Parameter Estimation
Lecture #7

Acknowledgement: Some slides of this lecture are due to Nir Friedman.

Likelihood function for a die:
Multinomial sampling

Let X be a random variable with 6 values x;,...,X, denoting the
six outcomes of a die. Suppose we observe a sequence of
independent outcomes:

Data = (X4,X1,X1,X3,X2,X2,X3,X4,X5,X2,Xg)

What is the probability of this data ?

If we knew the long-run frequencies 6, for falling on side x;,
then,

5 2
P(Data|®)=672-6:-62-0, -0, -[1—2@)
i=1
Where © ={6,,0,,05,04,85} are called the parameters of the

likelihood function. We wish to estimate these parameters
from the data we have seen.

Sufficient Statistics

¢ To compute the probability of data in the die example
we only require to record the number of times N,
falling on side i (hamely,N,, N,,...N;).
+ We do not need to recall the entire sequence of
outcomes
5 Ne
P(Data|®) =6," -6, -0;°-6," - 05" -(1— Zi:ﬁ)
¢ {N;| i=1..6} is called the sufficient statistics for the
multinomial sampling.

Sufficient Statistics

¢ A sufficient statistics is a function of the data that
summarizes the relevant information for the
likelihood

+ Formally, s(Data) is a sufficient statistics if for any
two datasets D and D'

e s(Data) = s(Data’) = AData|0) = ADatd'|0)

Datasets

Statistics




Maximum Likelihood Estimate

Maximum likelihood estimate is an assignment to the
parameters that maximizes the probability of data
(i.e., the likelihood function ).

Usually one maximizes the log-likelihood function
which is easier to do and gives an identical answer:

logP(Data|®) = log [91'“1 0)2-0) -0, -0 - (1— 25 0 )NG}

=11

- Z;Ni log 8, + Ny log (1— Ziﬂi )

A sufficient [5logP(Data|®) N, Ne
condition for PY: "0 18555 0
maximum is: i T Zi:lei

Finding the Maximum

We have just found that: |—-=

Sum from j=1to 6: 1l=———

Hence the MLE is given by: [0 =— I=1..6

Adding Pseudo Counts

The MLE givenby |6 =—-  i=1..6,

can be misleading for small data sets because it could happen that a
small data set is not typical. For example, it might be that we know
that the dice is manufactured to be loaded but the small dataset we
examined does not show this property.

Example: The ABO locus

A locus is a particular place on the chromosome. Each locus’ state (called
genotype) consists of two alleles - one parental and one maternal. Some
loci (plural of locus) determine distinguished features. The ABO locus,
for example, determines blood type.

The MAP estimate is given by g -NN g 6
N+ N’

The six pseudo counts N’; sum to N'. They express one's assessment

regarding the frequencies for each side prior to seeing the data.

Large N' indicates high confidence. Smaller than 1 values are possible.

The ABO locus has six possible genotypes {a/a, a/o, b/o, b/b, a/b, o/0}.
The first two genotypes determine blood type A, the next two
determine blood type B, then blood type AB, and finally blood type O.

The MAP estimate can be justified as maximizing one's posterior
(namely, after seeing the data) best estimate of the frequencies for
each side. The theory formally justifying this formula is called
Bayesian Statistics (not covered in this course due to time
constraints).

We wish to estimate the proportion in a population of the 6 genotypes.

Suppose we randomly sampled N individuals and found that N,,, have
genotype a/a, N,,, have genotype a/b, etc. Then, the MLE is given by:

Na a Na 0 N N 0 Na NO
Ha/a = N/ 19a/o :T/10b/b = r:)]/b 16b/0 = |\bl/ ’ea/b = N/b 190/0 = N/
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The ABO locus (Cont.)

However, testing individuals for their genotype is a very
expensive test. Can we estimate the proportions of genotype
using the common cheap blood test with outcome being one
of the four blood types (A, B, AB, O) ?

The problem is that among individuals measured to have
blood type A, we don't know how many have genotype a/a and
how many have genotype a/o. So what can we do ?

We use the Hardy-Weinberg equilibrium rule that tells us
that in equilibrium the frequencies of the three alleles
04.05,9, in the population determine the frequencies of the
genotypes as follows: 6,,,= 20, 6,, 0,,,=20,6,, 6,,,= 26, 6,,
04/0= [04]% 0p/=1[6p]% 0,,,=[6,]%>. So now we have three
parameters that we need to estimate.

The Likelihood Function

Let X be a random variable with 6 values X,,,, X./0 Xb/b: Xb/o:
Xab + X4/ denoting the six genotypes. The parameters are

©= {e,.9,, 0,).

The probability P(X= x,,, | ®) = 26,6,.
The probability P(X= x,,, | ®) = 6,8,.
And so on for the other four genotypes.

What is the probability of Data={B,A,B,B,0,A,B,A,O0,B, AB} ?

P(Data|®) = (02 + 20,0, (67 + 26,0, (20,6, (6,0,

Obtaining the maximum of this function yields the MLE.
This can be done by multidimensional Newton's algorithm.
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Computing MLE

+ Finding MLE parameters: nonlinear optimization problem

A

P(Datal/®)

oo

v

Gradient Ascent (Newton like methods): ®
Follow gradient of likelihood w.r.t. to parameters (As taught in your
favorite Numerical Analysis course). Improve, by adding line search
methods to determine step size and get faster convergence. Start at

several random locations. 1

Gene Counting

Had we known the counts n,,, and n,, (blood type A
individuals), we could have estimated 6, from n individuals as
follows (and similarly estimate 6, and 6,):

0 <« 2ﬂa/a + na/o + na/b
2 2n
Can we compute what n,/, and n,,, are expected to be ?
Using the current estimates of 6,and 6, we can as follows:
2
0 N 20,0,

n,,< N ———2—— n,, < N,—5—22°>—
vat e 921200, ot e 921206,

We repeat these two steps until the parameters converge.
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Gene Counting (example of EM)

Input: Counts of each blood type ny4, ng, ng, nsg of n people.
Desired Output: ML estimate of allele frequencies 6,.,8, , 6,.

Initialization: Set 6,,6, ,and 6, to arbitrary values (say, 1/3).

Repeat

P Expectationn] e m e mcn 20
-sTep xXpectartion):| "aa A 9: +26,0, alo A ‘9a2+29360
N S
PR 2 1 20,0, YT P65+ 20,6,

M-step (Maximization):

0 <« 2nala+nalo+nAB 6 <« 2n‘o/b_f—n‘olo—i_nAB 9 <« 2no+na/o+no/o
2 2n § 2n ° 2n

Until 6,8, ,and 6, converge
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EM for HMMs

Recall that a non-homogenous HMM is a Bayesian network of the
following form with different parameters on each edge :

A y \ 4 v y
E step: Compute the probability p(h;, h;,; | xi) for the j-th sequence

xi=(x,,..,%.) in the training data set for each of H;'s values h; and H,,;'s
values h,,;.

M step: Estimate the transition probability p(h;,,|h;) via the sum
Zp(h,.,hi+1| xi) over all sequences xi in the data set, namely,

Zj p(h’hﬂ | Xi)
> > pthh X)) .

PN lh) <

EM for HMMs (Cont.)

y \ 4 \4
E step: Compute the probability| p(h;, h;,; | xi) for the j-th sequence

xi=(x4,...,x,) in the training data set for each of H;'s values h; and H,;'s
values h;,;.

M step (cont.): Estimate the emission probability p(x;|h;) via the sum

p(x Ih) K- Y ped,h) =K- 3 f(h)bh)
(il )i=x} {ilx)i=x}
where K is a normalizing constant obtained by summing on all x; values.
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Recall the forward algorithm

@1
<

The task: Compute f(h;) = P(x4,....x;,h;) for i=1,.. L (namely,
considering evidence up to time slot i).

Initial step: P(x;, hy) = P(h)) P(x,|h,)

Stepi: P(xy,..x.,h) = Zh,_l P(xq,..Xi1. hi ) P(h; | h_;) P(x; | h)

Recall that the backward algorithm is similar: multiplying
matrices from the end to the start and summing on hidden

states. 16




Decomposing the E-step computation

C G

H.
\ 4 \4 \4
X, x> CxD

P(Xy,.. X hihig) = P(xq,...x,h) plhig [h) p(Xi [hig) P(Xiaz.. X hig)

M = f(h) phi.; [h) p(xiq i) b(hi.)
Viathe forward Viathe backward
algorithm agorithm

f(h) p(hi.q [h) p(Xiq [hi.y) b(hiy)
Zhizhij(hi) p(hi.g [h) p(xiq [hig) b(hiy)

p(hh. | xi) =

EM for homogeneous HMMs

Now the parameters on each transition probability table are the same.

A y \ 4 v y
E step: Compute, for every i, the pr'obabili'ry|p(Hi=<'.l,H,.+1 =b| xJ')|for' the

j-th sequence xi=(x,,...,x,) in the training data set for each pair of states
a,b.

M step: Estimate the transition probability p(bla) via the sum 2; 2;
p(H; =a,H,,; =b | xi) (The only change is the extra sum on i).

Zi p(a,b|x’) Note: Simi I_ar change;
p(b|a) « j when |learning emission
2,2 Pablx’) probabilities p(x; |h.).
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The CpG Island example (Summary)
The HMM we used: Domain(H.)={T, N} x {A,C,T,G} (8 values)

In this representation P(x;| h) = O or 1 depending on whether x; is
consistent with h;. E.g. x;= G is consistent with h;=(I,6) and with
h;=(N,G) but not with any other state of h;.

Solution:
1. Learn the parameters using the EM algorithm.
2. Answer the following MAP query using Viterbi's

algorithm: (h, ..., ) =max arg p(hy,..., h, | X,,..., %)

(g, hy)
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Expectation Maximization (EM) for
Bayesian networks

Intuition (as before):

+ When we have access to all counts, then we
can find the ML estimate of all parameters in O 0
all local tables directly by counting.

+ However, missing values do not allow us to P(A= a | 0)
perform such counts.

+ So instead, we compute the expected
counts using the current parameter
assignment, and then use them to compute | P(C=c|A= a, 6)
the maximum likelihood estimate.

P(D=d|b,c, 0)

P(B=b|A= a, 0)

20




Expectation Maximization (EM)

1N

P Data Expected Counts
P(Y=H|X=H, ,0)=0.3

/ X| Y|z NXY) [NXZ)

2?2 X\ Y| # X|Z| #
Current T /; : :> ? ::: éi H lI:II 8;

arameters - : T :
P T HIT|L7|  |H|T|29
TIH TIT|16 TIT|1.8

P(Y=H|X=T,0) = 0.4
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EM (cont.)

Initial network (G, ")

Reiterate

Updated network (G, 6)

) & X Expected Counts D ) &
N(Xy)
Computation | N(Xz) Reparameterize
R [N — O
Esen) [Ny
->tep : M-St
@ @ @ NZs.¥) (M-Ste) ' 2y &
+ N(Z3ly)

Note: This EM iteration corresponds to the non-
homogenous HMM iteration. When parameters
are shared across local probability tables or are

functions of each other, changes are needed.

Training

Data
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EM in Practice

Initial parameters:

+ Random parameters setting

+ “Best” guess from other source
Stopping criteria:

+ Small change in likelihood of data

+ Small change in parameter values
Avoiding bad local maxima:

+ Multiple restarts

+ Early “pruning” of unpromising ones
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Relative Entropy — a measure of
difference among distributions

We define the relative entropy H(P||Q) for two
probability distributions P and Q of a variable X (with x
being a value of X) as follows:

H(PI1Q)= 2 xP(x;) log,(P(x)/ Q(x)))

This is a measure of difference between P(x) and Q(x).
It is not a symmetric function. The distribution P(x) is
assumed the "true” distribution used for taking the
expectation of the log of the difference with the
following properties:

HPIIQ) = 0
Equality holds if and only if P(x) = Q(x) for all x.

24




Average Score for sequence
comparisons

Recall that we have defined the scoring function via

P(a,b)
Q(@)Q(b)

o(a,b) =log

Note that the average score is the
relative entropy H(P ||Q) where

Q(a,b) = Q(a) Q(b).

Relative entropy also arises when
choosing amongst competing models.
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The setup of the EM algorithm

We start with a likelihood function parameterized by 6.

The observed quantity is denoted X=x. It is oftena vector
Xq,..,X_ of observations (e.g., N4, Ng, N5, Np, or evidence
for some nodes in a Bayesian network).

The hidden quantity is a vector Y=y (e.g. N,/q. No/o. N /b,
N,,,. states of unobserved variables in a Bayes network). The
quantity y is defined such that if it were known, the
likelihood of the completed data point P(x,y|6) is easy to
maximize.

The log-likelihood of an observation x has the form:
log P(x| 6) = log P(x,y| 0) - log P(y|x,0)
(Because P(xy| 8) = P(x| 8) P(y|x, 0)). %6

The goal of EM algorithm

The log-likelihood of an observation x has the form:
log P(x| 6) = log P(x,y| 0) - log P(y|x,0)

For independent points (x/, y'), i=1,...m, we can similarly write:
2 log P(xi| 8) = X; log P(xiy'| 8) - Z; log P(yi|x,0)

We will stick to one observation in our derivation recalling
that all derived equations can be modified by summing over x.

The goal: Starting with a current parameter vector 6, EM's
goal is to find a hew vector 0 such that P(x| 0) > P(x| 8) with

the highest possible difference.

The result: After enough iterations EM reaches a local

maximum of the likelihood P(x| 0).
27

The Mathematics involved

Recall that the expectation of a random variable ¥ with a pdf
P(y) is given by E[Y] = 2,y p(y).

The expectation of a function L(Y) is given by
EIL(Y)] = Z, L(y) p(y).

A bit harder to comprehend example:
Q(6 16") =Eg[log p(x.y16)1 = =, p(ylx, 6" log p(x y|6)

The expectation operator E is linear. For two random
variables X,, and constants a,b, the following holds

ElaX+bY]=a E[X] + b E[Y]

28




The Mathematics involved (Cont.)

Starting with|log P(x| 6) = log P(x, y| 6) - log P(y|x, 6),
multiplying both sides by P(y|x ,6"), and summing overy,
yields

Log P(x |0) :\Zy P(ylx, 6") log P(x ,yIGL- p yP(ny, 0') log P(y |x, 6)

Y
= Egllog p(x.y|6)]= Q(6 |6")
We now observe that
A= log P(x| 6) - log P(x|6") = Q(6 | ") - Q(6" | 6")
+&, P(ylx, 8" log [P(y Ix, 6) / P(y Ix,@

'

>0 (relative entropy)

So choosing|0” = argmax, Q6] 0")
maximizes the difference A, and
repeating this process leads to a local
maximum of log P(x| ©).

29

The EM algorithm itself
Input: A likelihood function p(x,y| 6) parameterized by 6.

Initialization: Fix an arbitrary starting value 6’
Repeat

E-step: Compute Q(6 | 0") = E,[log P(x,y/6)]
M-step: 0 « argmax, Q(6] 6")
Until A = log P(x| 8) - log P(x|08") < €

Comment: At the M-step one can actually choose any 6 as long as
A > 0. This change yields the so called Generalized EM algorithm.

It is important when argmax is hard fo compute. 0

MLE from Incomplete Data

+ Finding MLE parameters: nonlinear optimization problem

4 Jog P(x[e)
E o [log P(x,y/6)]

|
1
|
|
|
1
¢

é >
Expectation Maximization (EM): ©
Use “current point” to construct alternative function (which is “nice”)
Guaranty: maximum of new function has a higher likelihood than the
current point
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Gene Counting Revisited (as EM)

The observations: The variables X=(N,, Ng, N4z, Ng) with a
specific assignment x = (n,,ng,Nag.No).

The hidden quantity: The variables Y=(N,/,, Nu/o. No/b. Nb/0)
with a specific assignment y = (ny/q.Na/0. Nbsb: Nbso)-

The parameters: 6={6,,6,,9, }.

The likelihood of the completed data of n points:
P(X,Y| e) = P(nABan ’na/a'na/OI nb/bf nb/o| 9) =

— nl .
_(na/a! I'-]a/o! no/b! n‘o/o! r]a/b! r]o/oJ
. (05 )na/a (296100 )nalo (0b2 )nb/b (Zgb 00 )nb/o (Zgagb )na/b (002 )nolo
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The E-step of Gene Counting

The likelihood of the hidden data given the observed data
of n points:
P(yl x, 8") = P(Ng/a.Na/o0 Nosbs Moso | NaNg s NagiNo, 6°)

= P(na/afna/o | Nas 9'0,6'0) P(ﬂb/blnb/o I Ng, e'ble'o)

I I n 9'5 Nasa Zﬁ'a HIO NA=Na/a
p(ﬂa/a|nA’0a’00)= | . 12 ' ' 12 ' ]
n,l(ny,—n, )N\ 0'5+26', 6, 0'.+26',0',

2 20'.0',
Nya €< Ee'(Na/a) = nA(m] na/o <~ EH'(NaIO) = nA(MJ

This is exactly the E-step we used earlier |
33

The M-step of Gene Counting
The log-likelihood of the completed data of n points:

logP(x,y|0) =K +n,,, Iog{@j)Jr N, Iog(zaaé?o ) +
MNy/p |0§(‘9bz) Ny Iog(ng o, )+ Moo Iodzeaeb ) Ty IOQ{‘%)

Taking expectation wrt Y =(N,/., No/o. Nosb. Np/o) and
using linearity of E yields the function Q(6| ') which
we need to maximize:

E,[10gP(X, y|0)] = E, [K]+ E,[N, 11062 )+ E, [n, ] 10d(26,6, ) +
E,[n,,110d67) +E,n,.]10926,6, )+ E,[n,,,]109026,6,) +E,[n,,1l0d6?)

The M-step of Gene Counting (Cont.)
We need to maximize the function:
£(60,6,6,) =N, 10d62)+n,,,10d26,8,) +n,, lod6?)
+n,, |og(2¢9b90 )+ n,, |og(29a9b) +n,, Iog(@j)

Under the constraint 6+ 6,+ 6, =1.
The solution (obtained using Lagrange multipliers) is given
by

0 _ 2na/a\—i_na/c:—i_nAB 9 _ 2no/b+nb/o+nAB 9 _ 2nO+na/0+nalo
a b — o
2n 2n 2n

Which matches the M-step we used earlier !
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Outline for a different derivation of
Gene Counting as an EM algorithm

Define a variable X with values x,,xg,X45.X0-

Define a variable Y with values y, ., Ya/o: Yo/b: Yb/o: Ya/b: Yo/o-
Examine the Bayesian network: ~ (ODO—CO

The local probability table for Y is P(y,,|6) =6,6,,
P(Ya/ol 0) = 26,6, , efc.

The local probability table for X givenY is P(x,|Y,/q.0) =1,
P(Xa | Yas0 8) =1, P(X4|Ys,0 ,8) =0, etc, only O's and 1's.

Homework: write down for yourself the likelihood function
for n independent points x;y;, and check that the EM

equations match the gene counting equations.
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