
Computational Models - Lecture 10
Fall 04/05

Undecidability of Tiling (Domino) Problems

Self Reproducibility

The Smn and Recursion Theorems.

Example and Applications: Quines and Viruses

Unrestricted Grammars and TMs

HoHo Hi Hi (?)

Sipser, Sections 5.2, 6.1 (partial cover)

Hopcroft and Ullman, Section 8.8
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Undecidability of Tiling Problems

An old times board-and-chalk presentation.
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Self-Reproducibility

Can a system reproduce itself?

A mechanism that produces some products is
usually more complex than those products.

On the other hand, some biological systems (e.g.
living cells) seem capable of self-reproduction.

What about the code of Turing machines, or
programming languages in general? Can it
reproduce itself?

Will prove there are self reproducing codes, then
give examples.
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Preliminaries
Easy to tell when a string T equals the encoding
〈M〉 of some TM.

Given i, can find the lexicographically i-th string
among all the encodings of TMs.

Will denote by fi the function computed by the
TM with the i-th encoding.
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The Sm,n Theorem

Theorem: Let s : Σ × {�} × Σ −→ Γ be a
computable function of two variables (possibly
partial). Then there is a total computable function of
one variable, ϕ(·), such that for all m and n,

s(m,n) = fϕ(m)(n) .

Recall that fϕ(m)(·) is the one variable function
computed by the TM with the ϕ(m)-th encoding.
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The Sm,n Theorem

Proof: Let S be a TM that computes s(·, ·). Consider
the following TM, A:
Given input x, A constructs a TM, Nx.
On input y, Nx shifts y to the right by |x| + 1 squares,
writes x� at the beginning of the tape, and then runs S
on x�y to obtain s(x, y).

The output of A is the index of the encoding, 〈Nx〉.
Given S, this index is a function of x alone. Denote
this index by ϕ(x). Then clearly ϕ(·) is a total,
computable function, and for all m and n,

s(m,n) = fϕ(m)(n) .
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The Recursion Theorem
Theorem: Let ϕ : N −→ N be a total recursive
function, thought of as a function from TM indices to
TM indices. There exist an index x0 such that for all y,

fx0
(y) = fϕ(x0)(y) .

Such x0 is called a fixed point of ϕ. The function ϕ
can be viewed as modifying TMs descriptions.
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The Recursion Theorem
Theorem: Let ϕ : N −→ N be a total recursive
function, thought of as a function from TM indices to
TM indices. There exist an index x0 such that for all y,

fx0
(y) = fϕ(x0)(y) .

Suppose the modification is that if i-th machine
outputs k on input y, then ϕ(i)-th machine outputs
k + 1 on input y.

Q.: How then can fx0
(y) = fϕ(x0)(y)?

A.: If fx0
(y) = ⊥ everywhere, then so does fϕ(x0)(y)!
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The Recursion Theorem: Proof
Theorem: Let ϕ : N −→ N be a total recursive function,
thought of as a function from TM indices to TM indices. There is
an index x0 such that for all y, fx0(y) = fϕ(x0)(y) .

For each integer i construct a TM, M , that on
input y computes fi(i).

Then M runs the fi(i)-th TM on y.

Let g(i) be the index of M ’s encoding.

For all i and y, fg(i)(y) = ffi(i)(y).

Notice that g : N −→ N is a total computable
function, even if fi(i) is not defined (in such case
fi(i) on y is not defined).
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The Recursion Theorem: Proof
Theorem: Let ϕ : N −→ N be a total recursive function,
thought of as a function from TM indices to TM indices. There is
an index x0 such that for all y, fx0(y) = fϕ(x0)(y) .

Let j be the index of the encoding of the TM that
computes ϕ◦g.

The index j refers to a TM that on input i,
computes g(i), then ϕ(g(i), namely fj = ϕ◦g.

Take x0 = g(j), then fx0
(y) = f g(j)(y) =

ffj(j)(y) = fϕ(g(j))(y) = fϕ(x0)(y).

So x0 is a fixed point of the mapping ϕ, namely
the TMs with indices x0 and ϕ(x0) compute the
same function. ♣.
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Self Reproducing Code
Theorem: There is an index self such that the TM whose

index equals self outputs self on all inputs (including the

empty input).

Stated in terms of our "daily programming
languages", this corresponds to a program that
generates a copy of its own source text as its complete
output, without inputting its source.

Such program is known as a quine, after the logician
Willard V. Quine (a term suggested by Douglas
Hofstadter). Devising the shortest possible quine in
some programming language is a common hackish
amusement.
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Self Reproducing Code
Theorem: There is an index self such that the TM whose index
equals self outputs self on all (including the empty) inputs.

Proof: Let ϕ be the following total computable
function from indices to indices of TMs: Given index
x, machine with index ϕ(x) ignores input, prints x".
By the recursion theorem, there is an index x0 such
that fx0

= fϕ(x0). The function fϕ(x0) is computed by a
TM, M , that ignores its input and prints x0. The
function fx0

is computed by a TM whose index is x0.
fx0

= fϕ(x0) =⇒ M (whose index is x0) prints x0 on
any input. Taking self = x0, we get a program that
prints its own index ("self reproducing code").
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Self Reference in English

Print out two copies of the following, the second one
in quotes:

“Print out two copies of the following, the
second one in quotes:”

Part B is clause Print out two copies of the
following, the second one in quotes:

Part A is same with quotes.
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Self Reference in General
Make two copies of the following, then translate the
first into the language spoken on the other side of the
English Channel.

Faîtes deux copies du suivant, and traduisez
le premier en la langue parlé sur l’autre côté
de la Manche.

Well, whatever (quoi que ce soit).
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Self Reference in Prog. Languages

Scheme:

((lambda (x) (list x (list ’quote x)))
’(lambda (x) (list x (list ’quote x))))

(try it on your copy of Dr. Scheme.)

It’s relatively easy to write quines in other languages
such as Postscript which readily handle programs as
data; much harder (and thus more challenging!) in
languages like C which do not.
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Unrestricted Grammars
S −→ ACaB

Ca −→ aaC

CB −→ DB

CB −→ E

aD −→ Da

AD −→ AC

aE −→ Ea

AE −→ ε

What language is generated by this grammar?

Let us switch to David Galles slides (USF)
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