p || q) = 1
2 log

(
1/2
3/4

)
+ 1

2 log
(

1/2
1/4

)
,

while D(q || p) = 3
4 log

(
3/4
1/2

)
+ 1

4 log
(

1/4
1/2

)
.

D(p1 || p3)>D(p1 || p2) + D(p2 || p3).
Again, take X = x0, x1:

. – p.7

Examples

D(p || q) �= D(q || p). Take X = {x0, x1}:

p(x0) = 1
2, p(x1) = 1

2 , q(x0) = 1
4 , q(x1) = 3

4 ,

Then D(p || q) = 1
2 log

(
1/2
3/4

)
+ 1

2 log
(

1/2
1/4

)
,

while D(q || p) = 3
4 log

(
3/4
1/2

)
+ 1

4 log
(

1/4
1/2

)
.

D(p1 || p3)>D(p1 || p2) + D(p2 || p3).
Again, take X = x0, x1:

p1(x0) = 1/2, p1(x1) = 1/2,
p2(x0) = 1/4, p2(x1) = 3/4,
p3(x0) = 1/3, p3(x1) = 2/3.
Calculation shows ∆ inequality does not hold.

. – p.7

Symmetric Relative Entropy

By taking the measure d(p, q) = D(p || q) + D(q || p)
we get a “symmetric” version of relative entropy. This
version

. – p.8

Symmetric Relative Entropy

By taking the measure d(p, q) = D(p || q) + D(q || p)
we get a “symmetric” version of relative entropy. This
version

is clearly symmetric, d(p, q) = d(q, p),

. – p.8

Symmetric Relative Entropy

By taking the measure d(p, q) = D(p || q) + D(q || p)
we get a “symmetric” version of relative entropy. This
version

is clearly symmetric, d(p, q) = d(q, p),

tends to satisfy triangle inequality more often
(still, not always),

. – p.8

Symmetric Relative Entropy

By taking the measure d(p, q) = D(p || q) + D(q || p)
we get a “symmetric” version of relative entropy. This
version

is clearly symmetric, d(p, q) = d(q, p),

tends to satisfy triangle inequality more often
(still, not always),

is more suitable as an “estimation” of distance
between two distributions.

. – p.8

Estimating Distances between Genomes

Given two genomes g1, g2 (each is a very long string
over DNA alphabet, not necessarily of equal length),
is there a way to define their distance?

Motivation: Whole genome phylogenetic trees.

. – p.9

Estimating Distances between Genomes

Given two genomes g1, g2 (each is a very long string
over DNA alphabet, not necessarily of equal length),
is there a way to define their distance?

Motivation: Whole genome phylogenetic trees.

Any suggestions?

. – p.9

Estimating Distances between Genomes

Given two genomes g1, g2 (each is a very long string
over DNA alphabet, not necessarily of equal length),
is there a way to define their distance?

Motivation: Whole genome phylogenetic trees.

Any suggestions?

Problem not well defined!

. – p.9

Estimating Distances between Genomes

Given two genomes g1, g2 (each is a very long string
over DNA alphabet, not necessarily of equal length),
is there a way to define their distance?

Motivation: Whole genome phylogenetic trees.

Any suggestions?

Problem not well defined!

Can get clues from information theory, if think of
genomes as product of two distributions G1, G2.

. – p.9

Estimating Distances between Genomes

Given two genomes g1, g2 (each is a very long string
over DNA alphabet, not necessarily of equal length),
is there a way to define their distance?

Motivation: Whole genome phylogenetic trees.

Any suggestions?

Problem not well defined!

Can get clues from information theory, if think of
genomes as product of two distributions G1, G2.

For example, can take d(G1, G2) as desired
“distance”.

. – p.9

Distances between Genomes (2)

Problems with approach:

Distributions d(G1, G2) unknown.

. – p.10

Distances between Genomes (2)

Problems with approach:

Distributions d(G1, G2) unknown.

All we know is long samples of them, g1, g2.

. – p.10

Distances between Genomes (2)

Problems with approach:

Distributions d(G1, G2) unknown.

All we know is long samples of them, g1, g2.

Should look for operators that approximate
d(G1, G2).

. – p.10

Useful Notations

Let (g1)
i+k+1
i+1 denotes the substring of g1 that

starts in position i + 1 and ends in position
i + k + 1.

. – p.11

Useful Notations

Let (g1)
i+k+1
i+1 denotes the substring of g1 that

starts in position i + 1 and ends in position
i + k + 1.

Let Li(g2, g1) = maxk((g1)
i+k+1
i+1 ⊂ g2).

. – p.11

Useful Notations

Let (g1)
i+k+1
i+1 denotes the substring of g1 that

starts in position i + 1 and ends in position
i + k + 1.

Let Li(g2, g1) = maxk((g1)
i+k+1
i+1 ⊂ g2).

What is Li(g2, g1)?

. – p.11

Useful Notations

Let (g1)
i+k+1
i+1 denotes the substring of g1 that

starts in position i + 1 and ends in position
i + k + 1.

Let Li(g2, g1) = maxk((g1)
i+k+1
i+1 ⊂ g2).

What is Li(g2, g1)?

This is the longest substring of g1, starting at i,
that is also a substring of g2.

. – p.11

Intuition

Li(g2, g1) = maxk((g1)
i+k+1
i+1 ⊂ g2).

Strings g2, g1 that are close by will tend to have
long common substrings.

. – p.12

Intuition

Li(g2, g1) = maxk((g1)
i+k+1
i+1 ⊂ g2).

Strings g2, g1 that are close by will tend to have
long common substrings.

Strings g2, g1 that are far away will tend to have
short common substrings.

. – p.12

Intuition

Li(g2, g1) = maxk((g1)
i+k+1
i+1 ⊂ g2).

Strings g2, g1 that are close by will tend to have
long common substrings.

Strings g2, g1 that are far away will tend to have
short common substrings.

Maybe some average can lead to desired distance.

. – p.12

The Distance Operator

Let L̄(g2, g1) = 1
|g2|

∑
i Li(g2, g1) be the average over

i’s of Li(g2, g1).

. – p.13

The Distance Operator

Let L̄(g2, g1) = 1
|g2|

∑
i Li(g2, g1) be the average over

i’s of Li(g2, g1).

A theorem of Weiner states that as the length of g2, g1
increases,

log |g2|
L̄(g2, g1)

− log |g1|
L̄(g1, g1)

converges to D(G1 ||G2).

. – p.13

The Distance Operator

Let L̄(g2, g1) = 1
|g2|

∑
i Li(g2, g1) be the average over

i’s of Li(g2, g1).

A theorem of Weiner states that as the length of g2, g1
increases,

log |g2|
L̄(g2, g1)

− log |g1|
L̄(g1, g1)

converges to D(G1 ||G2).

This gives a theoretical justification for using the aver-

age common string method.

. – p.13

Average Common String Algorithm

Given two strings g2, g1

Use a suffix tree to efficiently compute∑
i Li(g2, g1),

∑
j Lj(g2, g1).

. – p.14

Average Common String Algorithm

Given two strings g2, g1

Use a suffix tree to efficiently compute∑
i Li(g2, g1),

∑
j Lj(g2, g1).

Average to estimate d(g1, g2).

. – p.14

Average Common String Algorithm

Given two strings g2, g1

Use a suffix tree to efficiently compute∑
i Li(g2, g1),

∑
j Lj(g2, g1).

Average to estimate d(g1, g2).

Repeat for any pair of genomes.

. – p.14

Average Common String Algorithm

Given two strings g2, g1

Use a suffix tree to efficiently compute∑
i Li(g2, g1),

∑
j Lj(g2, g1).

Average to estimate d(g1, g2).

Repeat for any pair of genomes.

Apply a distance based tree reconstruction to
produce a “whole genome phylogeny”.

. – p.14

Average Common String Algorithm

Given two strings g2, g1

Use a suffix tree to efficiently compute∑
i Li(g2, g1),

∑
j Lj(g2, g1).

Average to estimate d(g1, g2).

Repeat for any pair of genomes.

Apply a distance based tree reconstruction to
produce a “whole genome phylogeny”.

For real proteome and genome strings, triangle
inequality satisfied for all pairs.

. – p.14

Average Common String Algorithm

Given two strings g2, g1

Use a suffix tree to efficiently compute∑
i Li(g2, g1),

∑
j Lj(g2, g1).

Average to estimate d(g1, g2).

Repeat for any pair of genomes.

Apply a distance based tree reconstruction to
produce a “whole genome phylogeny”.

For real proteome and genome strings, triangle
inequality satisfied for all pairs.

Joint work with Burstein, Ulitsky, Tuller (2004).

. – p.14

Prot. Tree (average 1M long), 191 Taxa
ARCHAEA

Rhizobiales

Bacilli

Rickettesiaceae

Cyano−

Proteoba:Gamma

Proteoba:Gamma

Spirochaetaceae

Actinobacteridae

Proteoba:Epsilon

Mollicutes

Chlamydiales

Deinococci

Bacteroidete/Chlorobi

bacteria

EUKARYOTA

Proteoba:Beta

Mc.mari
Mcl.jann

Pc.furios2
Arg.fulgi

Pc.abyss
Pc.horiks

Mb.tautot
Mpy.kandl Ap.pernix1

Pyb.aerop
Thp.volc
Tpl.acido

Sul.solfa
Sul.toko

Msr.mazei
Msr.aceti

B.anthrac
B.anthrac4

B.anthrac2 B.anthrac3

B.thuri

B.cereus1

B.cereus2

B.subtili
B.halodura

Oc.ihey
Lis.innoc

Eco.faeca

Stc.agala2

Stc.pneum
Lcc.lacti

Lac.plan
Lac.john

Ric.prowa Ric.typh
Ric.conor

Wolbachi
Myp.geni

On.yello
Borel.gar

Borel.bur
Buc.aphi.A

Buc.aphi.S
Buc.aphi.B

Wiggle
Cand.bloc

Wln.succi
Hel.hepa

Clo.acet
Clo.tetanClo.perf

Fus.nucle
Aq.aeolTt.mariti

The.ten

H.ducre
Photo.lu

H.inflrrn

Erw.caro
E.coli1

Yer.pseudo
Yer.pesti3

Ps.putid
Ps.syri

Xan.axono

Nost.musc
Snco.8120

Glo.viol

Sncy.6803
Ths.elonga

Nit.euroAcinetoba

Cox.burne

D.radiodu
T.thmophlBru.sui

Bru.melte3

Mso.loti4
Bart.hele

Dsl.psyc

Bact.the

Para.U

Myc.aviu

Myb.lepra
Stm.averStm.coeli

Lei.xul
Pro.acne

Cor.gluta
Cor.diphCor.eff

Bif.longu

Encz.cuni

Arab.thal
Plas.falc

SczPom29
Sacc.cere

Caen.eleg
Dros.mela

Gal.gallu

R.norve

H.sapien

Mus.musc Stc.pyoge3

Stc.pyoge5
Stc.pyoge4

Stc.pyoge2

Stp.aureus

Lep.inter2
Lep.inter1

Shi.flxne2 E.coli2
Shi.flxne

Yer.pesti1
Yer.pesti2

Chl.tepid

Bde.bacte

Por.ging

Pro.marinPro.marin3Pro.marin2

Xyl.fastiXyl.fastid

Chd.pneum
Chd.pneum2
Chd.pneum3
Chd.pneum4 Clm.trach

Clm.murda
Chd.cavia

Hel.pylor1
Hel.pylor2

Cam.jejun

Lis.monoc2Lis.monoc

Urea.par

Myp.pneum
Trp.palli

Trp.denti

Tph.whipp
Tph.whipp2

Pirellul

Pic.torri
Stp.aureu3
Stp.aureu5 Stc.pyoge

Stc.mutan
Stp.aureu4 Stc.agala

Stp.aureu2
Stc.pneum2

Stp.epide

Myp.gall
Myp.pene
Mes.flor
Myp.myco

Myp.pulm

E.coli3

S.typhi2
E.coli4

S.typhi3
S.typhi4

V.vulnifi2
V.vulnifi

V.phaemol

She.oneid

V.cholera

Pas.multo

Bord.para
Bord.bronc

Nei.menin2
Nei.menin

Bord.pert
Ral.solan

Chrom.vio

Ps.aerugi
Xan.campe

Caulo.cre
Geo.sulf

Bart.quin

Srh.melil
Ag.tume

Myb.tuber
Myc.bovi

Myc.tuber2

Nano.e

Hb.spY12
Rhod.pal

Bdr.japon
Dsv.vulga

Myp.mobil

. – p.15

Retroid Virus Tree
Part of 1837 virus forest. Average genome length 5K.

Hepadnaviridaee

Alpharetrovirus

Gammaretrovirus

Deltaretrovirus

Betaretrovirus

Caulimovirus

Lentivirus

Spumavirus

Epsilonretrovirus

Badnavirus

ACVALV
RSV AMCV

Y73SV
FuSV

ASV

Avia.end

EpYVV
FeLV

AbMLV
MLV
Mur.sarv
MoMSV

Mur.oste
MurC FrMLV

Rauscher
Spleen.f

GALV

PTLV3 STLV2
HTLV2
STLV1
HTLV1

BLVWMSVPorc.end

Wool

Oran
HepB

Arct
Gs Heron

Wood.

Sheld. Stork

Ross.

Snow
Duck.

HIV1
SHIV

HIV2 SIV

Eq.anemi
FIV SIV2

Carp.ert
Visna

Ovi.lent

Jembrana SnRV
WDSV

Eq.foamy
BFV

FFV
SFV

HFV
H.spuma

SCBV
ComYMV

Citru.mo

BSV

KTSV
TaBV

CSSV

PCSV

MiMV
FMV CERV

CaMV

SVBV

MPMV

MMTV

Enzo.goa
Abelson

Tobac.VC
CsVMV

BRRV

RTBV

PVCV

CmYLCV

SbCMV

BIV

. – p.16

