
Computational Models - Lecture 4

Context Free Grammars
(including the special case of linear grammars)

Pumping Lemma for context free languages

Non context free languages: Examples

Push Down Automata (PDA)

Chomsky Normal Form

Sipser’s book, 2.1, 2.2 & 2.3
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Short Overview of the Course (so far)

So far we saw
finite automata,
regular languages,
regular expressions,
Myhill-Nerode theorem
pumping lemma for regular languages.

We now introduce stronger machines and
languages with more expressive power:

pushdown automata,
context-free languages,
context-free grammars,
pumping lemma for context-free languages.
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Formal Definitions

A context-free grammar is a 4-tuple (V,Σ, R, S) where

V is a finite set of variables,

Σ is a finite set of terminals,

R is a finite set of rules: each rule has a variable on the
left hand side, and a finite string of variables and
terminals on the right hand side.

S is the start symbol.
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Formal Definitions

If u and v are strings of variables and terminals,

and A→ w is a rule of the grammar, then

we say uAv yields uwv, written uAv ⇒ uwv.

We write u
∗⇒ v if u = v or

u⇒ u1 ⇒ . . . ⇒ uk ⇒ v.

for some sequence u1, u2, . . . , uk.

Definition: The language of the grammar is
{

w ∈ Σ∗ | S ∗⇒ w
}

.
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Example

Consider G4 = (V, {a, b} , R, S).

R (Rules): S → aSb | SS | ε .
Some words in the language: aabb, aababb.

Q.: What is this language?

Hint: Think of parentheses.
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Arithmetic Example

Consider (V,Σ, R,E) where

V = {E, T, F}
Σ = {a,+,×, (, )}

Rules:
E → E + T | T
T → T × F | F
F → (E) | a

Some strings generated by the grammar:
a+ a× a and (a+ a) × a.
What is the language of this grammar?
Hint: arithmetic expressions.
E = expression, T = term, F = factor.
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Parse Tree for a + a× a

E → E + T | T
T → T × F | F
F → (E) | a

aXa+a

FFF

T T

TE

E
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Parse Tree for (a + a) × a

E → E + T | T
T → T × F | F
F → (E) | a

( a + aX)a

F F F

T T

E

E

F

T

T

E
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Designing Context-Free Grammars

No recipe in general, but few rules-of-thumb

If CFG is the union of several CFGs, rename variables
(not terminals) so they are disjoint, and add new rule
S → S1 | S2 | . . . | Si.

For a regular language, grammar “follows” a DFA for the
language. For initial state q0, make R0 the start variable.
For state transition δ(qi, a) = qj add rule Ri → aRj to
grammar. For each final state qf , add rule Rf → ε to
grammar. This is called a linear grammar.

For languages (like {0n#1n|n ≥ 0} ), with linked
substrings, a rule of form R → uRv is helpful to force
desired relation between substrings.
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Closure Properties

Regular languages are closed under
union
concatenation
star

Context-Free Languages are closed under
union : S → S1 | S2

concatenation S → S1S2

star S → ε | SS
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More Closure Properties

Regular languages are also closed under
complement (replace accept/non-accept states of
DFA)

intersection (using L1 ∩ L2 = L1 ∪ L2, or a direct
construction using Cartesian product).

What about closure under complement and intersection
of context-free languages?

Absolutely not clear (at this point) . . .
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Ambiguity

Grammar: E → E+E | E×E | (E) | a
a+ a× a is a word in the language, with two
different derivations.

aXa+a

EEE

E

E

aXa+a

EEE

E

E
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Ambiguity

We say that a string w is derived ambiguously from
grammar G if w has two or more parse trees (derivations)
that generate it from G.

Ambiguity is usually not only a syntactic notion but also
semantic, implying multiple meanings for the same string.
Think of a+ a× a from last grammar.

It is sometime possible to eliminate ambiguity by finding a
different context free grammar generating the same
language. For the grammar above, the unambiguous
grammar from slide 6 generates a similar, “semantically
correct”, but not identical, language (e.g. the string
(a+ a) × a).

Some languages, e.g. {1i2j3k | i = j or j = k} are
inherently ambiguous.
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Non-Context-Free Languages

The pumping lemma for finite automata and
Myhill-Nerode theorem are our tools for showing that
languages are not regular.

We do not have a simple Myhill-Nerode type theorem.

However, will now show a similar pumping lemma for
context-free languages.

It is slightly more complicated . . .
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Pumping Lemma for CFL

Also known as the uvxyz Theorem.

Theorem: If A is a CFL , there is an ℓ (critical length), such
that if s ∈ A and |s| ≥ ℓ, then s = uvxyz where

for every i ≥ 0, uvixyiz ∈ A

|vy| > 0, (non-triviality)

|vxy| ≤ ℓ.
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Basic Intuition

Let A be a CFL and G its CFG.

Let s be a “very long” string in A.

Then s must have a “tall” parse tree.

And some root-to-leaf path must repeat a symbol.
ahmmm,. . . why is that so?

T

R

u v x y z

R
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Proof

let G be a CFG for CFL A.

let b be the max number of symbols in right-hand-side
of any rule.

no node in parse tree has > b children.

at depth d, can have at most bd leaves.

let |V | be the number of variables in G.

set ℓ = b|V |+2.
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Proof (2)

let s be a string where |s| ≥ ℓ

let T be parse tree for s with fewest nodes

T has height ≥ |V | + 2

some path in T has length ≥ |V | + 2

that path repeats a variable R
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Proof (3)

Split s = uvxyz

T

R

u v x y z

R

each occurrence of R produces a string

upper produces string vxy

lower produces string x
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Proof

Replacing smaller by larger yields uvixyiz, for i > 0.

T

R

u v x y z

R

R
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Proof (4)

Replacing larger by smaller yields uxz.

T

R

u

x

z
Together, they establish:

for all i ≥ 0, uvixyiz ∈ A
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Proof (5)

Next condition is:

|vy| > 0 (out of uvxyz)

If v and y are both ε, then

T

R

u

x

z

is a parse tree for s with fewer nodes than T , contradiction.
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Proof (6)

Final condition is |vxy| ≤ ℓ:
T

R

u v x y z

R |V|+2

b |V|+2

the upper occurrence of R generates vxy.

can choose symbols such that both occurrences of R lie
in bottom |V | + 1 variables on path.

subtree where R generates vxy is ≤ |V | + 2 high.

strings by subtree at most b|V |+2 = ℓ long. ♠
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Non CFL Example

Theorem: B = {anbncn} is not a CFL.
Proof: By contradiction.

Let ℓ be the critical length.

Consider s = aℓbℓcℓ.
If s = uvxyz, neither v nor y can contain

both a’s and b’s, or

both b’s and c’s,

because otherwise uv2xy2z would have out-of-order
symbols.
But if v and y contain only one letter, then uv2xy2z has an
imbalance! ♠
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Non CFL Example (2)

The language C =
{

aibjck|0 ≤ i ≤ j ≤ k
}

is not context-free.
Let ℓ be the critical length, and s = aℓbℓcℓ.

Let s = uvxyz

neither v nor y contains two distinct symbols, because
uv2xy2z would have out-of-order symbols.

vxy cannot be all b’s (why?)

|vxy| < ℓ, so either

v contains only a’s and y contains only b’s, but then
uv2xy2z has too few c’s.

v contains only b’s and y contains only c’s. but then
uv0xy0z has too many a’s (pump down). ♠
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Non CFL Example (3)

The language D =
{

ww|w ∈ {0, 1}∗
}

is not context-free.
Let s = 0ℓ1ℓ0ℓ1ℓ As before, suppose s = uvxyz .

Recall that |vxy| ≤ ℓ.

if vxy is in the first half of s, uv2xy2z moves a 1 into the
first position in second half.

if vxy is in the second half, uv2xy2z moves a 0 into the
last position in first half.

if vxy straddles the midpoint, then pumping down to uxz
yields 0ℓ1i0j1ℓ where i and j cannot both be ℓ. ♠

Interestingly, we will shortly see that D =
{

wwR|w ∈ {0, 1}∗
}

is a CFL.
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String Generators and String Acceptors

Regular expressions are string generators – they tell us
how to generate all strings in a language L

Finite Automata (DFA, NFA) are string acceptors – they
tell us if a specific string w is in L

CFGs are string generators

Are there string acceptors for Context-Free languages?

YES! Push-down automata
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A Finite Automaton
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A PushDown Automaton
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A PushDown Automaton

We add a memory device with restricted access: A stack
(last in, first out; push/pop).
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An Example

Recall that the language {0n1n | n ≥ 0} is not regular.
Consider the following PDA:

Read input symbols, one by one

For each 0, push it on the stack

As soon as a 1 is seen, pop a 0 for each 1 read

Accept if stack is empty when last symbol read

Reject if
Stack is non-empty when end of input symbol read
Stack is empty but input symbol(s) still exist,
0 is read after 1.
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PDA Configuration

A Configuration of a Push-Down Automata is a triplet

(<state>, <remaining input string>, <stack>).

A configuration is like a snapshot of PDA progress.

A PDA computation is a sequence of successive
configurations, starting from start configuration.

In the string describing the stack, we put the top of the
stack on the left (technical item).
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Comparing PDA and Finite Automata

Our PDAs have a special end of input symbol, $. This
symbol is not part of input alphabet Σ. (This technical
point differs from book. It is for convenience, and can
be handled differently too.)

PDA may be deterministic or non-deterministic.

Unlike finite automata, non-determinism adds power:
There are some languages accepted only by
non-deterministic PDAs.

Transition function δ looks different than DFA or NFA cases,
reflecting stack functionality.
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The Transition Function

Denote input alphabet by Σ and stack alphabet by Γ.

the domain of the transition function δ is
current state: Q
next input, if any: Σε,$ (=Σ ∪ {ε} ∪ {$})

stack symbol popped, if any: Γε(=Γ ∪ {ε})

and its range is
new state: Q
stack symbol pushed, if any: Γε

non-determinism: P(of two components above)

δ : Q× Σε,$ × Γε → P(Q× Γε)
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Formal Definitions

A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F ),
where

Q is a finite set called the states,

Σ is a finite set called the input alphabet,

Γ is a finite set called the stack alphabet,

δ : Q× Σε,$ × Γε → P(Q× Γε) is the transition function,

q0 ∈ Q is the start state, and

F ⊆ Q is the set of accept states.
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Conventions

It will be convenient to be able to know when the stack
is empty, but there is no built-in mechanism to do that.

Solution:
Start by pushing $ onto stack.
When you see it again, stack is empty.

Question: When is input string exhausted?
Answer: When $ is read.
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Semi Formal Definitions

A pushdown automaton (PDA) M accepts a string x if
there is a computation of M on x (a sequence of state
and stack transitions according to M ’s transition
function and corresponding to x) that leads to an
accepting state and empty stack.

The language accepted by M is the set of all strings x
accepted by M .
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Notation

Transition a, b→ c means

if read a from input
and pop b from stack
then push c onto stack

Meaning of ε transitions:

if a = ε, don’t read inputs
if b = ε, don’t pop any symbols
if c = ε, don’t push any symbols
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Example

The PDA

accepts {0n1n|n ≥ 1}.
Does it also accept the empty string?
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Another Example

A PDA that accepts
{

aibjck|i, j, k > 0 and i = j or i = k
}

Informally:

read and push a’s

either pop and match with b’s

or else ignore b’s. Pop and match with c’s

a non-deterministic choice!
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Another Example (cont.)

This PDA accepts
{

aibjck|i, j, k > 0 and i = j or i = k
}
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Another Example (cont.)

A PDA that accepts
{

aibjck|i, j, k > 0 and i = j or i = k
}

Note: non-determinism is essential here!

Unlike finite automata, non-determinism
does add power. Let us try to think how a proof that
nondeterminism is indeed essential could go,

...
and realize it does not seem trivial or immediate.

We will later give a proof that the language
L = {xnyn|n ≥ 0} ∪

{

xny2n | n ≥ 0
}

is accepted by a
non-deterministic PDA but not by a deterministic one.
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PDA Languages

The Push-Down Automata Languages, LPDA, is the set of
all languages that can be described by some PDA:

LPDA = {L : ∃ PDA M ∧ L[M ] = L}

We already know LPDA ) LDFA, since every DFA is just a
PDA that ignores the stack.

LCFG ⊆ LPDA ?

LPDA ⊆ LCFG ?
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Equivalence Theorem

Theorem: A language is context free if and only if some
pushdown automaton accepts it.

This time, both the “if” part and the “only if” part are
non-trivial.
We will present a high level view of the proof (not all details)
later.
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Chomsky Normal Form

A simplified, canonical form of context free grammars.
Elegant by itself, useful (but not crucial) in proving
equivalence theorem. Can also be used to slightly simplify
proof of pumping lemma.
Every rule has the form

A → BC

A → a

S → ε

where S is the start symbol, A, B and C are any variable,
except B and C not the start symbol, and A can be the start
symbol.
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Theorem:

Any context-free language is generated by a context-free
grammar in Chomsky normal form.
Basic idea:

Add new start symbol S0.

Eliminate all ε rules of the form A→ ε.

Eliminate all “unit” rules of the form A→ B.

At each step, “patch up” rules so that grammar
generates the same language.

Convert remaining “long rules” to proper form.
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Proof

Add new start symbol S0 and rule S0 → S.
Guarantees that new start symbol does not appear on
right-hand-side of a rule.
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Proof

Eliminating ε rules.

Repeat:

remove some A→ ε.

for each R → uAv, add rule R → uv.

and so on: for R → uAvAw add R → uvAw, R → uAvw,
and R → uvw.

for R → A add R → ε, except if R → ε has already been
removed.

until all ε-rules not involving the original start variable have
been removed.
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Proof

Eliminate unit rules.

Repeat:

remove some A→ B.

for each B → u, add rule A→ u, unless this is
previously removed unit rule. (u is a string of variables
and terminals.)

until all unit rules have been removed.
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Proof

Finally, convert long rules.
To replace each A→ u1u2 . . . uk (for k ≥ 3), introduce new
non-terminals

N1, N2, . . . , Nk−1

and rules

A → u1N1

N1 → u2N2

...
Nk−3 → uk−2Nk−2

Nk−2 → uk−1uk ♠
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Conversion Example

Initial Grammar:

S → ASA | aB
A → B | S
B → b | ε

(1) Add new start state:

S0 → S

S → ASA | aB
A → B | S
B → b | ε
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Conversion Example (2)

S0 → S

S → ASA | aB
A → B | S
B → b | ε

(2) Remove ε-rule B → ε:

S0 → S

S → ASA | aB | a
A → B | S | ε
B → b | ε
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Conversion Example (3)

S0 → S

S → ASA | aB | a
A → B | S | ε
B → b

(3) Remove ε-rule A→ ε:

S0 → S

S → ASA | aB | a | AS | SA | S
A → B | S | ε
B → b
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Conversion Example (4)

S0 → S

S → ASA | aB | a | AS | SA | S
A → B | S
B → b

(4) Remove unit rule S → S

S0 → S

S → ASA | aB | a | AS | SA | S
A → B | S
B → b
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Conversion Example (5)

S0 → S

S → ASA | aB | a | AS | SA
A → B | S
B → b

(5) Remove unit rule S0 → S:

S0 → S | ASA | aB | a | AS | SA
S → ASA | aB | a | AS | SA
A → B | S
B → b
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Conversion Example (6)

S0 → ASA | aB | a | AS | SA
S → ASA | aB | a | AS | SA
A → B | S
B → b

(6) Remove unit rule A→ B:

S0 → ASA | aB | a | AS | SA
S → ASA | aB | a | AS | SA
A → B | S | b
B → b
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Conversion Example (7)

S0 → ASA | aB | a | AS | SA
S → ASA | aB | a | AS | SA
A → S | b
B → b

Remove unit rule A→ S:

S0 → ASA | aB | a | AS | SA
S → ASA | aB | a | AS | SA
A → S | b | ASA | aB | a | AS | SA
B → b
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Conversion Example (8)

S0 → ASA | aB | a | AS | SA
S → ASA | aB | a | AS | SA
A → b | ASA | aB | a | AS | SA
B → b

(8) Final simplification – treat long rules:

S0 → AA1 | UB | a | SA | AS
S → AA1 | UB | a | SA | AS
A → b | AA1 | UB | a | SA | AS
A1 → SA

U → a

B → b
√
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Another PDA Example

A palindrome is a string w satisfying w = wR.

“Madam I’m Adam”

“Dennis and Edna sinned”

“Red rum, sir, is murder”

“Able was I ere I saw Elba”

“In girum imus nocte et consumimur igni” (Latin: "we go
into the circle by night, we are consumed by fire”.)

“νιψoν ανoµηµατα µη µoναν oψιν”

Palindromes also appear in nature. For example as
DNA restriction sites – short genomic strings over
{A,C, T,G}, being cut by (naturally occurring) restriction
enzymes.
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A PDA that Recognizes Palindromes

On input x, the PDA starts pushing x into stack.

At some point, PDA guesses that the mid point of x was
reached.

Pops and compares to input, letter by letter.

If end of input occurs together with emptying of stack,
accept.

This PDA accepts palindromes of even length over the
alphabet (all lengths is easy modification).

Again, non-determinism (at which point to make the
switch) seems necessary.
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