
167

ON AUTOMATING STRUCTURED PROGRAMMING

Nachum DE RSHOWITZ, Zohar MANNA
Department of Applied Mathematics

The Weizmann Institute of Science, Rehovat (Israel)

ABSTRACT

Structured programming has been advocated in an attempt to im

pose organization and discipline in the design and development of

computer programs. Automating the synthesis of structured programs

requires the formalization of the programming techniques involved

in order to make them amenable to symbolic manipulation.

We present a number of such techniques and illustrate their ap

plicability in the hand-synthesis of several programs. The programs

are developed "top-down" along with their inductive assertions,

thereby guaranteeing the correctness of the results. Optimization

is touched upon.

Also illustrated is the abstraction of synthesized programs to

allow the application of extracted programming techniques in future

syntheses.

168

I. INTRODUCTION

In the last several years, researchers have tried to gain in

sight into the haphazard art of programming. This has led to the

development of "structured programming" which has been defined by

Hoare as "the task of organizing one's thought in a way that leads,

in a reasonable time, to an understandable expression of a comput

ing task. 11 One of the guidelines of structured programming is that

"one should try to develop a program and its proof of correctness

hand-in-hand" (Gries [1974]). Much has been written on the subject,

including the works of Dijkstra [1968, 1971], Dahl, et al. [1972],

Wirth [1971, 1973], Conway and Gries [1973], and others.

The idea is to construct the desired program step by step, begin

ning with the given input and output specifications. In each step

the current goal is solved, transformed to another goal, or reduced

to simpler subgoals. Each stage is correct if its predecessor is,

thereby guaranteeing the correctness of the final program. Our pur

pose in this paper is to contribute towards the formalization - and

consequently the automatization - of structured programming.

This research is an outgrowth of the recent work by Manna and

Waldinger [1975]. We were influenced by Dijkstra 1 s (1973] presenta

tion of his development of the integer square-root function and by

the techniques used by Sussman [1973] in his HACKER system.

Our strategies, by themselves, are not expected to lead an auto

matic program-writing system to the desired solutions of difficult

programming problems. Rather, we envision an interactive system

(see Floyd (1971]), where the computer takes the more straightfor

ward steps on its own, while the human guides the machine in the

more creative ones. Such a system must also have sufficient arith

metic and logical reasoning ability, as that embodied in the verifi

cation systems of Deutsch [1973] o"r Waldinger and Levitt [1974].

One of the major hurdles in this task lies in the formation of

loops. Dijkstra (1975], skeptical about some of the claims and goals

of "automatic programming", has stated that "while the design of an

alternative construct now seems tobe a reasonably straightforward

activity, that of a repetitive construct requires ... 1 the invention'

of an invariant relation and a variant function." Recent synthesis

systems have variously dealt with this problem. Buchanan and Luckham

[1974] require the user to supply the skeleton of the loop, and the

system fills in the detail~. Sussman [1973] described his HACKER

which, in a limited framework, creates iterative and recursive loops

169

with no guarantee of correctness. Manna and Waldinger [1975] and

others hand-simulated a (partially implemented) synthesizer which

can introduce recursion and sometimes strengthen the original speci

fications. The system described in Green et al. [1974] assumes ex

tensive a priori programming knowledge, such as an experienced pro

grammer would have. Duran [1974] is investigating the use of loop

invariants in the synthesis of programs, along lines similar to our

loop strategy.

To avoid continually "re-inventing the wheel'' we also need

learning atility. Just as a human programmer improves with experi

ence - by assimilating various strategies and techniques - so should

a working program-writing system learn from old programs, store

their more "interesting" aspects, and then judiciously apply them

to new problems. We therefore illustrate the abstraction of program

segwents, thereby obtaining program schemas along with sufficient

conditions for their correct application. The use of such schemas,

whi~h may represent general subroutines or i~portant programming

techniques, is also dewonstrated.

Sussman [1973] recognized the importance of programming-skill

acquisi~ion. However, since his system relies on debugging rather

than formal verification, our results are different. Gerhart [1975]

suggesrs tre compilation of a handbook of schemas similar to those

we abstract. The modification of an already existing program to

solve a somewhat different problem has been found tobe a powerful

approach by Manna and Waldinger [1975].

In Section II we introduce the programming strategies, andin

the following section they are employed in the hand-syntheses of

several programs, Our first example is a straightforward synthesis

of the integer square-root function. Arrays are introduced in the

second example, which is a program to find a maximal element of an

array. We conclude with an ambitious attempt at synthesizing Hoare's

FIND [1961, 1971] algorithm. Section IV is devoted to abstraction.

II. STRATEGIES

We outline in this section a number of general programming stra

tegies, which have been found useful. Examples of their use may be

found in the next section. We do not, however, present detailed

heuristics for guiding the choice of strategy.

In the following, the p's represent arbitrary predicates, the

t's terms, the y's and z's are variables, while the x's may

be either variables or constants.

170

A goal or subgoal consists of input and output specifications in

mathematical logic. We use the general form

assert p 1 (x)

achieve p 2 (x,y)

where the predicate p
1

(x) expresses the given relationship between

the input variables, and p 2 (x,y) expresses the desired relation

ship between the input and program variables upon termination.

Our aim is to transform the unrealized achieve statement into an

annotated program segment

assert p 1 (x)

purpose p 2 (x,y)

< program segment >

assert p 2 (x,y) ~

An assert statement such as "assert p 2 (i,y)" corresponds to an in

ductive assertion (Floyd [1967] and Hoare [1969]; see also Manna

[1974]), and indicates that whenever control reaches the Statement,

for the current values of the variables x and y, the predicate

p 2 (x,y) is true. While constructing the program segment to achieve

p 2 (x,y) , the relation p 1 (x) is assumed to hold. The purpose

statement i~ a comment which precedes a program segment and indi

cates what that segment is meant to achieve. The end of its scope

is indicated by eop (end of purpose).

1. Transformations.

a. Equivalence transformations. Any expression may be replaced

by an equivalent expression. That is, a predicate p 1 (x) may be re

placed by p 2 (x) , if we know (or can prove) p1 (x) ■p 2 (x) . Similar

ly, a term t 1 (x) may be replaced by t
2

(x) , if t
1

(x)=t
2

(x)

b. Strengthening transformations. Any logical expression tobe

achieved may be replaced by a strenger expression. That is, if

p 2 (x)~p 1 (x) , then

1 achieve p 1 (x)

may be replaced by

purpose p 1 (x)

öchie•ve p 2 (x)

ass·ert p
2

(x) ~

We make particular µse of the following transformations:

(i) p(F(x,i)) becomes p(F(y,i)) A F(y,i)=f(x,i) ,

(ii) pff(x,i)) becomes p{F(y ,z)) A y=x ,
(iii) p(f(x,z)) becomes p(y) A y~F<x,z) .

171

Here, t(x,z) stands for a vector of terms (t 1 (x,z), t
2

(x,z), ... ,

tn(x,z)) and t(x,z)=t(y,z) means t
1

(x,z)=t
1

(y,z) A

t2(x,z)=t2(y,z) /\ ... /\ tnCx,z)=tn(v,z).

E.g.,(i) z=gcd(x 1 ,x 2) becomes z=gcd(y 1 ,y
2

) A gcd(y
1

,y
2

)=gcd(x
1

,x
2

) ,

(ii) (Vk)(l(k,n)(p(k)) becomes (Vk)(l,k,y)(p(k)) A y=n ,

(iii) z 1=z 2+ff(k) becomes z 1=z 2+y A y=~f(k) .

[For convenience, we separate the range part of a quantified expres

sion. (Vk)(r(k))(p(k)) is (Vk)(r(k)~p(k)) and (3k)(r(k))(p(k))

is (3k)(r(k)Ap(k)).J Notice that new program variables y are in

troduced by these transformations. Transformations (i) and (ii)

split a goal into two conjuncts, possibly for use by the loop

until-repeat strategy below. Transformation (iii) introduces pro

graro variables equal to terms appearing in the goal. This allows

the saving of previous computations during loop execution.

Specific instances of these transformations are used in the ex

amples of the next section, and are similar to the "top-down" heu

ristics found useful by Katz and Manna [1973] and Wegbreit [1974]

in their investigation of the automatic derivation of inductive as

sertions for program verification.

2. Assignments.

For the purposes of the examples presented in the next section,

the following is sufficient. Reduce the conjunctive goal

achieve p(x) , y=t(x) 1

that is, "achieve p(x) A y 1=t 1 (x) A y 2=t 2 (x) A ••• A yn=tn(x)", to

purpose p(x) 'y=t(x)

achieve p(x)

y + t(x)

assert p(x) 'y=t(x) ~

where the y variables are distinct from the x variables and each

t.(x) is co~posed only of primitive operations. The second con-
J

junct y=t(x) of the achieve gives rise to the multiple assignment

y+t(x) , (i.e., the simultaneous assi~nment of t 1 (x) to Y1 , t 2 (x)

to y 2 , etc.).

3. Protection and Splitting.

a. Protection. Given a goal of the form

assert p 1 (y)

achieve P1(y') , P2<Y',z)

172

[The y' are the new values of y. Prirned variables shall be used

whenever needed to differentiate between old and new values.] It is

reasonable to try to "protect" the relation p 1 frorn "clobbering"

by keeping y constant, that is,

assert p 1 (y)

purpose p 1 (y') , p 2 (y', z)

achieve y'=y, p 2 Cy,z)

assert p 1 (y) , p 2 Cy,z) ~

b. Splitting. Sirnilarly, given the conjunctive goal

1 achieVe p 1 (y) , p 2 (y, z)

(where y and z are distinct variables), try separating the corn

bined goal into two consecutive subgoals (cf. Sussrnan's [1973] li

near AND-technique and protection rnechanisrn):

purpose P1 (y) ' p2(y,z)

achieve P1 (y)

achieve y' =y ' p2(y,z)

assert P1 (y) '
p

2
(y ,z) eop

In other words, first achieve p 1 , and then hold the variables ap

pearing in p 1 constant - thereby preserving p 1 - while achieving

p 2 by setting the z variables.

4. The if-then-else-fi strategy.

A goal

1 achieve p 1 (y, z)

rnay be transforrned into an equivalent disjunctive goal

purpose p 1 (y ,.z)

achieve p 2 (y) , p 3 (y,z)

~ achieve. p 1 (y, z)

assert [p 2 (y)Ap 3 (y,z)] V p 1 (y,z) ~

if p 2 (y)Ap 3 (y,z) ~ p 1 (y,z) . There rnay exist cases where the first

disjunct is more directly achievable than the original goal.

If the predicate p 2 (y) is composed only of primitive operators,

then try forming the conditional statement:

173

purpose p 1 (y,z)

if p 2 (y) then assert p
2

(y)

achieve y'=y, p 3 (y,z)

else assert ~p 2 (y)

fi

achieve p
2

(y') , p
3

(y', z)

or achieve p 1 (y',z)

assert [p 2 (y)Ap 3 (y,z)] V p
1

(y,z) eop

The conditional statement contains two subgoals. In the first, p
2

has been achieved (by testing for it) and only p
3

remains; while

in the second, the knowledge that ~p 2 (y) may be used in achieving
the subgoal.

. *! S. The loop-until-repeat strategy.-

For a conjunctive goal

try (if simpler strategies fail)

purpose p 1 (x,y) , p 2 (x,y)

achieve p 1 (x,y)

loop assert p 1 (x,y)

until p 2 (x ,y)

assert p 1 (x,y) , ~p 2 (x,y)

achieve p 1 (x,y') , y'!y

repeat

assert p 1 (x,y) , p 2 (x,y) ~

This is the "top-down" strategy where a conjunctive goal

p 1 (x,y)Ap 2 (x,y) is achieved by creating a loop in which one con

junct, p 1 (x,y) , remains invariant - i.e., it is asserted true for

the initial values of y and for subsequent values of y whenever

the loop is repeated - until the second conjunct, p 2 (x,y) , is found

true. If the loop is not exited, p 2 (x,y) must be false and the in

variant is re-achieved.

The conjunct y'#y (i.e., y 1!y 1 v y 2!y 2 v ... v y~#yn) is meant

to avoid achieving p 1 Cx,y') by letting the new values y' equal

the old values y. (It is often left implicit in the following.)

Clearly y'#y is in itself insufficient for guaranteeing the

~/The loop-until-repeat statement is a single-exit loop construct,

enclosed by loop and repeat. It is exited when control first

reaches the until clause and the exit condition holds.

174

termination of the loop. What is needed is a "significant" advance

in y towards the exit condition p 2 (x,y) For this purpose, we

use the range strategy below.
There is a measure of freedom in dividing the goal into an in

variant and test. Usually, the "stronger" the invariant and "weak

er" the test, the more efficient the resulting loop. Often, a loop

may be improved by backtracking and adding to the loop invariant

conjuncts such as 9=t(x,y) for terms t(x,y) that either appear

often within the loop or are relatively difficult to compute. Al

ternatively, we might discover the need for 9 while synthesizing

the loop body.

6. The range strategy.

Given a partially synthesized loop:

purpose p 1 (x,y) , p 2 (x,y)

assert p 1 (x,y) , p 3 (x,y)

loop assert p 1 (x,y)

until p 2 (x,y)

assert p 1 (x,y) , ~p 2 (.x,y)

achieve p 1 (x,y') , y'#y

repeat

asser! p 1 (x,y) , p 2 (x,y)

with the unrealized subgoal

achieve p 1 (x,y') , y'#y

First hypothesize the direction of change for some of the integer

(or real) variables yj , and then, if possible, ascertain bounds

for those yj .

a, Direction. Let yo denote the initial values of y upon

entering the loop, and yf the final values when the loop is exit

ed, Therefore assume p 1 (x,yO) , p
3

(x,yO) , p
1

(x,yf) and p 2 (x,yf)

and attempt to prove for some program variable y. , either
c·) o f J

i y j 'Y j , or

(ii) f 0 Yj'Yj
Ignoring termination for the moment, what the range strategy sug-

gests is to assume in case (i) that y. is monotonically increas-
0 J f ing during loop execution, i.e., y.(y.,y!(y. , and therefore
]]]]

achieve p 1 Cx,y') , y 1 #y , y.(y! .
]]

On the other hand, in case (ii) we assume that y. is monotonical-
f J 0 ly decreasing during loop execution, i.e., y.,y!(y.(y. , and
]]]]

175

achieve p 1 (x,y') , y'#y, y!,y ..
J J

b. Bounds. Note that the range strategy may be applicable to more

than one variable y .. After hypothesizing direction for all those
J

variables, we try to find explicit lower bounds ij(x,y) and/or

upper bounds u.(x,y) for each y .. (Obviously i.(x,y) and
J J J

uj(x,y) should not contain yj {tself~) If successful, these re-

lations i.(x,y)(y. and/or y.,u.(x,y) may serve as useful loop
J J J J

invariants.

To summarize, for each y.
J

we may add conjuncts, thus obtaining:

assert p 1 Cx,y) , p 3 Cx,y) , L (x,yh;y. , y.,u. (x,y)
J J J J

loop assert p 1 (x,y) , ij(x,y),yj , yj,uj(x,y)

until p 2 (x,y)

assert p 1 (x,y)

achieve p 1 (x,y')

~p 2 Cx,y) L (x,y)(y. , y.,u. (x,y)
-,4- (.1-,) ,J ,J] __ , y ~y , i. x,y (y. , y.(u.(x,y') ,

{

' • (i) ·:j,yj in case

y!(y. in case (ii)
J J

J J J J

repeat

assert p 1 Cx,y) , p 2 (x,y) , L (x,y),y. , y.,u. (x,y)
J J J J

Note that this strategy only suggests adding y!,y. (or y.,y!),
J J J J

ij(x,y)(yj , and yj,uj(x,y) . Though the range strategy is often

helpful and should be tried, in some cases the assumption of mono

tonicity may not lead to a solution.

Returning to termination, consider, as an example, the case where

the strategy suggests increasing y 1 and decreasing y 2 and we

have succeeded in finding bounds u1 and t 2 . The goal, then, is

of the form

In

assert p
1

(x,y) , ~p 2 Cx,y) , y 1,u 1 Cx,y) , t 2 Cx,y)(y 2
achieve p 1 (x,y'), (yi,y:p;t(y 1 ,y 2), Y1'Yi'u 1 Cx,y'),

9.,2(x,y')'Y2'½

situations such as this, it is often valuable to strengthen

requirement y'#y by limiting it to a subset of y
'

here the

bounded variables {yl'y2} . Equivalently, we have

achieve p 1 (x,y') , y 1<yi~u 1 (x,y') , Y2=Y2

or achieve p
1

(x,y') , y~=y 1 , t 2 (x,y')(y 2<y 2
or achieve p

1
(x,y') , y 1<yi,u 1 (x,y') , i 2 (x,y')'y2<Y2

the

176

Since we have the upper bound u 1 (x,y') for the increasing y1
and lower bound t 2 (x,y') for the decreasing y2 , if both y 1 and

y
2

are integers, then termination of this loop is guaranteed. In

all the examples presented below, loop termination shall be guaran

teed by such a strict increase/decrease in at least one of the

bounded integers.

III. EXAMPLES

In this section we describe the hand-synthesis of several pro

grams, with reference to the strategies of the previous section.

Only the successful path of each synthesis is shown, though ob

viously an implemented system would take up false leads - or syn

thesize alternative programs - before backtracking and developing

the programs as presented.

It is assumed that we have all the necessary logical and arith

metic knowledge along with domain-dependent knowledge to perform

the syntheses. Suchinformationshall be introduced when needed as

fact statements. For example,

fact (u,/v) ~ (u 2,v) where u~0 A integer(u) */

Example 1

We begin with the synthesis of the integer square-root function.

Our goal is to synthesize the program:

1.1 begin constant integer x

assert x~0

variable integer z

achieve z= L lxJ

end

In other words, we must construct a program which, for all integers

x~0 , computes LlxJ (i.e., the largest integer less than or equal

to the square-root of x). Note that x is a constant whose value

may not be changed by the program, while z is a program variable

which upon termination must have the value llxJ .

The top-level goal is

achieve z=LlxJ .

This fact is true for any expressions u or v. In this and

other fa:cts, u , v ,. w , etc. are considered to be universally

quantified. "fact p 1 (u) where p
2

(u)" means "fact (VÜ)[p (u) ::i

P1 (Ü)]". 2

177

Using facts about the floor and square-root functions, it may be

transformed into the equivalent goal

purpose z= L rxJ
achieve z 2,x, x<(z+l) 2 eop

This is a conjunctive subgoal, and since we do not succeed in

directly achieving both conjuncts, we try the loop-until-repeat

strategy. The conjunct z 2,x is chosen for the loop invariant,

and x<(z+l) 2 for the exit test.

l.= begin assert x~0

achieve z 2,x

loop assert z 2,x

until x<(z+l) 2
-- 2 2
assert z (X , x~(z+l)

achieve z 12,x, z'#z

repeat

assert z= L lxJ
end

To initialize the loop invariant, we must

achieve z 2,x.

Since we have asserted that 0(x, and inequality is transitive,

i.e.,

fact U(V ~ U(W where V(W'

it suffices - by the strengthening transformation (letting

v=0 and w=x) - to

achieve z 2,o .

Our knowledge of squares allows this tobe replaced by

achieve z=0 ,

which is readily achieved by the assignment:

2 purpose z (x

z +- 0

assert z=0 eop

2 u=z

Before synthesizing the loop body, we would like to find the re

lation between z upon entrance to the loop and upon exit, and

then apply the range strategy. Assuming x~0 z 0=o upon entrance,
f2 f 2 • 0 0 f,- • and (z) (x<(z +l) upon exit, we can derive z = ~z ,vx , using

178

facts about square-roots. This is case (i) of the range strategy,

which suggests increasing z in the loop body, with a lower bound

0 and upper bound v'x for z ,

1.3 begin assert x)0

z + 0

assert z=0

end

assert z 2,x, o,z,rx

until x<(z+l) 2
-- 2 2
assert z (X ' x)(z+l) ' o,z,rx

achieve z 12 ,x, z'#z , 0(z 1 (v'x, z<z'

repeat

We now take up the loop body subgoal

assert z 2,x , x)(z+1) 2 , o,z,rx

achieve z 12 ,x , z<z'(v'x.

Termination is assured since z is an increasing integer, bounded

from above. The conjunct z',lx can be dropped since it is implied

by z 12,x. We assert (z+l) 2,x and are looking for a z' such

that z 12 ,x, so by the transitivity of inequality it is sufficient

to

achieve z 12 ,(z+l) 2
, z<z'

or (eliminating the square, since z'>z)0)

achieve z<z',z+l .

This is achieved by the assignment

Eurpose z' 2,x
'

z<z 1 (/x

z + z+l eop

The complete annotated program is

1,4 begin assert x~0

purEOSe z 2,x, x<(z+1) 2 , o,z,rx
2

EUrEOSe z ,x ' o,z,rx
z + 0

assert z=0 eo~

lOOE assert z ,x' o,z,rx

until x<(z+1) 2
-- 2
assert z ,x, o,z,rx, X)(z+1) 2

179

purpose z 12 ,x, z<z 1 (/x

z + z+l ~

repeat

assert z=LlxJ eop

end

We now wish to optimize this program. The exit test x<(z+l) 2

is relatiuely difficult to compute since it involves multiplication.

Accordingly, we wish to replace the exit test with x<y 1 and add
2 the invariant y 1=(z+l) throughout the loop. The loop initializa-

tion had the

2 purpose z ~x, O(z(/x

(the conjunct o,z,/x was added by the range strategy), and now we

wish to

achieve z 2,x , o,z,/x, y 1=(z+l) 2

The first two conjuncts were solved by setting z to O , so we

are left with

2 achieve z=O , y 1=(z+l)

Our new initialization is therefore

l (z,yl) + (0,1) 1

We now re-solve the loop-body subgoal

achieve z 12 ,x , z<z 1 (v'x, y 1=(z'+l) 2

This becomes,

achie~e z'=z+l , yi=Cz'+l)
2

or by eliminating z' from the expression for y1 and expanding

the square (in order to extract the old value of y 1)

achieve z'=z+l, y 1=z 2+4z+4

Having asserted that y 1=(z+l) 2=z 2+2z+l , we can set

1 (z,y 1) + (z+l,y 1+2z+3) 1

Similarly, if we wish to optimize the assignment

we can also keep y 2=2z+3 invariant. Then, following

cedure as above, we finally obtain the program:

Y1 + yl+2z+3 '
the same pro-

180

1.5 begin constant integer x

assert x~0

Example 2

variable integer z,y 1 ,Y2
purpose z 2,x , x<(z+l) 2 , o,z,lx, y 1=(z+l) 2 , y 2=2z+3

(z,y 1 ,y 2) + (0,1,3)

loop assert z 2,x, o,z,/x, y 1=(z+l) 2 , y 2=2z+3

until x<y 1 -- 2 2 1
purpose z' ,x, z<z',lx, yi=(z'+l) , y2=2z +3

(z,y 1 ,y 2) + (z+l,y 1+y 2 ,y 2+2) eop

repeat eop

assert z=llxJ

end

We synthesize here a search for the maximum of an array:

2.1 begin constant integer n

assert 1,n

constant real array X[l:n]

variable integer z

achieve X[z]~X[l:n] , l(z(n

end

where X[z]~X[i:j] is short for (Vk)(i,k,j)(X[z]~X[k]) . Our goal

then is to

Note that X is constant, so only the value of z may be changed.

Strengthening, by transforming the implicit range, gives

achieve X[z]~X[l:y 1J , 1,z,n , y
1

=n

which is amenable to the loop-until-repeat strategy. (We usually

prefer to transform the range part of a quantified expression. Note

that y 1~n is sufficient for X[z]~X[l:y 1J to imply X[z]~X[l:n].)

2.2 achieve X[z]~X[l:y
1

J , 1,z,n

loop assert X[z]~X[l:y
1

J , 1,z,n

until y 1=n

assert X[z]~X[l:y
1

J , 1,z,n, y
1

#n

achieve X[z']~X[l:yiJ , 1,z 1 ,n

repeat

181

Using

fact AC.1:u]=A[u]

in order to eliminate the quantifier in X[l:y
1

J and matching u

with y 1 and 1 , the initialization may be replaced by

achieve X[z]~X[l] , y
1

=1 , lczcn

The first conjunct can obviously be achieved by z=l , so we assign

1 (z,yl) + (1,1) 1

re row try the range strategy. Obviously y~=l, n=yi , and we

therefore add the invariant lcy 1cn throughout the loop, and incre

ment y 1 within the loop body.

loop asser+ X[z]~X[l:y 1] , lCz(n , 1,y 1cn

until y 1=n

assert X[z]~X[l:y 1 J , 1,z,n, y 1#n , 1,y 1,n

achieve X[z'])X[l:y 1J , l(z'(n , 1,y 1,n , y 1<yi

repeat

Since the integer y 1 is bound from above and we require y 1<yi

in the loop body, termination is guaranteed. (Note that the range
strategy could have a~so been applied to z.) We are trying to solve

assert X[z]~X[l:y 1] , lczcn, lcy 1<n

achieve X[z'])X[l:y 1J , l(z',n, y 1<y1,n,

and we use the

fact (p(A[R.:m]) A p(A[m+l:u])) = p(A[.Q.:u]) where R.-1'mCu

to split the range of the implied quantifier [l:yiJ into what has

already been achieved ([l:y 1]) and what has yet tobe achieved

([y 1+1:y 1]) . We get

achieve X[z'])X[l:y
1

J , X[z']~X[y 1+1:y 1J , l(z',n, y 1<y1cn

In order to simplify X[y 1+1:y 1] , we take y1=y1+1 and obtain the

subgoal

achieve X[z 1])X[l:y
1

J , X[z'])X[y 1+1] , 1,z',n, y 1=y1+1 ,

Y1<Y1'n

which may be reduced to

achieve X[z']~X[l:y 1 J , X[z']~X[y
1

+1] , 1,z'(n

Y1 +- yl+l

182

We have asserted X[z])X[l:y 1J and wish to achieve X[z'])X[l:y 1J ,
so we break the goal into two disjuncts, protecting the relation in

the first
assert X[z])X[l:y 1 J , 1,z,n , 1,y 1<n

achieve X[z])X[y 1+1] , 1,z,n, z'=z

~ achieve X[z'])X[l:y 1J , X[z'])X[y 1+1] , l(z',n

Using the if-then-else-fi strategy, we now construct a conditional

statement and test for X[z])X[y 1+1] .

purpose X[z 1])X[l:y 1] , X[z 1])X[y 1+1] , l(z'(n

if X[z])X[y
1

+1] then assert X[z])X[l:y 1] , 1,z,n, 1,y 1<n,

X[zhX[y 1 +l]

achieve z'=z
else assert X[z])X[l:y 1] , 1,z,n, 1,y 1<n,

X[z]<X[y 1+1]

achieve X[z'])X[l:y 1] , X[z'])X[y 1+1]

1,2 1 ,n

The first subgoal is trivially achieved by the null statement. For

the second subgoal we assume X[z]<X[y 1+1] and thereby know

X[y 1+l]>X[z])X[l:y 1J and X[y 1+l])X[y 1+1] . So the second subgoal

may be achi~ved by z'=y 1+1.

All together, we have synthesized

2.4 begin constant integer n

assert 1,n

constant real array X[l:n] ; variable integer z,y
1

purpose X[zhX[l:n] , 1,z,n , y
1

=n

(z,y 1) + 0,1)

loop assert X[z])X[l:y 1] , 1,z,n, l<y
1

,n

until y 1=n

purpose X[z'])X[l:y 1] , X[z 1])X[y
1

+1] , l(z'<n

if X[z])X[y 1+1] then null else z + y
1

+1 fi eop

purpose X[z'])X[l:y 1] , 1,z 1 ,n, y1=y
1

+1 , y
1

<y1,n

y1 + y 1+1 eop

repeat eop

assert X[z])X[l:n] , 1,z,n

end

At this point it is possible to optimize as in Example 1, e.g.,
by keeping y 2=X[z] invariant.

183

Example 3

In this last example we illustrate a "top-down" development of

the FIND algorithm (Hoare [1961, 1971], see also Dijkstra [1971]).

This being a lengthy example, we shall leave out details of the more

obvious steps.

The problem is to rearrange the array A , so that A[f] is

f-th in order of magnitude; all elements to the left of f have

lesser values, and those to the right have greater values. Thus,

we begin with

3.1 begin constant integer f,n

assert 1,f,n

variable real array A[l:n]

achieve A[l:f-l]<A[f],A[f+l:n]

end

We understand A[l:f-1],A[f],A[f+l:n] tobe equivalent to

Note that the output specification should also include the require

ment that the final value of the array A be a permutation of the

original. This shall be achieved by using the Operation

exchange(A[i],A[j]) which has the effect:

A'[i]=A[j] A A1 [j]=A[i] A (Yk)(k#iAk#j)(A'[k]=A[k])

Our goal is to

This could be developed into a (partial) sort program. However,

since we are looking for a more efficient solution, we introduce a

quantifier and obtain the equivalent goal

achieve A[l:f-1],A[f:f],A[f+l:n] .

Now we transform the inner range, keeping the left side adjacent to

the lower bound, and the right side adjacent to the upper bound. So

What we have done is to divide A into three ordered segments

A[l:i-1] , A[i:j] and A[j+l:n] and we shall try to shrink the

middle segment A[i:j] into the single element A[f]

We forma loop, with i=f=j as the exit test, and vacuously

initialized the invariant by

(i,j) +- (l,n)

184

Since 1,f,n, the range strategy suggests the invariant 1,i,f,j,n

and increasing i and/or decreasing j , ensuring termination of

the loop. (Since i,f,j , the exit test may be simplified to i=j.)

3.2 begin assert 1,f,n

(i,j) + (l,n)

loop assert A[l:i-lJ,A[i:jJ,A[j+l:n] , 1,i,f,j,n

until i=j

end

assert A[l:i-1],A[i:jJ,A[j+l:n] , 1,i,f,j,n , i#j

achieve A'[l:i'-11,P.'[i.' :~ '],f-..'[~ '+:'..::-.] , i.<::.',::',

j '=j

or achieve A'[l:i'-1],A'[i':j 1],A'[j '+l:n] , :'"<= '<~,

i'=i

repeat

In the disjunctive achieve we have omitted the possibility that

both i and j are updated. Since i<i' and j '<j and we have

already asserted the desired relation for A[l:i-1] and A[j+l:n] ,

we can separate out those parts of the achieve. Thus, after also

substituting for i' and j' , we obtain

achieve A'[l:i-1] (A'[i':j],A'[j+l:n] ,

A'[i:i'-l]ia;A'[i':j],

i<i 'a;;f ' j '=j

or achieve A1 [1:i-1J,A'[i:j 1], A'[j+l:n] ,

A 1 [i: j '] a;;A 1 [j '+1: j J

fa.j'<j 'i'=i .

We would like to apply the if-then-else-fi strategy to this dis

junctive goal, but we want to first unify the two disjuncts as much

as possible. We notice that by introducing a new variable g ,

where g=i'-i in the first disjunct and g=j' in the second, the

second lines of each disjunct are unified to A'[i:g],A'[g+l:j] .

The goal, then, is transformed into

assert A[l:i-1J,A[i:j]a;;A[j+l:n] , 1,i,fa.j,n, i#j

achieve A'[l:i-1] a;;A'[g+l:jJ,A'[j+l:n] ,

A'[i:gJ,A'[g+l:j] ,

i<g+la;;f , i'=g+l , j '=j

or achieve A'[l:i-l]a.A'[i:gJ, A'[j+l:n] ,

A'[i:gJ,A'[g+l:j] ,

f(g<j ' j '=g ' i'=i

185

We can extract from both disjuncts the identical conjunct

A'[i:g],A'[g+l:j] , and since we have asserted i,f,j and want

i,g<f in the first disjunct, and f,g<j in the second, we can also

extract i,g<j . In the first disjunct we wish to maintain

A'[l:i-l]~A'[g+l:j],A'[j+l:n] andin the second

A'[l:i-1],A'[i:g],A'[j+l:n] . It is therefore sufficient to require

the preservation of both, that is (since i,g<j),
.'.. 1 [::_: .::_- ::_ J c.:., [_:_: ~] ,_.:_ 1 [~ + ~: n, • '.:° C

achieve A'[l:i-1],A'[i:j],A'[j+l:n] ,

-----•~::_:;::~i:;_.'.._'[;::+::.:~J 'üg<~'

(::_'=i+::_c· /\ j'=~) V (i'=i /\ j'=r:,~f)

Topreserve the first coniunct we shall require that the multi

,
0

-
0 :.•=_:::_-::.~, .. '[>-~ ;;:--.. _.:•[-i+,:rJ "'Qucil A[l:-i-11, A[i:j]

and A[=+l:n] , respectively. We have

.-. ' [_ : .::.-: _ = !-. ~ -:. : _ - ·_ , t._ ' : .:. : ~ l = P. [i. : j l , A ' [j + L : n] = A [j + 1 : n 1 ,
A'[i:g],A'[g+l:j] , i,g<j ,

(i'=g+l,f A j'=j) V (i'=i A j'=g~f) '

Since we shall only exchange within the range [i:j] , these equali

ties wi~l be maintained and we omit them in the sequel. We now split

oür g0al into +wo consecutive subgoals

achieve A'[i:g],A'[g+l:j] , üg<j

achieve A'=A, g'=g, i'=g+l, ~ 1 =j , g+l(f

~ achieve A'=A, g'=g , i'=i , j'=g , g~f

Since g+l,f and g~f are mutually exc:usive, we apply the if

then-else-fi strategy to the second subgoal obtaining

3.3 assert A[l:i-l](A[i:jJ,A[j+l:n] , 1,i,r,j,n , i!j

a er . .: (: 'i ": f-. ' [.: : .2_ h l, ' [g + : : = l ' i ":' , fJ + l (i

So far we have succeeded in synthesizing the shrinking of the

middle segment A[i·j] by first dividing it around some point g

and then expanding either the left segment A[l:i-1] to A[l:g]

(i+g+l when g+l,f) or the right segment A[j+l:n] to A[g+l:n]

(j+g when g~f)

The remaining subgoal is actually a specification of Hoare's

PARTITION subroutine. Its purpose is to rearrange an array segment

A[i:j] so that there exists some point g which partitions [i:j]

186

into two ordered parts,
We strengthen the current goal, by introducing a new program

variable h :

(Since the conjunct g+l,j was closely connected with the range

[g+l:j] , both were transformed.) It is possible, for example, to

let g=i and search for the minimum of A[i:j] • However in order

to derive a more efficient program, we use the (tailor-made)

which allows us to replace the nested quantified expression

A'[i:gJ,A'[h+l:j] with a conjunction of two singly quantified ex

pressions A'[i:gJ,y and y,A'[h+l:j] . We obtain the stronger

goal

We now apply the loop-until-repeat strategy, testing for g=h, and

must initialize

Taking i=g and h+l=j , in order to eliminate the quantifiers, we

are left with

achieve A'[i]~y , y,A'[j] , i=g , h+l=j

or, by strengthening the first conjunct,

achieve y=A'[i] , A'[iJ,A'[j] , g=i , h=j-1 .

A simple application of the if-then-else-fi strategy gives the ini

tialization

if A[iJ,A[j] then null else exchange(A[i], A[j]) fi

(y,g,h) + (A[i], i, j-1)

It is now possible to determine bounds for g and h and use

th t t . 0 . f f . 0 e range s ra egy, since g =i, g =h , J-l=h We assume
• f hf h. i,g,g = , (J-1 , and therefore keep i,g,h<j-1 invariant, Fur-

thermore, we require that either g increases or h decreases,

and the loop must terminate,

We have, so far, the outer loop body:

187

3. 4 assert A[l:i-ll(A[i:jl(A[j+l:nl , l(i(f(7(n , itj

if A[i],A[j] then null else exchange(A[i], A[j]) fi

(y,g,h) + (A[i], i, j-1)

assert y=A[i]~A[j] , (g,h)=(i,j-1)

loop assert A[i:gJ,y,A[h+l:j], i,g,h,j-1

until g=h

achieve A'[i:g']~y',A'[h'+l:j] , g(g 1 (h 1 (h , (g<g 1 v h'<h)

repeat

if g~f then j + g else i + g+l fi

For the inner loop body, we have the subgoal:

assert A[i:g](y(A[h+l:j] , i(g<h(j-1

a-:::<e·:e r.'[::'.:g'h•;'c.'.'[h'+l:=J 'g(g 1 (h 1 (h' (g<g' V h'<h).

Protecting what has been asserted gives

a::.:e·:e .---.•[::::g]=/..[::;:-], ·:'=•;, A'[h+l:jl=A[h+l:jl

.:-. ! [g-;- ~ : i? ! l ~ ·; (;.. ! [:-. ! + L : h l ,

g(g'(h',h , (g<g' v h'<h)

Now eliminating quantifiers (and omitting the first line) leaves

achieve A' [g+l](y
'

g' =g+l
'

h'=h

or achieve y,A' [h]
'

h' =h-1
'

g' =g

or achieve A' [g+l],y(A' [h]
'

g'(h'
'

g' =g+l

The if-then-else-fi strategy reduces this to

assert A[i:gJ,y,A[h+l:j] , i,g<h,j-1

if A[g+l](y then g + g+l

else if y(A[h] then h + h-1

else assert A[h]<y<A[g+l]

achieve A'[g+l],y , g'=g+l , h'=h

or achieve y,A'[h] , h'=h-1 , g'=g

'
h' =h-1

or achieve A'[g+lJ,y,A'[h] , g+l,h-1 , g'=g+l , h'=h-1

fi fi

The last disjunct in this subgoal is prefered since it advances

more towards the exit test g=h. Written in full, we have

assert A[i:gJ,y,A[h+l:j] , i,g<h,j-1 , A[h]<y<A[g+l]

achieve A'[i:g]=A[i:g] , y'=y, A'[h+l:j]=A[h+l:j] ,

A'[g+l]~y,A'[h] , g+l,h-1 , g'=g+l , h'=h-1 .

The conjunct g+l,h-1 can be proven true, since A[h]<A[g+l] imp

lies htg+l and we also know g<h. It is sufficient to

188

achieve A'[i:g]=A[i:g] , y 1 =y , A'[h+l:j]=A[h+l:j] ,

A'[g+l]=A[h] , A'[h]=A[g+l] , g'=g+l , h'=h-1

Since neither g+l nor h are in the ranges [i:g] and [h+l:j] ,

this is achievable by

exchange(A[h],A[g+l])

(g,h) + (g+l , h-1)

Note that both g+l and h are within the range [i:j] and the

unwritten conjuncts A'[l:i-l]=A[l:i-1] , A'[i:j]=A[i:j] ,

A'[j+l:n]=A[j+l:n] are also satisfied.

The complete program is:

3.5 begin constant integer f,n

assert 1,f,n

variable real array A[l:n]

variable integer i,j
(i,j) + (l,n)

loop assert A[l:i-1],A[i:jJ,A[j+l:n] , 1,i,f,j,n

until i=j

purposel A'[l:i'-l]~A'[i':j'],A'[j'+l:n] ,

Üi',f,j',j , (:<i' V='<=)

variable integer g,h

variable real y

purpose2 A'[l:i-l]=A[l:i-1] , A'[i:j]=A[i:j] ,

A'[j+l:nl=A[j+l:n] , A'[i:g]O.'[g+::j] , üg<j

if A[iJ,A[j] then null else exchange(A[i], A[j]) fi

(y,g,h) + (A[i], i, i-1)

loop assert A'[l:i-l]=A[l:i-1] , A'[i:j]=A[i:j] ,

A'[j+~:~]=A[j+l:n] ,

A'[i:g](y(A 1 [h+l:j] , i<g(h<j
until g=h

purpose3 A'[i:g'J,y'(A'[h'+l:j] , g,g',h',h ,

(g<g' V h'<h)

if A[g+l](y then g + g+l

else if y<A[h] then h + h-1

else exchange(A[h], A[g+l])

(g,h) + (g+l, h-1)

fi fi eop3

repeat

189

assert A'[l:i-l]=A[l:i-1] , A'[i:j]=A[i:j]

A'[7+l:nl=A[j+l:nl ,

A'[i:gJ,y,A'[g+l:j] , i(g = h<j eop2

,.'Ll'f::'SeL P.'=A, f,:'=g, (i'=g+l,f111'=j)v(i'=i11j'=g~f)

if g')f then j +- g else i +- g+l fi eop4 eopl

reDeat

asserT A'[l:f-l](A 1 [f],A 1 [f+l:n] , A'[l:n]=A[l:n]

err-1

IV. ABSTRACTION

In tris section we illustrate the possibility of abstracting

completed progrd~S, and later applying the subroutines and tech

niq 1Jes obtained.

For example, after successfully synthesizing a binary search in

a conotonic array (possib:y interactively, see Floyd [1971]), we

would like to somehow extract the underlying search technique. We

have, say, the annotated search program:

-.~ 1 b~gin constant integer n; real x; real array X[l:n]
~ ' :: . ' :.. c; (:-. ·1 ' ;,: ,. :< :-. , r li l-- , ,) (1 , :- d. , r.i) (X [k l , X [Q l) 1

variable integer z,y,h

(z,y) +- (l,n)

l0op assert x~X[z] , x,X[y] , 1,z,y,n

i.;,ntil z)y

h +- (z+y)+2

if x,X[h] then y +- ~ else z +- h+l fi

repeat

~:-~:- x-l[z. , xc/:z~

end

; C.:t r.

Analyzing the proof of this program shows that the following con

dition~ - derivab:e from the giv~n input assertion - are sufficient

for proving correctness:

(a) initialization. x~X[l] , x,X[n] , 1,n

(b) then path. none

(c) else path. (Vu)(~Cx,X[u]) ~ x')X[u+l]) .

This condition is a "coverup" for the weaker

(Vz ,y) (x')X[z] 11 x,X[y] 11 1,z<y,n 11 ~(x,X[(z+y)+2]) ~

x~X[(z+y)+2+1])

Furthermore, the particular semantics of the predicates x~X[z] and

x(X[z] are not needed, nor the fact that the lower bound of the

190

range of X is the constant 1. We accordingly abstract the program

by replacing 1 with R.. , x~X[z] with p(z) and x(X[z] with

q(z) . Thus, we have abstracted the schema

4.2 begin constant integer t,n

assert t,n, p(R..), q(n), (Vu)(~q(u);:) p(u+l))

variable integer z,y,h

(z,y)-+- (R..,n)

loop assert p(z) , q(y) , t,z,y,n

until z.iy

h-<- (z+y)+2

if q(h) then y-<- h else z-+- h+l fi

repeat

assert p(z) , q(z) , t,z,n

end

This schema will solve a goal of the form

provided we can prove (or first achieve): t,n , p(R..) , q(n) , and

(Vu)(~q(u);:) p(u+l)) .

Consider now our integer square-root problem. Our goal was

assert o,x
-h-.- 2 (1) 2 0 ac ieve z ,x , x< z+ , ,z .

(The conjunct 0(z was suggested by the range strategy.) Matching

this with the schema, we let p(z) be z 2,x, q(z) be x<(z+l) 2

and R.. be 0 .

The last conjunct achieved by the schema, z,n , has no counter

part, To apply the schema, we must have: o,n, o2,x, x<(n+l) 2 and

(Vu)(x)(u+l) 2 ;:) (u+l) 2,x) , The second and fourth conditions are

trivially proved, leaving the subgoal

achieve o,n , x<(n+1) 2

tobe achieved (e.g., by n+x) before applying the schema. In this

manner, we have arrived at an (unoptimized) binary search program

for the integer square-root,

As a second example consider the search for an array maximum

that we synthesized in Example 2. The solution may be straightfor

wardly abstracted to obtain the schema

5 .1

191

begin assert x.(;n, p(x.,O, p(z,[x.:y
1

])A~p(z,y
1

+1) ~

p(yl+l,[x. :yl+l])

(z,y 1) +- (t,.0

loop assert p(z,[t:y 1]) , t,z,n , t,y
1

,n

until y 1=n

if p(z,y 1+1) then null else z +- y 1+1 fi

Y1 +- yl+l
repeat

assert p(z,[,:.:n]) , x.~z~n , y
1

=n

end

H-ere p(z,[t:n]) is short for ('v'k)(Uk,n)(p(z,k)). This schema

can then be used for either maximum or minimum, both of which sa

tisfy the input assertion for p .

If we are presented with the problem

achieve z 2=X[z 1 J , X[z 1 J,x[i:j] , i,z 1,j

we could solve it by using the above schema and adding the conjunct

z
2

=X[z
1

] as an invariant throughout the loop (cf. the suggestion

for optimization at the end of the example) or simply by assigning

z
2
+-X[z

1
] after achieving X[z 1 J,x[i:j] . In a sort program, if

we have a subgoal

ac~.iE,l'" l'[::.hl.'[i::-.] , l'[::::-,l=Y.[i:r,]

we might separate it into a search for a maximum followed by an ex

change:

achieve X[z])X[i:n] , i,z,n

achieve X'[i]=X[z] , X'[i:n]=X[i:n]

Another possibility for abstraction: first synthesize an itera

tive version of a recursive program, say factorial, and then abst

ract it to a more general recursion-to-iteration translation schema

such as those of Darlington and Burstall [1973].

V. CONCLUSION

Clearly the work described in this paper is but a small step to

ward the distant, albeit important, goal of fully or semi-automated

programming. The aspects we have dealt with and other facets of the

overall goal are the subject of much current research.

Same of the still outstanding problems are typical of artificial

intelligence research. Specific items in need of further investiga

tion are: providing the system with a "sense of direction", intro-

192

ducing more complex data structures, developing tools for the evalu

ation and comparison of program efficiency, formulating more general

termination strategies; determining which program segments are wor

thy of remembering and formalizing the details of their abstraction,

formulating precise criteria for schema application, and specifying

methods for adapting a schema which does not quite fit.

A programming system such as that suggested here is obviously li

mited by the power of the theorem prover used. We are planning the

implementation of the strategies described in QLISP (Reboh and Sa

cerdoti [1973]) using Waldinger and Levitt's [1974] program verifi

cation system.

ACKNOWLEDGEMENT

We are deeply indebted to Richard Waldinger for stimulating dis

cussions and to Shmuel Katz and Adi Shamir for their critical read

ing of the manuscript.

REFERENCES

Buchanan, J.R. and D.C. Luckham [Mar. 1974], On automating the con
struction of programs, Memo AIM-236, Stanford A.I. Lab.

Conway, R. and D. Gries [1973], An Introduction to Programming: A
Structured Approach, Winthrop,

Dahl, O.S., E.W. Dijkstra and C.A.R. Hoare [1972], Structured Pro
gramming, Academic Press.

Darlington, J. and R,M. Burstall [Aug. 1973], A system which auto
matically improves programs, Adv. Papers 3d. Intl. Conf. an Arti
ficial Intelligence, Stanford Univ.

Deutsch, L.P. [May 1973], An interactive program verifier, Memo CSL-
73-1, Xerox, Palo Alto Research Center.

Dijkstra, E.W. [1968], A constructive approach to the problem of
program correctness, BIT, Vol. 8, Ne. 3, 1~4-186.

Dijkstra, E.W. [Aug. 1971], A short introduction to the art of pro
gramming, Report EWD316, Technological Univ., Eindhoven.

Dijkstra, E.W. [1973], unpublished lectures, Intl. Summer Sehaal an
Structured Programming and Programmed Structures, Munich.

Dijkstra, E.W. [April 1975], Guarded commands, non-determinancy and
a calculus for the derivation of programs, Proc, of Intl. Conf.
an Reliable Software, Los Angeles.

Duran, J.W. [Sept. 1974], Loop invariants and automatic program syn
thesis, Report SESLTR-6, Software Engineering and Systems Lab.,
Univ. of Texas, Austin.

Floyd, R.W. [1967], Assigning meanings to programs, Proc. of a Sym
posium in Applied Mathematics, Val. 19, (J.T. Schwartz, ed.),
ÄMS, 19-32.

Floyd, R.W. [Aug. 1971], Toward interactive design of correct pro
grams, Proc. of IFIP Congress 1971, Ljubljana, North Holland,

193

Gerhart, S.L. [Apr. 1975], Knowledge about programs: A model and a
case study, Proc, of Intl. Conf. on Reliable Software, Los
Angeles.

Green, C.C., R.J. Waldinger, D.R. Barstow, R. Elschlager, D.B. Le
nat, B.P. McCune, D.E. Shaw, and L.I. Steinberg [Aug. 1974],
Progress report on program-understanding systems, Memo AIM-240,
Stanford A.I. Lab,

Gries, D. [Nov. 1974], On structured programming - a reply to Semo
liar, CACM, Vol. 17, No. 11, 655-657.

Hoare, C.A.R. [July 1961], Algorithm 63 (Partition) and Algorithm
65 (Find), CACM, Vol. 4, No. 7, 321-322.

Hoare, C.A.R. [0c~. 1969], An axiomatic basis of computer program-
:-:-.~:---~, ~-~-C'~-~, :.:, :~:. lJ, 5~6-580, 531.

Hoare, C.A.R. [Jan. 1971], Proof of a program: Find, CACM, Vol. 14,
No. 1, 39-45.

Katz, S. and z. Manna [Aug. 1973], A heuristic approach to program
verification, Ad . Papers 3d, Intl. Conf. on Artificial Intelli
gence, Stanford Üniv.

Manna, Z. [197L], Mathematical Theory of Computation, McGraw-Hill.

Manna, Z. and R.J. Waldinger [1975], Knowledge and reasoning in pro
gram synthesis, tc appear in J, of Artificial Intelligence,

Reboh, R. and E. Sacerdoti [Aug. 1973], A preliminary QLISP manual,
Tech. Note 81, A.I. Center, SRI, Menlo Park.

Sussman, G.J. [Aug. 1973], A computational model of skill acquisi
tion, Ph.D. Thesis, Report AI-TR-297, A.I. Lab., MIT, Cambridge.

Waldinger, R.J. ann K.N. Levitt [1974], Reasoning about programs,
J. of Artific'al Intelligence, Val. 5, 235-316.

Wegbreit, B. [Feb. 1974], The synthesis of loop predicates, CACM,
Val. 17, No. 2, 102-112.

Wirth, N. [Apr. 1971], Program development by stepwise refinement,
CACM, Val. 1~, No. 4, 221-227.

Wirth, N. [1973], Systematic Programming: An Introduction, Prentice
Hall.

