Lecture 13, Fall 04/05

o Short review of last class

NP hardness

coNP and coNP completeness

Additional reductions and NP complete problems
Decision, search, and optimization problems

Coping with NP completeness (1):
Approximation

© o o o o

s Sipser, chapter 7 and section 10.1
(some material not covered in book)
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NP-Compl eteness (reminder)

A language B is NP-complete If it satisfies
® Be NP, and
o Forevery AINNP A <p B
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coNP-Completeness (anal og)

A language C is coNP-complete If it satisfies
o C € coNP (namédly itscomplement isin NP, and
o Forevery DincoNRP, D <pC
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NP Hardness

A language B is NP hard if for every A in NP,
A <p B.

Difference from NP completeness. 5 € N P I1snot
required.

In homework assignment 5, asked to show that A1
ISNP hard . Clearly A1\, 1s not NP-complete (why?).
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The Language SAT (reminder)

Definition: A Boolean formulaisin conjunctive
normal form (CNF) if it consists of terms, connected
with As.

For example
(x1 VT3 VI3V xy) A(x3VT5Vag) A(xsV Tg)

Definition:
SAT = {(¢) | ¢ iIsasatisfiable CNF formula}
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3SAT (reminder)

Definition: A Boolean formulaisin 3CNF formif it
ISa CNF formula, and all terms have three literals.

(x1 VT2 VT3) A (23 VTV ag) A(x3 VTV xy

Define
3SAT = {(¢) | ¢ issatisfiable 3CNF formula}

Clearly, if ¢ Isasatisfiable 3SCNF formula, then for
any satisfying assignment of ¢, every clause must
contain at least one literal assigned 1.
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Cook-Levin Theorem (reminder)
Theorem: SAT is NP complete.

o Must show that every NP problem reducesto
SAT In poly-time.

o Proof Idea: Suppose £ € NP, and M isan
NTM that accepts L.

o Oninput w of lengthn, M runsintime
t(n) = n-.

o We consider the n“-by-n° tableau that describes
the computation of A on input w.
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The Tableau

1 2 3 t(n)

~—WBololo 1[0 [ -
cell[1,1]
cel 1] 1,t(n)]
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Saw a Few Reductions

o SAT <p 3SAT (= 3SAT IsNP-complete)
3SAT <p Cligue (= Cligue is NP-complete)
3SAT <p Cligue (= Clique is NP-complete)
Clique <p Vertex Cover (= VC is NP-complete)

e o @

HamPath <, HamCircuit
HamCircuit <p TSP

°

°

s Wil now show 3SAT <, HamPath, thus
establishing NP-completeness of HamPath,
HamClircuit, and TSP
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Hamiltonian Path
For any 3CNF formula ¢,
# Wwe construct agraph ¢
o with verticess and ¢

o suchthat ¢ Issatisfiable iff thereisa Hamiltonian
path from s to <.
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Hamiltonian Path
Hereisa 3CNF formula ¢:

(CLlVblVCl)/\(CLQ\/bQ\/CQ)/\

where
9 eaChCLZ',bZ',CZ' iSl’Z' or r,
o the/clausesare ', ..., (Y,

o thek variablesarezy, ..., z;.
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HamPath: NP Compl eteness Proof

Turn to a separate, postscript presentation
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Integer Programming (I P)
o Deéfinition: A linear inequality has the form

a1xr1 + asxo + ... +a,x, <Db
wherea, ..., a,, b arerea numbers, and
x1,...,T, aerea variables.

o TheInteger Programming (IP) problem:

o |nput: A set of m linear inequalities with integer
coefficients (a;, b) Inn variables x1, zo, . . ., z,,.

o Thelanguage IPisthe collection of all systems of
linear inequalities that have a solution where dll
x; are integers.
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Integer Programming: Example

Consider the following system of linear inequalities

y < 2x greenline
—2x+1 < y red line
de —2 < y purpleline
0< =z <1
0< y <2
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Integer Programming: Example

'Zl;his set does have a unique solution: the right hand
corner of the solid triangle, (1, 2).

But If we change the constraintony to0 <y < 1,
then we'd have no solution with integer coordinates,
even though there are many solutions with rational, or
real, coordinates.

Will now show IPis NP complete.
Membership in NP easy (why?)
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SAT <pIP
SAT = {(¢) | p isasatisfiable CNF formula}

For example, the following formulaisin SAT:
(1 VT3 VI3V xy) A (x3VT5Vag) A (w3 V Tg)

Let » be a CNF formulawith m clauses and n
variables =+, .. ., x,, (either x;, z;, or both, can appear

N ).
Will reduce ¢ to an IP instance with 2n variables

1, Y1, - ... T, Yy, @A m + 2m linear inequalities, and
n linear equalities (77?).
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SAT <p IP
o Each z; In ¢ correspondsto the variable z; in IP.
o Each 7, in ¢ correspondsto the variable y; in IP.

o For each i, we add the inequalities z; > 0, y; > 0,
and theequality x; + vy, = 1
(what do these three express?)

o For each clause £, we add the ineguality

szEC'lausek <j > 1
(what does this ineguality express?)

o For example, (x1 V73 V T3 V x4) iStrandated to
r1+ Y2+ ys+ x4 = 1.
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SAT <p IP: Example

0= (x1VTaVI3V g N(x3VT5Vas) N (x3V Tg)
translates to

[V

T+ Yo + Y3+ T4

[V

T3+ Ys + Tg

[V

$3+£B6

1 >0,y >0, z1 +y1

Ty > 0, y2 > 0, 22 + Yo
333207 3/3207 :C3_|_y3

|
T e T e e T e S S o G S G St

3342073/4207374‘|‘y4 —
x5 >0, ys 20, v5 +ys =
x6207y6207x6+y6 —
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SAT <p IP: Validity (sketch)
Should show
(&) Reduction ¢ Is poly-time computable
(b) p € SAT = ¢g(p) € IP

(© g(p) e IP = ¢ e SAT.

o Poly time: easy (verify details!).

® Suppose p € SAT. Take a satisfying assignment.

» S0 "sanity check" constraints satisfied. "Clause
constraints' are satisfied dueto at least one literal
satisfied in each clause., implying g(p) € IP.

® gp)clP — pc SAT issmilar. &
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More I ntractable Problems

® Bounded A1),: Given encoding (/) of non-deterministic
TM, an input w, time bound 1* in unary, does A/ have an
accepting computation of w in k& steps or less?

® Bounded A1) Is NP complete, viaa“generic” reduction.

#® Bounded tiling: Given a set of colored, rectangular tiles,
initial tiling (part of first row), and abound /& In unary (1.e.
1%). Isthere alega extension that fills up the k-by-k
square?

#® Bounded tiling iIsNP complete, viaa“generic’ reduction
(some modifications regarding final states wrt unbounded
case).

® Blackboard, chalk and dust proof for both problems.

Slides modified by Benny Chor, based on original dides by Maurice Herlihy, Brown University. —p.20




Yet More Intractable Problems
o Subgraph isomorphism is NP compl ete.

o Graphisomorphismisin NP, seemsnot to bein
P, but we got many good reasonsto believeit is
not NP compl ete.
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Chains of Reductions: NPC Problems

SAT
N
IntegerProg 3SAT
Clique 3Color HamPath
e N

INdepSet Scheduling HamCircuit
VertexCover TSP

SetCover
SExactCover

Knapsack
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On Search, Decision, and Optimization

Let R(-,-) beapoly time computable predicate.
o Decision Problem: Given input -, decide if there
issome y satisfying R(z,y)?

o Using the “certificate” characterization of
languages in NP, the decision problem is the same
as deciding membershipx € L for L € NP.

» Search Problem: Given input z, find some y
satisfying R(x,y), or declare that none exist.

» The search problem seems harder to solve than
the decision problem.
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On Search, Decision, and Optimization

o

Search Problem: Given input x, find some y
satisfying R(x,y), or declare that none exist.

The search problem seems harder to solve than
the decision problem.

Turns out that for NP compl ete languages, search
and decision have the same difficulty.

Specifically, given access to an oracle for L (the
decision problem), we can solve the search
problem in poly time.

Examples. SAT and Clique (on board).
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Coping with NP-Compl eteness

o Approximation algorithms for hard
optimization problems.

» Randomized (coin flipping) algorithms.
o Fixed parameter algorithms.
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Approximation Algorithms

In this course, we deal with three kinds of problems

o Decision problems: isthere a solution (yes/no
answer)?

o Search problems: if thereisasolution, find one.

o Optimization problems: find a solution that
optimizes some objective function.

o Optimization comes in two flavours
s Maximization
s Minimization

Slides modified by Benny Chor, based on original dides by Maurice Herlihy, Brown University. —p.26



Approximation Problems

A maximization (minimization) problem consists of
» Set of feasible solutions
» Each feasible solution A hasacost ¢(A)

» Suppose solution with max (min) cost OPT is
optimal.

Definition: An s-approximation algorithm A isone
that satisfies

c(A)/JOPT >1—¢ (maximization)

c(A)/JOPT <1+¢ (minimization)

Notethat 0 < ¢, and for maximization problemse < 1.
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Approximation

Question: What i1sthe smallest € for which agiven
NP-complete problem has a polynomial-time
e-approximation?

Not all NP-complete problems are created egual.

NP-complete problems may have
® NO e-approximation, for any «.
® an s-approximation, for somee.
® an c-approximation, for every «.

Remark: Polynomial reductions do not necessarily
preserve approximations.
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Example: Vertex Cover

Given agraph (V. F)
» find the smallest set of vertices C
» such that for each edge in the graph,
o (' contains at least one endpoint.

Kk B

(figure from www.cc.ioc.ee/jus/gtglossary/assets/vertex_cover.gif)
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A Greedy Heuristic

Remark: A node with high degree looks promising
for inclusion in cover. Thisintuition leads to
following greedy algorithm:

s C:=1{
o Wwhilethereareedgesin

s choose nodev € G with highest degree
¢ additto

¢ removeit and all edgesincident to it from &

o Question: How are we doing?

Slides modified by Benny Chor, based on original dides by Maurice Herlihy, Brown University. -p.31



The Greedy Heuristic

Question: How are we doing?

Answer: Poorly!

This greedy algorithm isnot an 1 + s-approximation
algorithm for any constant <. There are instances
where

c(A)/OPT > Qlog|V]), implying

OPT/c(A) 2 1+¢ forany constant e.
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Another Greedy Algorithm (Gavril ' 74)

s C:=10

o Wwhilethereareedgesin
s chooseany edge (u,v) inG
s add v andvto
s removethem from ¢

o Claim: Thisalgorithmisa 1-approximation
algorithm for vertex cover.

o Meaning C' Isat most twiceaslargeasa
minimum vertex cover.

Slides modified by Benny Chor, based on original dides by Maurice Herlihy, Brown University. -p.33



Gavril’s Approximation Algorithm

Claim: Thisisa1-approximation algorithm.

o Cover (' constructed from |C'|/2 edges of &
no two edges of these share a vertex

any vertex cover, including the optimum,
contains at least one node from each of these

K

o

K

edges (otherwise an edge wou

It followsthat OPT'(G) > |C
(soc(A)/OPT/ > 1+ 1)

d not be covered).

/2

o Remark: Despite smplicity and time, thisisthe

best approximation ratio for
vertex cover known todate.
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Cutsin Graphs

Definition Let G = (V, F/) be an undirected graph.
For any partition of the nodes of into two sets, S and
V — S, the set of edgesbetween Sand V' — S Is

caled acut .

(pictures from http://www.cs.sunysb.edu/~al gorith/files/edge-vertex-connectivity.shtml)
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Cutsin Graphs

For cuts, both optimization problems make sense (in
different contexts):

1. Min Cut: Find a partition that minimizes the
number of edges between S and V' — S.

2. Max Cut: Find a partition that maximizes the
number of edges between S and V' — S.

The two optimization problems have very different
complexities:

1. Min Cut istightly related to network flow, and
has polynomial time algorithms.

2. Max Cut is NP-complete.
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Max Cut Algorithm

Consider the following local improvement strategy
o Pick any partitton SandV — S

o |f the cut can be improved by moving any vertex
fromV — Sto .S, or vice-versa, do so.

o Quit when no improvement is possible (local
maximum reached).

Running time

» Any cut hasat most || edges,

» thusat most | ~/| improvements possible,
— algorithm is polynomial time.
Claim: Thisisa %-approxi mation algorithm.
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Max Cut Algorithm

y

heuristic cut

optimal cut

y
<
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Max Cut Algorithm

/ heuristic cut

optimal cut

o HeuristicyieldsV; U V5, V3 U V)
o Optimal yields 1V, U V35, Vo UV
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Max Cut Algorithm

%1 | Vo

- - — -

: y heuristic cut
K/%

optimal cut

o Every cut partitions the edges into cut edges, E,
and non-cut edges, Fy.

o Let ¢, bethe number of cut edges from node v.
o Letn, bethe number of non-cut edges from v.
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Max Cut Algorithm

*
‘A
>F
o When agorithm termnates, for every node v, the

number of cut edgesis greater or equal than the
number of non-cut edges, ¢, > n,.

o Otherwise, switching the node v would increase
the size of the cut produced by the algorithm.
» Summing over all nodesinV: > ¢, > > n,
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Max Cut Algorithm

Summing over all nodesin V: >~ ¢, > > n,.

o

°

© o o o o

But qu Cy = 2’Eg

’qunv — QIEN‘

(each edge is counted twice).
Thus |Ec| > |En]|.

SO | He| > |E
Clearly |E| >

En|+|Ec| = |E

/2.
OPT (any cut Is set of edges).

Thusc(A) > OPT/2,i.e. dgorithmis 5-MaxCut
approximation (c(A)/OPT >1—-1/2). &
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