Leftovers from Lecture 3

Implementing GF(27k)

Multiplication: Polynomial multiplication, and then
remainder modulo the defining polynomial f(x):

> g(x) :=(x"4+x™3+x+1) * (x*3+x+1) ;
gx) =t rx+ D) (P rxt 1)
> £(x) :=x"5+x"4+x"3+x+1;
flx) = +x*+ X +x+1
> rem(g(x),£(x),x);
1+3x*+x° +2x

(1,1,0,1,1) *(0,1,0,1,1)

= (1,1,0,0,1)

> % mod 2;
L+x*+x®

For small size finite field, a lookup table is the most efficient
method for implementing multiplication.

Implementing GF(2°) in XMAPLE
Irreducible polynomial

> G32:=GF (2,5 ,x"5+x"4+x"3+x+1):
"> a := G32[ConvertIn] (x);

a=x
> b :=G32[""](a,8): # colon at end of
statement supresses printing
c := G32[ ~7](a,9):
G32[Convertout] (b); # canonical
representation, higher momonials to the left
G32[Convertout] (c);

X4t x4+l
x4+ x

More GF(25) Operations in XMAPLE

>d := G32[ + ] (b,c): Addition: b+c
G32[Convertout] (d);
T+l
> G32[isPrimitiveElement] (d); test primiﬁve element!|
true
> e:=G32[ "~ ](a,-1):
G32[Convertout] (e); .
e et l e <--inverse of a

> 632[°* ] (a,e); : Multiplication: a*e

> for i from 1 to 32 do
£:= G32[ "7 ](a,i):
print(f, G32[isPrimitiveElement] (£))

end do: Loop for
X, true . R Lo
& e finding primitive
. true elements
<* true

L4+x+2° +a% true
1+x% +x° true
x+x7 2% true

LECTURE 4

Data Integrity & Authentication

Message Authentication Codes
(MACs)

Goal

Ensure integrity of messages, even in presence of
an active adversary who sends own messages.

Alice Bob
(sender) (reciever)

A 4
Fran
(forger)

Remark: Authentication is orthogonal to secrecy, yet
systems often required to provide both.




Definitions

+ Authentication algorithm - A

+ Verification algorithm - V ("accept”/“reject")

+ Authentication key - k

* Message space (usually binary strings)

+ Every message between Alice and Bob is a pair
(m, A(m))

+ Ai(m) is called the authentication tag of m

Definition (cont.)

* Requirement - V,(m,A,(m)) = "accept”
- The authentication algorithm is called MAC
(Message Authentication Code)
- A (m) is frequently denoted MAC,(m)

- Verification is by executing authentication
on m and comparing with MAC,(m)

Properties of MAC Functions

* Security requirement - adversary can't
construct a new legal pair (m, MAC,(m))

even after seeing (m;, MAC,(m,)) (i=1.2,...n)
* Output should be as short as possible
+ The MAC function is not 1-to-1

Adversarial Model

+ Available Data:
- The MAC algorithm
- Known plaintext
- Chosen plaintext
+ Note: chosen MAC is unrealistic
+ Goal: Given n legal pairs
(my, MAC,(my)), ..., (m,,, MAC,(m,))
find a new legal pair (m, MAC,(m))

Adversarial Model

We will say that the adversary succeeded
even if the message Fran forged is
“meaningless”. The reason is that it is hard o
predict what has and what does not have a
meaning in an unknown context, and how will
Bob, the reciever, react to such successful
forgery.

Efficiency

+ Adversary goal: given n legal pairs

(my, MAC (my)), ..., (m,, MAC,(m,)) find a new legal
pair (m, MAC,(m)) efficiently and with non
negligible probability.

+ If nis large enough then n pairs (m;, MAC,(m)))

determine the key k uniquely (with high prob.).
Thus a non-deterministic machine can guess k and
verify it. But doing this deterministically should
be computationally hard.




MACSs Used in Practice

We describe a MAC based on CBC Mode
Encryption, and a MAC based on cryptographic
hash functions.

Reminder: CBC Mode Encryption
(Cipher Block Chaining)

Previous ciphertext is XORed with current plaintext before
encrypting current block.
An initialization vector S is used as a “seed” for the process.
Seed can be “openly” transmitted.

CBC Mode MACs

-+ Start with the all zero seed.

- Given a message consisting of n blocks M;,M,,... M,
apply CBC (using the secret key k).

-Produce n “cipertext” blocks €;,C5,...,C,, discard first n-1.
+Send M M,,...M, & the authentication tag MAC,(M)=C,,.

Security of CBC MAC [BKR]

e Claim: If E, is a pseudo random function,
then CBC MAC:is resilient to forgery.

 Proof outline: Assume CBC MAC can be
forged efficiently. Transform the forging
algorithm into an algorithm distinguishing
E, from random function efficiently.

Combined Secrecy & MAC

- Given a message consisting of n blocks
M M;....M,, apply CBC (using the secret key ki)
to produce MAC,(M).

*Produce n cipertext blocks C,,C,,...C,
under a different key, k2.

Send C,.C,,..C, & the authentication tag MAC,,(M).

Hash Functions

e Map large domains to smaller ranges

e Example A: {0,1,....p?} = {0,1,...p-1}
defined by h(x) = ax+b mod p

* Used extensively for searching (hash tables)

* Collisions are resolved by several possible
means — chaining, double hashing, etc.




Collision Resistance

¢ A hash function h: D — R is called weakly
collision resistant for xED if it is hard to
find x’=x such that h(x”)=h(x)

¢ A function h: D—R is called strongly
collision resistant if it is hard to find x, X’
such that x’=x but h(x)=h(x")

The Birthday Paradox

e If 23 people are chosen at random the
probability that two of them have the same
birth-day is greater than 0.5

* More generally, let h:D—R be any mapping.
If we chose 1.17IRIV2 elements of D at
random, the probability that two of them are
mapped to the same image is greater than
0.5.

Cryptographic Hash Functions

Cryptographic hash functions are hash

functions that are strongly collision resistant.

* Notice: No secret key.

» Should be very fast to compute, yet hard to
find coliding pairs (impossible if P=NP).

e Usually defined by:

— Compression function mapping n bits (e.g. 512)
to m bits (e.g 160), m <n.

Extending to Longer Strings

—
SR

"= =

H:D -->R (fixed sets, typically {0,1}" and {0,1}™)

Extending the Domain (cont.)

e The seed is usually constant

Typically, padding (including text length of
original message) is used to ensure a
multiple of n.

Claim: if the basic function H is collision
resistant, then so is its extension.

Lengths

* Input message length should be arbitrary. In
practice it is usually up to 2%, which is good
enough for all practical purposes.

* Block length is usually 512 bits.
* Output length should be at least 160 bits
to prevent birthday attacks.




Real-World Hash Functions

MD family (“message digest”)

— MD-2

— MD-4 (full description in Stinson’s book)

— MD-5

SHA and SHA-1 (secure hash standard, 160 bits)
(www.itl.nist.gov/fipspubs/fip180-1.htm)

Basing MACs on Hash Functions

e First goal: combine message and secret key,

hash and produce MAC

* Second goal: work with any cryptographic

hash function

e First attempt: MAC,(m)=h(k,m)
* Second attempt: MAC, (m)=h(m k)

 RIPE-MD
e SHA-256, 384 and 512 (proposed standards,
longer digests)
HMAC

Proposed in 1996 by [BCK]

Receives as input a message m, a key k and
a hash function h

Outputs a MAC by:

— HMAC,(m h)= h(k®opad, h(k®ipad m))
Theorem [BCK]: HMAC can be forged if
and only if the underlying hash function is
broken (collisions found).

HMAC in Practice

e SSL/TLS
e WTLS

e [PSec:
- AH
— ESP

Back to Number Theory

Quadratic Residues

e An element x is a quadratic residue modulo n if
there exists y such that y>=x mod n

* If x is a quadratic residue then so is —x mod n

e If p is prime there are exactly (p-1)/2 quadratic
residues

e If pis prime, and g is a generator of the
multiplicative group, the quadratic residues are
even powers of g.




One-Way Functions

* A function f: D—R is called one-way if:
— Computing f(x) is “easy”
— Computing f!(y) for almost all the images is “hard”

* Given the “real-world” definition of “hard” a one-
way function may be a single function (e.g. SHA-
1))

¢ Given the theoretical definition, we refer to a
family of one-way functions

Example

The Domain is all the pairs of prime numbers.
The function is f(p,q) = pq

Multiplication is easy — naive algorithm is O(n?)
Factoring is difficult — simple algorithm is O(2"?).
NFS and ECM are better but not polynomial.

The function f(p,q) = pq maintains length




