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Hilbert’s 10th Problem
For every TM, M , it is possible to construct a
polynomial in n + m variables,

fM(y1, y2, . . . , ym,x1, x2, . . . , xn) ,

satisfying: for every w ∈ Σ∗ there are integers
a1, a2, . . . , am such that M accepts w iff

fM(a1, a2, . . . , am,x1, x2, . . . , xn)

has integer roots x1, x2, . . . , xn.
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Hilbert’s 10th Problem
Remark: The transformation
〈M,w〉 → 〈fM , a1, a2, . . . , am〉 is computable.

After this reduction is established (don’t forget it took
70 year to do), it is obvious Hilbert’s 10th problem is
undecidable.
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Number Theory

Number theory can be viewed as the collection of true
statements over the model of natural numbers with
addition and multiplication, (N , +, ·). For example

∀x∃y [y = x + 1] (existence of successor)

∀x∀y∀z [x · x · x + y · y · y 6= z · z · z]
(Fermat’ last theorem for exponent n = 3)
∀x∃p∀y∀z [ p > x

∧
p 6= (y + 1) · (z + 1) ]

(existence of infinitely many primes)
∀x∃p∀y∀z [ p > x

∧
p 6= (y + 1) · (z + 1)∧

(p + 2) 6= (y + 1) · (z + 1) ]
(the twin prime conjecture)
Goldbach conjecture: Every even integer is the

sum of two primes. Express it in the language.
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Peano Arithmetic
The theory of numbers is usually denoted
Th(N , +, ·).

The “usual” system of axioms of number theory
is called first-order Peano arithmetic, and denoted
by PA.

PA includes axioms about the successor
operation, well ordering, commutativity and
associativity of + and ·, distributive law, . . . , and
the induction axiom.
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Completeness of Logical Theories

A logical theory, Th, with an associated axiom system
and a model is called complete if every correct
statement is also provable (from the axioms).

Question: Is Th(N , +, ·) complete?
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Gödel’s Incompleteness Theorem (1931)

Theorem: Th(N , +, ·) is incomplete.

Proof: By contradiction, using undecidability of
Hilbert’s 10th.

Recall M accepts w iff

fM(a1, a2, . . . , am,x1, x2, . . . , xn)

has integer roots x1, x2, . . . , xn.

Notice that

φ = ∃x1 . . . ∃xnfM(a1, . . . , am,x1, . . . , xn) = 0

is a statement in our language.
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Gödel’s Incompleteness Theorem (1931)

Either φ or φ are correct. If Th(N , +, ·) was
complete, then either φ or φ were provable.

Can assign one TM to try proving φ, another to
try prove φ.

Exactly one will succeed, determining if M
accepts w. Contradiction. ♣

Important comment: This conceptually simple
proof uses the undecidability of Hilbert’s 10th,
established in 1970. It was not available to Gödel
in 1931, when he proved the theorem.
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RE-Completeness

Question: Is there a language L that is hardest in the
class RE of enumerable languages (languages
accepted by some TM)?

Answer: Well, you have to define what you mean by
“hardest language”.

Definition: A language L0 ⊆ Σ∗ is called
RE-complete if the following holds

L0 ∈ RE (membership).

For every L ∈ RE , L ≤m L0 (hardness).
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RE-Completeness

Definition: A language L0 ⊆ Σ∗ is called
RE-complete if the following holds

L ∈ RE (membership).

For every L ∈ RE , L ≤m L0 (hardness).

The second item means that for every enumerable L
there is a mapping reduction fL from L to L0. The
reduction fL depends on L and will typically differ
from one language to another.
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RE-Completeness

Question: Having defined a reasonable notion, we
should make sure it is not vacuous, namely verify
there is at least one language satisfying it.

Theorem: The language ATM is RE-Complete.

Proof:
The universal machine U accepts the language
ATM, so ATM ∈ RE .

Suppose L is in RE , and let M be a TM
accepting it. Then fL(w) = 〈M,w〉 is a mapping
reduction from L to ATM (why?). ♣
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Description Length and Information

Consider the two (equal length – 28 bits each) strings

0101010101010101010101010101
0010110011101010100110001111

Which of these two strings has more information?

This raises the difficult question of what information
means, and how can it be measured.

Following Kolmogorov, we will measure the
information of a string by means of its description
length.
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Information and Description Length

The motivation for Kolmogorov complexity is that
phenomena with shorter explanations are typically
less complex than phenomena with longer
explanations.

Consequently, we will say that strings with longer
description length are more informative than those
with shorter description.

Of course, we should still define what description
length means.

An alternative route (not taken here) is to consider how

much a string can be compressed.
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Kolmogorov Complexity

In this part of the lecture, we view all TMs as
computing functions.

In particular, we can talk about the Universal TM for
computing functions.

Definition: Let M by a TM, and fM be the function
it computes.
The Kolmogorov Complexity of a string x with
respect to M , KM(x), is defined as the
length of the shortest string y satisfying fM(y) = x.

If there is no such y, we define KM(x) = ∞.
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Kolmogorov Complexity

Hey, this definition is no good. It is totally arbitrary
and depends on the particular choice of machine M .
Moreover, some strings may have KM(x) = ∞,
which is counter intuitive.

Well gidday, mates, and no worries . We will
immediately show how this can be fixed.

Theorem: Let U be a universal Turing machine. For
every Turing machine, M , there is a constant cM

(depending on M alone) such that for every x ∈ Σ∗,
KU(x) ≤ KM(x) + cM .
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Kolmogorov Complexity

Theorem: Let U be a universal Turing machine. For
every Turing machine, M , there is a constant cM

(depending on M alone) such that for every x ∈ Σ∗,
KU(x) ≤ KM(x) + cM .

Proof: Let y be a shortest string such that
fM(y) = x. Then for the universal TM, U ,
fU(〈M, y〉) = fM(y) = x .
Using prefix-free encodings for TMs, 〈M, y〉 is
simply the concatenation of 〈M〉, followed by the
string y. So we get

KU(x) ≤ |y|+ |〈M〉| = KM(x) + |〈M〉| .

So the theorem holds where cM = |〈M〉|. ♣.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.17



Kolmogorov Complexity

Theorem: Let U be a universal Turing machine. For
every Turing machine, M , there is a constant cM

(depending on M alone) such that for every x ∈ Σ∗,
KU(x) ≤ KM(x) + cM .

Proof: Let y be a shortest string such that
fM(y) = x. Then for the universal TM, U ,
fU(〈M, y〉) = fM(y) = x .
Using prefix-free encodings for TMs, 〈M, y〉 is
simply the concatenation of 〈M〉, followed by the
string y. So we get

KU(x) ≤ |y|+ |〈M〉| = KM(x) + |〈M〉| .
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Kolmogorov Complexity

Corollary: If both U1 and U2 are universal Turing
machines, then there is a constant c such that for every
string x,

|KU1
(x)−KU2

(x)| < c .

So we can take any universal TM, U , define

K(x) = KU(x) ,

and refer to this measure as “Kolmogorov complexity
of the string x.

We now show that for every string x, K(x) equals at
most x’s length plus a constant.
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Kolmogorov Complexity

Theorem: There is a constant c such that for every
string x, K(x) ≤ |x|+ c.
Pay attention to the order of quantifiers in the
statement.

Proof: Let MID be a TM computing the identity
function f(x) = x (e.g. a TM that halts immediately).
Obviously for any string x, KMID

(x) = |x|. By
previous theorem, there is a constant c such that for
any string x,

K(x) = KU(x) ≤ KMID
(x) + c = |x|+ c ♣
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Kolmogorov Complexity

Are there strings whose Kolmogorov complexity is
substantially smaller than their own length?

K(xx) ≤ K(x) + c

K(1n) ≤ log(n) + c

K(12n

) ≤ log(n) + c

But these strings with very concise description are rare.
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Kolmogorov Complexity

A simple counting argument gives
Theorem: For every integer c ≥ 1, the number of
strings in {0, 1}n for which K(x) ≤ n− c is at most
2n/2c−1.

Proof: In {0, 1}∗ there is 1 string of length 0, 2 string
of length 1, . . . , 2n−c string of length n− c. The total
number of strings up to length n− c is
2n+1−c − 1<2n/2c−1. So the number of possible
descriptions y of length ≤ n− c is no more than
2n/2c−1. This implies that the number of length n
strings whose description length is c shorter than their
own length is at most 2n/2c−1. ♣
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Kolmogorov Complexity Uncomputable

The function K(·) is total (defined for every string x)
and unbounded. But is it computable?

Theorem: The function K(·) is not computable.
Proof: By contradiction. For every n let yn be the
lexicographically first string y satisfying K(y) > n.
Then the sequence {yn}∞n=1 is well defined.

Assume K is computable. We’ll show this implies the
existance of a constant c such that for every n,
K(yn) < log(n) + c.
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Kolmogorov Complexity Uncomputable

Consider the following TM, M : On input n (in
binary), M generates, one by one, all binary strings
x0, x1, x2, . . . in lexicographic order. For each xi it
produces, M computes K(xi).

If K(xi) > n, the TM, M , outputs y = xi and halts.
Otherwise, the TM, M , continues to examine the
lexicographically next string, xi+1.

Since the function K is unbounded, it is guaranteed
that M will eventually reach a string x satisfying
K(x) > n.
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Kolmogorov Complexity Uncomputable

Conclusion: On input (in binary) n, the TM, M ,
outputs yn (the lexicographically first string whose
Kolmogorov complexity exceeds n, K(x) > n).

Length of n is log2(n). So KM(yn) ≤ log2(n).

We saw that there is a constant cM such that
for every y, K(y) ≤ KM(y) + cM ,
so for every n, K(yn) ≤ log2(n) + cM .
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Kolmogorov Complexity Uncomputable

We know that there is a constant cM such that
for every y, K(y) ≤ KM(y) + cM ,
so for every n, K(yn) ≤ log2(n) + cM .

By definition, for every n, n < K(yn). Combining
the last two inequalities, we get, for every n,

n < log2(n) + cM .

But asymptotically n grows faster than log2(n) + cM .
Contradiction to K(·) computability. ♣
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Reducibilities
Notion of reducibility was important for producing a
solution to A if we got a solution to B. Inversly, if
reducibility from A to B establishes that if A has no
solution, neither does B.

Central working horse was mapping reducibility,
A ≤m B.

Is mapping reducibility general enough notion to
capture above intuition?
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Reducibilities
Is mapping reducibility general enough notion to
capture above intuition?

Not really. For example, any language L is
intuitively reducible to its complement, L.

An answer to “is x ∈ L” is obtained from an
answer to “is x ∈ L” by simply reversing the
original answer.

So, in particular, ATM should be reducible to
ATM. However certainly ATM 6≤mATM (why?).

We now seek a more general notion of
reducibilities than ≤m.
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Oracles
Definition: An oracle for a language B is a auxiliary
device with two tapes, one called the query tape, the
other called the response tape.

When a string x ∈ Σ∗ is written on the query
tape, the oracle writes a “yes/no” answer on the
response tape.

If x ∈ B the oracle writes “yes”, while if x 6∈ B
the oracle writes “no”.

Remarks

The oracle always answers correctly.

Oracles are not realistic computing devices.
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Oracle Turing Machines

Definition: An oracle Turing machine is a TM with
access to an oracle.

The TM can query the oracle, and base its future
steps upon the oracle’s responses.

We write MB to denote a TM with an access to
an oracle for the language B.

Remarks:

At any step in its computation, MB can query the
oracle on just one string.

So in a terminating computation only finitely
many queries can be made.
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Turing Reducibility

Definition: Let A and B be two languages. We say
that A is Turing reducible to B and denote A ≤T B, if
there is an oracle Turing machine MB that decides A.

Theorem: If A ≤T B and B is decidable, then A is
decidable.

Simple Observation: If A ≤m B then A ≤T B. The
opposite does not hold.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.30



Turing Reducibility

Definition: Let A and B be two languages. We say
that A is Turing reducible to B and denote A ≤T B, if
there is an oracle Turing machine MB that decides A.

Theorem: If A ≤T B and B is decidable, then A is
decidable.

Simple Observation: If A ≤m B then A ≤T B. The
opposite does not hold.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.30



Turing Reducibility

Definition: Let A and B be two languages. We say
that A is Turing reducible to B and denote A ≤T B, if
there is an oracle Turing machine MB that decides A.

Theorem: If A ≤T B and B is decidable, then A is
decidable.

Simple Observation: If A ≤m B then A ≤T B. The
opposite does not hold.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.30



Rice’s Theorem
Theorem: Let C be a proper non-empty subset of the
set of enumerable languages. Denote by LC the set of
all TMs encodings, 〈M〉, such that L(M) is in C.
Then LC is undecidable.

Proof by reduction from ATM.

Given M and x, we will construct M0 such that:

If M accepts x, then 〈M0〉 ∈ LC .

If M does not accept x, then 〈M0〉 6∈ LC.
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Rice’s Theorem
Without loss of generality, ∅ 6∈ C.

Otherwise, look at C, also proper and non-empty.

Since C is not empty, there exists some language
L ∈ C. Let ML be a TM accepting this language
(recall C contains only enumerable languages).

continued . . .
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Rice’s Theorem
Given 〈M,x〉, construct M0 such that:

If M accepts x, then L(M0) = L ∈ C.

If M does not accept x, then L(M0) = ∅ 6∈ C.

M0 on input y:

1. Run M on x.

2. If M accepts x, run ML on y.
a. if ML accepts, accept, and
b. if ML rejects, reject.

Claim: The transformation 〈M,x〉 → 〈M0〉 is a map-

ping reduction from ATM to LC.
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Rice’s Theorem
Proof: M0 on input y:

1. Run M on x.

2. If M accepts, run ML on y.
a. if ML accepts, accept, and
b. if ML rejects, reject.

The machine M0 is simply a concatanation of two
known TMs – the universal machine, and ML.

Therefore the transformation 〈M,x〉 → 〈M0〉 is a
computable function, defined for all strings in Σ∗.

(But what do we actually do with strings not of
the form 〈M,x〉 ?)
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the form 〈M,x〉 ?)
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Rice’s Proof (Concluded)

If 〈M,x〉 ∈ ATM then M0 gets to step 2, and
runs ML on y.

In this case, L(M0) = L, so L(M0) ∈ C.

On the other hand, if 〈M,x〉 6∈ ATM then M0

never gets to step 2.

In this case, L(M0) = ∅, so L(M0) 6∈ C.

This establishes the fact that 〈M,x〉 ∈ ATM iff
〈M0〉 ∈ LC. So we have ATM ≤m LC , thus LC is
undecidable. ♣
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Rice’s Theorem (Reflections)

Rice’s theorem can be used to show
undecidability of properties like

“does L(M) contain infinitely many primes”
“does L(M) contain an arythmetic
progression of length 15”
“is L(M) empty”

Decidability of properties related to the encoding
itself cannot be inferred from Rice. For example
“does 〈M〉 has an even number of states” is
decidable.

Properties like “does M reaches state q6 on the
empty input string” are undecidable, but this does
not follow from Rice’s theorem.
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Levitation without Meditation
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Complexity

A decidable problem is

computationally solvable in principle,

but not necessarily in practice.

Problem is resource consumption:

time

space
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Example

Consider
A = {0n1n|n ≥ 0}

Clearly this language is decidable.
Question: How much time does a single-tape TM
need to decide it?
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Example

M1: On input w where w is a string,

Scan across tape and reject if 0 is found to the
right of a 1.

Repeat the following if both 0s and 1s appear on
tape

scan across tape, crossing of single 0 and
single 1

If 0s still remain after all the 1s have been crossed
out, or vice-versa, reject. Otherwise, if the tape is
empty, accept.
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Question

So how much time does M1 need?
Number of steps may depend on several parameters.
Example: if input is a graph, could depend on number
of

nodes

edges

maximum degree

all, some, or none of the above!
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Question

Our Gordian knot solution:
Definition: Complexity is measured as function of
input string length.

worst case: longest running time on input of
given length

average case: average running time on given
length

Actually, here we consider worst case.
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Definition
Let M be a deterministic TM that halts on all inputs.
The running time of M is a function

f : N −→ N

where f(n) is the maximum running time of M on
input of length n. Terminology

M runs in time f(n)

M is an f(n)-time TM
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Running Time

The exact running time of most algorithms is quite
complex.
Better to “estimate” it.
Informally, we want to focus on “important” parts
only.
Example:

6n3 + 2n2 + 20n + 45 has four terms.

6n3 more import

n3 most important
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Asymptotic Notation

Consider functions,

f, g : N −→ R+

We say that
f(n) = O(g(n))

if there exist positive integers c and n0 such that

f(n) ≤ c · g(n)

for n ≥ n0.
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Confused?
Basic idea: ignore constant factor differences.

617n3 + 277n2 + 720n + 7n = O(n3).

2 = O(1)

sin(x) = O(1).
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Reality Check

Consider

f1(n) = 5n3 + 2n + 22n + 6

We claim that
f1(n) = O(n3)

Let c = 6 and n0 = 10. Then

5n3 + 2n + 22n + 6 ≤ 6n3

for every n ≥ 10.
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Reality Check (Part Two)

Recall:
f1(n) = 5n3 + 2n + 22n + 6

we have seen that f1(n) = O(n3).

also that f1(n) = O(n4).

but f1(n) is not O(n2), because no value for c or
n0 works!
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Logarithms

The big-O interacts with logarithms in a particular
way.
High-school identity:

logb n =
log2 n

log2 b

changing b changes only constant factor

When we say f(n) = O(log n), the base is
unimportant
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Important Notation

Sometimes we will see

f(n) = O(n2) + O(n).

Each occurrence of O symbol is distinct constant.

But O(n2) term dominates O(n) term, equivalent to

f(n) = O(n2).
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Important Notation

Exponents are even more fun.
What does this mean?

f(n) = 2O(n)

It means an upper bound of 2cn for some constant c
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Important Notion

What does this mean?

f(n) = 2O(log n)

Identities

n = 2log
2
n

nc = 2c log
2
n

it follows that 2O(log n) means an upper bound of nc for

some constant c
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Related Important Notions

A bound of nc, where c > 0, is called polynomial.

A bound of 2(nδ), where δ > 0, is called
exponential.
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