
Lecture 13, Fall 04/05
Short review of last class

NP hardness

coNP and coNP completeness

Additional reductions and NP complete problems

Decision, search, and optimization problems

Coping with NP completeness (1):
Approximation

Sipser, chapter 7 and section 10.1
(some material not covered in book)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.1

NP-Completeness (reminder)

A language B is NP-complete if it satisfies

B ∈ NP , and

For every A in NP, A ≤P B

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.2

coNP-Completeness (analog)

A language C is coNP-complete if it satisfies

C ∈ coNP (namely its complement is in NP , and

For every D in coNP, D ≤P C

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.3

NP Hardness
A language B is NP hard if for every A in NP,
A ≤P B.

Difference from NP completeness: B ∈ NP is not
required.

In homework assignment 5, asked to show that ATM
is NP hard . Clearly ATM is not NP-complete (why?).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.4

The Language SAT (reminder)

Definition: A Boolean formula is in conjunctive
normal form (CNF) if it consists of terms, connected
with ∧s.

For example
(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6)

Definition:
SAT = {〈φ〉 | φ is a satisfiable CNF formula}

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.5

3SAT (reminder)

Definition: A Boolean formula is in 3CNF form if it
is a CNF formula, and all terms have three literals.

(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6 ∨ x4)

Define

3SAT = {〈φ〉 | φ is satisfiable 3CNF formula}

Clearly, if φ is a satisfiable 3CNF formula, then for
any satisfying assignment of φ, every clause must
contain at least one literal assigned 1.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.6

Cook-Levin Theorem (reminder)

Theorem: SAT is NP complete.

Must show that every NP problem reduces to
SAT in poly-time.

Proof Idea: Suppose L ∈ NP , and M is an
NTM that accepts L.

On input w of length n, M runs in time
t(n) = nc.

We consider the nc-by-nc tableau that describes
the computation of M on input w.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.7

The Tableau

cell[1,1]

cell[1,t(n)]

q 0 0 10 0 . . .
1 2 3 . . . t(n)

0 0
0

1

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.8

Saw a Few Reductions
SAT ≤P 3SAT (⇒ 3SAT is NP-complete)

3SAT ≤P Clique (⇒ Clique is NP-complete)

3SAT ≤P Clique (⇒ Clique is NP-complete)

Clique ≤P Vertex Cover (⇒ VC is NP-complete)

HamPath ≤P HamCircuit

HamCircuit ≤P TSP

Will now show 3SAT ≤P HamPath, thus
establishing NP-completeness of HamPath,
HamCircuit, and TSP.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.9

Hamiltonian Path
For any 3CNF formula φ,

we construct a graph G

with vertices s and t

such that φ is satisfiable iff there is a Hamiltonian
path from s to t.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.10

Hamiltonian Path
Here is a 3CNF formula φ:

(a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · (ak ∨ bk ∨ ck)∧

where

each ai, bi, ci is xi or xi

the � clauses are C1, . . . , C�,

the k variables are x1, . . . , xk.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.11

HamPath: NP Completeness Proof

Turn to a separate, postscript presentation

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.12

Integer Programming (IP)

Definition: A linear inequality has the form

a1x1 + a2x2 + . . . + anxn ≤ b

where a1, . . . , an, b are real numbers, and
x1, . . . , xn are real variables.

The Integer Programming (IP) problem:

Input: A set of m linear inequalities with integer
coefficients (ai, b) in n variables x1, x2, . . . , xn.

The language IP is the collection of all systems of
linear inequalities that have a solution where all
xi are integers.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.13

Integer Programming: Example

Consider the following system of linear inequalities

y ≤ 2x green line

−2x + 1 ≤ y red line

4x − 2 ≤ y purple line

0 ≤ x ≤ 1

0 ≤ y ≤ 2

–2

–1

0

1

2

0.2 0.4 0.6 0.8 1 1.2
x

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.14

Integer Programming: Example

–2

–1

0

1

2

0.2 0.4 0.6 0.8 1 1.2
x

This set does have a unique solution: the right hand
corner of the solid triangle, (1, 2).

But if we change the constraint on y to 0 ≤ y ≤ 1,
then we’d have no solution with integer coordinates,
even though there are many solutions with rational, or
real, coordinates.

Will now show IP is NP complete.
Membership in NP easy (why?)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.15

SAT ≤P IP

SAT = {〈φ〉 | ϕ is a satisfiable CNF formula}
For example, the following formula is in SAT:
(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6)

Let ϕ be a CNF formula with m clauses and n
variables x1, . . . , xn (either xi, x̄i, or both, can appear
in ϕ).

Will reduce ϕ to an IP instance with 2n variables
x1, y1, . . . , xn, yn and m + 2m linear inequalities, and
n linear equalities (???).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.16

SAT ≤P IP
Each xi in ϕ corresponds to the variable xi in IP.

Each x̄i in ϕ corresponds to the variable yi in IP.

For each i, we add the inequalities xi ≥ 0, yi ≥ 0,
and the equality xi + yi = 1
(what do these three express?)

For each clause k, we add the inequality∑
zj∈Clausek

zj ≥ 1

(what does this inequality express?)

For example, (x1 ∨ x2 ∨ x3 ∨ x4) is translated to
x1 + y2 + y3 + x4 ≥ 1.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.17

SAT ≤P IP: Example

ϕ = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6)
translates to

x1 + y2 + y3 + x4 ≥ 1

x3 + y5 + x6 ≥ 1

x3 + x6 ≥ 1

x1 ≥ 0, y1 ≥ 0, x1 + y1 = 1

x2 ≥ 0, y2 ≥ 0, x2 + y2 = 1

x3 ≥ 0, y3 ≥ 0, x3 + y3 = 1

x4 ≥ 0, y4 ≥ 0, x4 + y4 = 1

x5 ≥ 0, y5 ≥ 0, x5 + y5 = 1

x6 ≥ 0, y6 ≥ 0, x6 + y6 = 1
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.18

SAT ≤P IP: Validity (sketch)
Should show
(a) Reduction g is poly-time computable

(b) ϕ ∈ SAT =⇒ g(ϕ) ∈ IP

(c) g(ϕ) ∈ IP =⇒ ϕ ∈ SAT .

Poly time: easy (verify details!).

Suppose ϕ ∈ SAT. Take a satisfying assignment.
If xi = 1 assign xi = 1, yi = 0 in IP.
If xi = 0 assign xi = 0, yi = 1 in IP.

So "sanity check" constraints satisfied. "Clause
constraints" are satisfied due to at least one literal
satisfied in each clause., implying g(ϕ) ∈ IP .

g(ϕ) ∈ IP =⇒ ϕ ∈ SAT is similar. ♣
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.19

More Intractable Problems
Bounded ATM: Given encoding 〈M〉 of non-deterministic

TM, an input w, time bound 1k in unary, does M have an

accepting computation of w in k steps or less?

Bounded ATM is NP complete, via a “generic” reduction.

Bounded tiling: Given a set of colored, rectangular tiles,

initial tiling (part of first row), and a bound k in unary (i.e.

1k). Is there a legal extension that fills up the k-by-k

square?

Bounded tiling is NP complete, via a “generic” reduction

(some modifications regarding final states wrt unbounded

case).

Blackboard, chalk and dust proof for both problems.
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.20

Yet More Intractable Problems
Subgraph isomorphism is NP complete.

Graph isomorphism is in NP, seems not to be in
P, but we got many good reasons to believe it is
not NP complete.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.21

Chains of Reductions: NPC Problems

SAT

IntegerProg 3SAT

Clique

IndepSet

VertexCover

SetCover

3ExactCover

Knapsack

Scheduling

3Color HamPath

HamCircuit

TSP

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.22

On Search, Decision, and Optimization

Let R(·, ·) be a poly time computable predicate.

Decision Problem: Given input x, decide if there
is some y satisfying R(x, y)?

Using the “certificate” characterization of
languages in NP, the decision problem is the same
as deciding membership x ∈ L for L ∈ NP .

Search Problem: Given input x, find some y
satisfying R(x, y), or declare that none exist.

The search problem seems harder to solve than
the decision problem.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.23

On Search, Decision, and Optimization

Search Problem: Given input x, find some y
satisfying R(x, y), or declare that none exist.

The search problem seems harder to solve than
the decision problem.

Turns out that for NP complete languages, search
and decision have the same difficulty.

Specifically, given access to an oracle for L (the
decision problem), we can solve the search
problem in poly time.

Examples: SAT and Clique (on board).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.24

Coping with NP-Completeness

Approximation algorithms for hard
optimization problems.

Randomized (coin flipping) algorithms.

Fixed parameter algorithms.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.25

Approximation Algorithms

In this course, we deal with three kinds of problems

Decision problems: is there a solution (yes/no
answer)?

Search problems: if there is a solution, find one.

Optimization problems: find a solution that
optimizes some objective function.

Optimization comes in two flavours
maximization
minimization

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.26

Approximation Problems

A maximization (minimization) problem consists of

Set of feasible solutions

Each feasible solution A has a cost c(A)

Suppose solution with max (min) cost OPT is
optimal.

Definition: An ε-approximation algorithm A is one
that satisfies

c(A)/OPT ≥ 1 − ε (maximization)

c(A)/OPT ≤ 1 + ε (minimization)

Note that 0 ≤ ε, and for maximization problems ε ≤ 1.
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.27

Approximation

Question: What is the smallest ε for which a given
NP-complete problem has a polynomial-time
ε-approximation?

Not all NP-complete problems are created equal.

NP-complete problems may have

no ε-approximation, for any ε.

an ε-approximation, for some ε.

an ε-approximation, for every ε.

Remark: Polynomial reductions do not necessarily
preserve approximations.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.28

Example: Vertex Cover

Given a graph (V,E)

find the smallest set of vertices C

such that for each edge in the graph,

C contains at least one endpoint.

(figure from www.cc.ioc.ee/jus/gtglossary/assets/vertex_cover.gif)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.29

Vertex Cover
The decision version of this problem is NP-complete
by a reduction from IS (a fact you should be able to
prove easily).

(figure from http://wwwbrauer.in.tum.de/gruppen/theorie/hard/vc1.png)
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.30

A Greedy Heuristic

Remark: A node with high degree looks promising
for inclusion in cover. This intuition leads to
following greedy algorithm:

C := ∅
while there are edges in G

choose node v ∈ G with highest degree
add it to C
remove it and all edges incident to it from G

Question: How are we doing?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.31

The Greedy Heuristic

Question: How are we doing?

Answer: Poorly!

This greedy algorithm is not an 1 + ε-approximation
algorithm for any constant ε. There are instances
where
c(A)/OPT ≥ Ω(log |V |), implying
OPT/c(A) �≥ 1 + ε for any constant ε.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.32

Another Greedy Algorithm (Gavril ’74)

C := ∅
while there are edges in G

choose any edge (u, v) in G

add u and v to C
remove them from G

Claim: This algorithm is a 1-approximation
algorithm for vertex cover.

Meaning C is at most twice as large as a
minimum vertex cover.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.33

Gavril’s Approximation Algorithm

Claim: This is a 1-approximation algorithm.

Cover C constructed from |C|/2 edges of G

no two edges of these share a vertex

any vertex cover, including the optimum,

contains at least one node from each of these
edges (otherwise an edge would not be covered).

It follows that OPT (G) ≥ |C|/2
(so c(A)/OPT/ ≥ 1 + 1)

Remark: Despite simplicity and time, this is the
best approximation ratio for
vertex cover known todate.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.34

Cuts in Graphs

Definition Let G = (V,E) be an undirected graph.
For any partition of the nodes of into two sets, S and
V − S, the set of edges between S and V − S is
called a cut .

(pictures from http://www.cs.sunysb.edu/∼algorith/files/edge-vertex-connectivity.shtml)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.35

Cuts in Graphs

For cuts, both optimization problems make sense (in
different contexts):

1. Min Cut: Find a partition that minimizes the
number of edges between S and V − S.

2. Max Cut: Find a partition that maximizes the
number of edges between S and V − S.

The two optimization problems have very different
complexities:

1. Min Cut is tightly related to network flow, and
has polynomial time algorithms.

2. Max Cut is NP-complete.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.36

Max Cut Algorithm

Consider the following local improvement strategy

Pick any partition S and V − S

If the cut can be improved by moving any vertex
from V − S to S, or vice-versa, do so.

Quit when no improvement is possible (local
maximum reached).

Running time

Any cut has at most |E| edges,

thus at most |E| improvements possible,

=⇒ algorithm is polynomial time.

Claim: This is a 1
2-approximation algorithm.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.37

Max Cut Algorithm

heuristic cut

optimal cut

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.38

Max Cut Algorithm

heuristic cut

optimal cut

V V

VV

1 2

43

Heuristic yields V1 ∪ V2, V3 ∪ V4

Optimal yields V1 ∪ V3, V2 ∪ V4

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.39

Max Cut Algorithm

heuristic cut

optimal cut

V 1 V 2

V 4V 3

e12

e24

e34

e13

Every cut partitions the edges into cut edges, EC ,
and non-cut edges, EN .
Let cv be the number of cut edges from node v.
Let nv be the number of non-cut edges from v.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.40

Max Cut Algorithm

When algorithm termnates, for every node v, the
number of cut edges is greater or equal than the
number of non-cut edges, cv ≥ nv.
Otherwise, switching the node v would increase
the size of the cut produced by the algorithm.
Summing over all nodes in V :

∑
v cv ≥

∑
v nv

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.41

Max Cut Algorithm

Summing over all nodes in V :
∑

v cv ≥
∑

v nv.

But
∑

v cv = 2|EC |,
∑

v nv = 2|EN |
(each edge is counted twice).

Thus |EC | ≥ |EN |.
=⇒ 2|EC | ≥ |EN | + |EC | = |E|
So |EC| ≥ |E|/2.

Clearly |E| ≥ OPT (any cut is set of edges).

Thus c(A) ≥ OPT/2, i.e. algorithm is 1
2-MaxCut

approximation (c(A)/OPT ≥ 1 − 1/2) . ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.42

