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Leftovers from Lecture 3

Multiplication: Polynomial multiplication, and then 
remainder modulo the defining polynomial f(x):

Implementing  GF(2^k)

For small size finite field, a lookup table is the most efficient
method for implementing multiplication.

    (1,1,0,1,1) *(0,1,0,1,1)

   =   (1,1,0,0,1)

Implementing  GF(25) in XMAPLE

Irreducible polynomial

More GF(25) Operations in XMAPLE
Addition: b+c

test primitive element

e <--inverse of a 
Multiplication:  a*e

Loop for
finding primitive
elements

LECTURE 4

Data Integrity & Authentication

Message Authentication Codes
 (MACs)

Goal

Alice
(sender)

Fran
(forger)

Bob
(reciever)

Ensure integrity of messages, even in presence of
an active adversary who sends own messages.

Remark: Authentication is orthogonal to secrecy, yet
systems often required to provide both.
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Definitions

• Authentication algorithm - A
• Verification algorithm - V (“accept”/”reject”)
• Authentication key – k
• Message space (usually binary strings)
• Every message between Alice and Bob is a pair

(m, Ak(m))
• Ak(m)  is called the authentication tag of m

Definition (cont.)

• Requirement – Vk(m,Ak(m)) = “accept”
– The authentication algorithm is called MAC

(Message Authentication Code)
– Ak(m) is frequently denoted MACk(m)
– Verification is by executing authentication

on m and comparing with MACk(m)

Properties of MAC Functions

• Security requirement – adversary can’t
construct a new legal pair (m, MACk(m))

   even after seeing (mi, MACk(mi)) (i=1,2,…,n)

• Output should be as short as possible
• The MAC function is not 1-to-1

Adversarial Model

• Available Data:
– The MAC algorithm
– Known plaintext
– Chosen plaintext

• Note: chosen MAC is unrealistic
• Goal: Given n legal pairs
   (m1, MACk(m1)), …, (mn, MACk(mn))
   find a new legal pair (m, MACk(m))

We will say that the adversary succeeded
even if the message Fran forged is
“meaningless”. The reason is that it is hard to
predict what has and what does not have a
meaning in an unknown context, and how will
Bob, the reciever, react to such successful
forgery.

Adversarial Model Efficiency

• Adversary goal: given n legal pairs
   (m1, MACk(m1)), …, (mn, MACk(mn)) find a new legal

pair (m, MACk(m)) efficiently and with non
negligible probability.

• If n is large enough then n pairs (mi, MACk(mi))
   determine the key k uniquely (with high prob.).
   Thus a non-deterministic machine can guess k and
   verify it.  But doing this deterministically should
   be computationally hard.
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MACs Used in Practice

We describe a MAC based on CBC Mode
Encryption, and a MAC based on cryptographic
hash functions.

Reminder: CBC Mode Encryption
(Cipher Block Chaining)

P1

Ek

C1

P2

Ek

C2

P3

Ek

C3

S0

Previous ciphertext is XORed with current plaintext before
encrypting current block.

An initialization vector S0  is used as a “seed” for the process.
Seed can be “openly” transmitted.

• Start with the all zero seed.
• Given a message consisting of n blocks M1,M2,…,Mn,

apply CBC (using the secret key k).

CBC Mode MACs

M1

Ek

C1

M2

Ek

C2

Mn

Ek

Cn

0000000

•Produce n “cipertext” blocks C1,C2,…,Cn , discard first n-1.
•Send M1,M2,…,Mn  &  the authentication tag   MACk(M)=Cn .

   ...
   .
   .
   .
   .
....

Security of CBC MAC [BKR]

• Claim: If  Ek is a pseudo random function,
then CBC MACis resilient to forgery.

• Proof outline:  Assume CBC MAC can be

   forged efficiently. Transform the forging

   algorithm into an algorithm distinguishing

   Ek from random function efficiently.

• Given a message consisting of n blocks
M1,M2,…,Mn, apply CBC (using the secret key k1)
to produce  MACk1(M).

Combined Secrecy & MAC

•Produce n cipertext blocks C1,C2,…,Cn

    under a different  key, k2.
•Send C1,C2,…,Cn  &  the authentication tag MACk1(M).

Hash Functions

• Map large domains to smaller ranges

• Example h: {0,1,…,p2} → {0,1,…,p-1}
defined by h(x) = ax+b mod p

• Used extensively for searching (hash tables)

• Collisions are resolved by several possible
means – chaining, double hashing, etc.
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Collision Resistance

• A hash function h: D →  R is called weakly
collision resistant for x∈D if it is hard to
find x’≠x such that h(x’)=h(x)

• A function h: D→R is called strongly
collision resistant if it is hard to find x, x’
such that x’≠x but h(x)=h(x’)

The Birthday Paradox

• If 23 people are chosen at random the
probability that two of them have the same
birth-day is greater than 0.5

• More generally, let h:D→R be any mapping.
If we chose 1.17|R|1/2 elements of D at
random, the probability that two of them are
mapped to the same image is greater than
0.5.

Cryptographic Hash Functions

Cryptographic hash functions are hash
functions that are strongly collision resistant.

• Notice: No secret key.
• Should be very fast to compute, yet hard to
   find coliding pairs (impossible if P=NP).
• Usually defined by:

– Compression function mapping n bits (e.g. 512)
to m bits (e.g 160), m < n.

Extending to Longer Strings

H H H

M1 M2 Mk

…
Seed

h(M)

Η : D --> R   (fixed sets, typically {0,1}n and {0,1}m )

Extending the Domain (cont.)

• The  seed is usually constant

• Typically, padding (including text length of
original message) is used to ensure a
multiple of n.

• Claim: if the basic function H is collision
resistant, then so is its extension.

 Lengths

• Input message length should be arbitrary. In
practice it is usually up to 264, which is good
enough for all practical purposes.

• Block length is usually 512 bits.

• Output length should be at least 160 bits

    to prevent birthday attacks.
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Real-World Hash Functions

• MD family  (“message digest”)
– MD-2
– MD-4  (full description in Stinson’s book)
– MD-5

• SHA and SHA-1 (secure hash standard, 160 bits)
                                                  (www.itl.nist.gov/fipspubs/fip180-1.htm)

• RIPE-MD
• SHA-256, 384 and 512 (proposed standards,
                                                   longer digests)

Basing MACs on Hash Functions

• First goal: combine message and secret key,
hash and produce MAC

• Second goal: work with any cryptographic
hash function

• First attempt: MACk(m)=h(k,m)
• Second attempt: MACk(m)=h(m,k)

HMAC

• Proposed in 1996 by [BCK]
• Receives as input a message m, a key k and

a hash function h
• Outputs a MAC by:

– HMACk(m,h)= h(k⊕opad, h(k⊕ipad,m))

• Theorem [BCK]: HMAC can be forged if
and only if the underlying hash function is
broken (collisions found).

HMAC in Practice

• SSL / TLS

• WTLS

• IPSec:
– AH

– ESP

Back to Number Theory

Quadratic Residues

• An element x is a quadratic residue modulo n if
there exists y such that y2≡x mod n

• If x is a quadratic residue then so is –x mod n

• If p is prime there are exactly (p-1)/2 quadratic
residues

• If p is prime, and g is a generator of the
multiplicative group, the quadratic residues are
even powers of g.
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One-Way Functions

• A function f: D→R is called one-way if:
– Computing f(x) is “easy”

– Computing f-1(y) for almost all the images is “hard”

• Given the “real-world” definition of “hard” a one-
way function may be a single function (e.g. SHA-
1)

• Given the theoretical definition, we refer to a
family of one-way functions

Example

• The Domain is all the pairs of prime numbers.

• The function is f(p,q) = pq

• Multiplication is easy – naïve algorithm is O(n2)

• Factoring is difficult – simple algorithm is O(2n/2).
NFS and ECM are better but not polynomial.

• The function f(p,q) = pq maintains length


