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ABSTRACT 

Structured programming has been advocated in an attempt to im

pose organization and discipline in the design and development of 

computer programs. Automating the synthesis of structured programs 

requires the formalization of the programming techniques involved 

in order to make them amenable to symbolic manipulation. 

We present a number of such techniques and illustrate their ap

plicability in the hand-synthesis of several programs. The programs 

are developed "top-down" along with their inductive assertions, 

thereby guaranteeing the correctness of the results. Optimization 

is touched upon. 

Also illustrated is the abstraction of synthesized programs to 

allow the application of extracted programming techniques in future 

syntheses. 
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I. INTRODUCTION 

In the last several years, researchers have tried to gain in

sight into the haphazard art of programming. This has led to the 

development of "structured programming" which has been defined by 

Hoare as "the task of organizing one's thought in a way that leads, 

in a reasonable time, to an understandable expression of a comput

ing task. 11 One of the guidelines of structured programming is that 

"one should try to develop a program and its proof of correctness 

hand-in-hand" (Gries [1974]). Much has been written on the subject, 

including the works of Dijkstra [1968, 1971], Dahl, et al. [1972], 

Wirth [1971, 1973], Conway and Gries [1973], and others. 

The idea is to construct the desired program step by step, begin

ning with the given input and output specifications. In each step 

the current goal is solved, transformed to another goal, or reduced 

to simpler subgoals. Each stage is correct if its predecessor is, 

thereby guaranteeing the correctness of the final program. Our pur

pose in this paper is to contribute towards the formalization - and 

consequently the automatization - of structured programming. 

This research is an outgrowth of the recent work by Manna and 

Waldinger [1975]. We were influenced by Dijkstra 1 s (1973] presenta

tion of his development of the integer square-root function and by 

the techniques used by Sussman [1973] in his HACKER system. 

Our strategies, by themselves, are not expected to lead an auto

matic program-writing system to the desired solutions of difficult 

programming problems. Rather, we envision an interactive system 

(see Floyd (1971]), where the computer takes the more straightfor

ward steps on its own, while the human guides the machine in the 

more creative ones. Such a system must also have sufficient arith

metic and logical reasoning ability, as that embodied in the verifi

cation systems of Deutsch [1973] o"r Waldinger and Levitt [1974]. 

One of the major hurdles in this task lies in the formation of 

loops. Dijkstra (1975], skeptical about some of the claims and goals 

of "automatic programming", has stated that "while the design of an 

alternative construct now seems tobe a reasonably straightforward 

activity, that of a repetitive construct requires ... 1 the invention' 

of an invariant relation and a variant function." Recent synthesis 

systems have variously dealt with this problem. Buchanan and Luckham 

[1974] require the user to supply the skeleton of the loop, and the 

system fills in the detail~. Sussman [1973] described his HACKER 

which, in a limited framework, creates iterative and recursive loops 
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with no guarantee of correctness. Manna and Waldinger [1975] and 

others hand-simulated a (partially implemented) synthesizer which 

can introduce recursion and sometimes strengthen the original speci

fications. The system described in Green et al. [1974] assumes ex

tensive a priori programming knowledge, such as an experienced pro

grammer would have. Duran [1974] is investigating the use of loop 

invariants in the synthesis of programs, along lines similar to our 

loop strategy. 

To avoid continually "re-inventing the wheel'' we also need 

learning atility. Just as a human programmer improves with experi

ence - by assimilating various strategies and techniques - so should 

a working program-writing system learn from old programs, store 

their more "interesting" aspects, and then judiciously apply them 

to new problems. We therefore illustrate the abstraction of program 

segwents, thereby obtaining program schemas along with sufficient 

conditions for their correct application. The use of such schemas, 

whi~h may represent general subroutines or i~portant programming 

techniques, is also dewonstrated. 

Sussman [1973] recognized the importance of programming-skill 

acquisi~ion. However, since his system relies on debugging rather 

than formal verification, our results are different. Gerhart [1975] 

suggesrs tre compilation of a handbook of schemas similar to those 

we abstract. The modification of an already existing program to 

solve a somewhat different problem has been found tobe a powerful 

approach by Manna and Waldinger [1975]. 

In Section II we introduce the programming strategies, andin 

the following section they are employed in the hand-syntheses of 

several programs, Our first example is a straightforward synthesis 

of the integer square-root function. Arrays are introduced in the 

second example, which is a program to find a maximal element of an 

array. We conclude with an ambitious attempt at synthesizing Hoare's 

FIND [1961, 1971] algorithm. Section IV is devoted to abstraction. 

II. STRATEGIES 

We outline in this section a number of general programming stra

tegies, which have been found useful. Examples of their use may be 

found in the next section. We do not, however, present detailed 

heuristics for guiding the choice of strategy. 

In the following, the p's represent arbitrary predicates, the 

t's terms, the y's and z's are variables, while the x's may 

be either variables or constants. 
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A goal or subgoal consists of input and output specifications in 

mathematical logic. We use the general form 

assert p 1 (x) 

achieve p 2 (x,y) 

where the predicate p
1

(x) expresses the given relationship between 

the input variables, and p 2 (x,y) expresses the desired relation

ship between the input and program variables upon termination. 

Our aim is to transform the unrealized achieve statement into an 

annotated program segment 

assert p 1 (x) 

purpose p 2 (x,y) 

< program segment > 

assert p 2 (x,y) ~ 

An assert statement such as "assert p 2 (i,y)" corresponds to an in

ductive assertion (Floyd [1967] and Hoare [1969]; see also Manna 

[1974]), and indicates that whenever control reaches the Statement, 

for the current values of the variables x and y, the predicate 

p 2 (x,y) is true. While constructing the program segment to achieve 

p 2 (x,y) , the relation p 1 (x) is assumed to hold. The purpose 

statement i~ a comment which precedes a program segment and indi

cates what that segment is meant to achieve. The end of its scope 

is indicated by eop (end of purpose). 

1. Transformations. 

a. Equivalence transformations. Any expression may be replaced 

by an equivalent expression. That is, a predicate p 1 (x) may be re

placed by p 2 (x) , if we know (or can prove) p1 (x) ■p 2 (x) . Similar

ly, a term t 1 (x) may be replaced by t
2

(x) , if t
1

(x)=t
2

(x) 

b. Strengthening transformations. Any logical expression tobe 

achieved may be replaced by a strenger expression. That is, if 

p 2 (x)~p 1 (x) , then 

1 achieve p 1 (x) 

may be replaced by 

purpose p 1 (x) 

öchie•ve p 2 (x) 

ass·ert p
2 

(x) ~ 

We make particular µse of the following transformations: 

(i) p(F(x,i)) becomes p(F(y,i)) A F(y,i)=f(x,i) , 

(ii) pff(x,i)) becomes p{F(y ,z)) A y=x , 
(iii) p(f(x,z)) becomes p(y) A y~F<x,z) . 
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Here, t(x,z) stands for a vector of terms (t 1 (x,z), t
2

(x,z), ... , 

tn(x,z)) and t(x,z)=t(y,z) means t
1

(x,z)=t
1 

(y,z) A 

t2(x,z)=t2(y,z) /\ ... /\ tnCx,z)=tn(v,z). 

E.g.,(i) z=gcd(x 1 ,x 2 ) becomes z=gcd(y 1 ,y
2

) A gcd(y
1

,y
2

)=gcd(x
1

,x
2

) , 

(ii) (Vk)(l(k,n)(p(k)) becomes (Vk)(l,k,y)(p(k)) A y=n , 

(iii) z 1=z 2+ff(k) becomes z 1=z 2+y A y=~f(k) . 

[For convenience, we separate the range part of a quantified expres

sion. (Vk)(r(k))(p(k)) is (Vk)(r(k)~p(k)) and (3k)(r(k))(p(k)) 

is (3k)(r(k)Ap(k)).J Notice that new program variables y are in

troduced by these transformations. Transformations (i) and (ii) 

split a goal into two conjuncts, possibly for use by the loop

until-repeat strategy below. Transformation (iii) introduces pro

graro variables equal to terms appearing in the goal. This allows 

the saving of previous computations during loop execution. 

Specific instances of these transformations are used in the ex

amples of the next section, and are similar to the "top-down" heu

ristics found useful by Katz and Manna [1973] and Wegbreit [1974] 

in their investigation of the automatic derivation of inductive as

sertions for program verification. 

2. Assignments. 

For the purposes of the examples presented in the next section, 

the following is sufficient. Reduce the conjunctive goal 

achieve p(x) , y=t(x) 1 

that is, "achieve p(x) A y 1=t 1 (x) A y 2=t 2 (x) A ••• A yn=tn(x)", to 

purpose p(x) 'y=t(x) 

achieve p(x) 

y + t(x) 

assert p(x) 'y=t(x) ~ 

where the y variables are distinct from the x variables and each 

t.(x) is co~posed only of primitive operations. The second con-
J 

junct y=t(x) of the achieve gives rise to the multiple assignment 

y+t(x) , (i.e., the simultaneous assi~nment of t 1 (x) to Y1 , t 2 (x) 

to y 2 , etc.). 

3. Protection and Splitting. 

a. Protection. Given a goal of the form 

assert p 1 (y) 

achieve P1(y') , P2<Y',z) 
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[The y' are the new values of y. Prirned variables shall be used 

whenever needed to differentiate between old and new values.] It is 

reasonable to try to "protect" the relation p 1 frorn "clobbering" 

by keeping y constant, that is, 

assert p 1 (y) 

purpose p 1 (y') , p 2 (y', z) 

achieve y'=y, p 2 Cy,z) 

assert p 1 (y) , p 2 Cy,z) ~ 

b. Splitting. Sirnilarly, given the conjunctive goal 

1 achieVe p 1 (y) , p 2 (y, z) 

(where y and z are distinct variables), try separating the corn

bined goal into two consecutive subgoals (cf. Sussrnan's [1973] li

near AND-technique and protection rnechanisrn): 

purpose P1 (y) ' p2(y,z) 

achieve P1 (y) 

achieve y' =y ' p2(y,z) 

assert P1 (y) ' 
p

2 
(y ,z) eop 

In other words, first achieve p 1 , and then hold the variables ap

pearing in p 1 constant - thereby preserving p 1 - while achieving 

p 2 by setting the z variables. 

4. The if-then-else-fi strategy. 

A goal 

1 achieve p 1 (y, z) 

rnay be transforrned into an equivalent disjunctive goal 

purpose p 1 (y ,.z) 

achieve p 2 (y) , p 3 (y,z) 

~ achieve. p 1 (y, z) 

assert [p 2 (y)Ap 3 (y,z)] V p 1 (y,z) ~ 

if p 2 (y)Ap 3 (y,z) ~ p 1 (y,z) . There rnay exist cases where the first 

disjunct is more directly achievable than the original goal. 

If the predicate p 2 (y) is composed only of primitive operators, 

then try forming the conditional statement: 
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purpose p 1 (y,z) 

if p 2 (y) then assert p
2

(y) 

achieve y'=y, p 3 (y,z) 

else assert ~p 2 (y) 

fi 

achieve p
2 

(y') , p
3 

(y', z) 

or achieve p 1 (y',z) 

assert [p 2 (y)Ap 3 (y,z)] V p
1

(y,z) eop 

The conditional statement contains two subgoals. In the first, p
2 

has been achieved (by testing for it) and only p
3 

remains; while 

in the second, the knowledge that ~p 2 (y) may be used in achieving 
the subgoal. 

. *! S. The loop-until-repeat strategy.-

For a conjunctive goal 

try (if simpler strategies fail) 

purpose p 1 (x,y) , p 2 (x,y) 

achieve p 1 (x,y) 

loop assert p 1 (x,y) 

until p 2 (x ,y) 

assert p 1 (x,y) , ~p 2 (x,y) 

achieve p 1 (x,y') , y'!y 

repeat 

assert p 1 (x,y) , p 2 (x,y) ~ 

This is the "top-down" strategy where a conjunctive goal 

p 1 (x,y)Ap 2 (x,y) is achieved by creating a loop in which one con

junct, p 1 (x,y) , remains invariant - i.e., it is asserted true for 

the initial values of y and for subsequent values of y whenever 

the loop is repeated - until the second conjunct, p 2 (x,y) , is found 

true. If the loop is not exited, p 2 (x,y) must be false and the in

variant is re-achieved. 

The conjunct y'#y (i.e., y 1!y 1 v y 2!y 2 v ... v y~#yn) is meant 

to avoid achieving p 1 Cx,y') by letting the new values y' equal 

the old values y. (It is often left implicit in the following.) 

Clearly y'#y is in itself insufficient for guaranteeing the 

~/The loop-until-repeat statement is a single-exit loop construct, 

enclosed by loop and repeat. It is exited when control first 

reaches the until clause and the exit condition holds. 
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termination of the loop. What is needed is a "significant" advance 

in y towards the exit condition p 2 (x,y) For this purpose, we 

use the range strategy below. 
There is a measure of freedom in dividing the goal into an in

variant and test. Usually, the "stronger" the invariant and "weak

er" the test, the more efficient the resulting loop. Often, a loop 

may be improved by backtracking and adding to the loop invariant 

conjuncts such as 9=t(x,y) for terms t(x,y) that either appear 

often within the loop or are relatively difficult to compute. Al

ternatively, we might discover the need for 9 while synthesizing 

the loop body. 

6. The range strategy. 

Given a partially synthesized loop: 

purpose p 1 (x,y) , p 2 (x,y) 

assert p 1 (x,y) , p 3 (x,y) 

loop assert p 1 (x,y) 

until p 2 (x,y) 

assert p 1 (x,y) , ~p 2 (.x,y) 

achieve p 1 (x,y') , y'#y 

repeat 

asser! p 1 (x,y) , p 2 (x,y) 

with the unrealized subgoal 

achieve p 1 (x,y') , y'#y 

First hypothesize the direction of change for some of the integer 

(or real) variables yj , and then, if possible, ascertain bounds 

for those yj . 

a, Direction. Let yo denote the initial values of y upon 

entering the loop, and yf the final values when the loop is exit

ed, Therefore assume p 1 (x,yO) , p
3

(x,yO) , p
1

(x,yf) and p 2 (x,yf) 

and attempt to prove for some program variable y. , either 
c·) o f J 

i y j 'Y j , or 

( ii) f 0 Yj'Yj 
Ignoring termination for the moment, what the range strategy sug-

gests is to assume in case (i) that y. is monotonically increas-
0 J f ing during loop execution, i.e., y.(y.,y!(y. , and therefore 
] ] ] ] 

achieve p 1 Cx,y') , y 1 #y , y.(y! . 
] ] 

On the other hand, in case (ii) we assume that y. is monotonical-
f J 0 ly decreasing during loop execution, i.e., y.,y!(y.(y. , and 
] ] ] ] 
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achieve p 1 (x,y') , y'#y, y!,y .. 
J J 

b. Bounds. Note that the range strategy may be applicable to more 

than one variable y .. After hypothesizing direction for all those 
J 

variables, we try to find explicit lower bounds ij(x,y) and/or 

upper bounds u.(x,y) for each y .. (Obviously i.(x,y) and 
J J J 

uj(x,y) should not contain yj {tself~) If successful, these re-

lations i.(x,y)(y. and/or y.,u.(x,y) may serve as useful loop 
J J J J 

invariants. 

To summarize, for each y. 
J 

we may add conjuncts, thus obtaining: 

assert p 1 Cx,y) , p 3 Cx,y) , L (x,yh;y. , y.,u. (x,y) 
J J J J 

loop assert p 1 (x,y) , ij(x,y),yj , yj,uj(x,y) 

until p 2 (x,y) 

assert p 1 (x,y) 

achieve p 1 (x,y') 

~p 2 Cx,y) L (x,y)(y. , y.,u. (x,y) 
-,4- (.1-,) ,J ,J ] __ , y ~y , i. x,y (y. , y.(u.(x,y') , 

{ 

' • (i) ·:j,yj in case 

y!(y. in case (ii) 
J J 

J J J J 

repeat 

assert p 1 Cx,y) , p 2 (x,y) , L (x,y),y. , y.,u. (x,y) 
J J J J 

Note that this strategy only suggests adding y!,y. (or y.,y!), 
J J J J 

ij(x,y)(yj , and yj,uj(x,y) . Though the range strategy is often 

helpful and should be tried, in some cases the assumption of mono

tonicity may not lead to a solution. 

Returning to termination, consider, as an example, the case where 

the strategy suggests increasing y 1 and decreasing y 2 and we 

have succeeded in finding bounds u1 and t 2 . The goal, then, is 

of the form 

In 

assert p
1 

(x,y) , ~p 2 Cx,y) , y 1,u 1 Cx,y) , t 2 Cx,y)(y 2 
achieve p 1 (x,y'), (yi,y:p;t(y 1 ,y 2 ), Y1'Yi'u 1 Cx,y'), 

9.,2(x,y' )'Y2'½ 

situations such as this, it is often valuable to strengthen 

requirement y'#y by limiting it to a subset of y 
' 

here the 

bounded variables {yl'y2} . Equivalently, we have 

achieve p 1 (x,y') , y 1<yi~u 1 (x,y') , Y2=Y2 

or achieve p
1

(x,y') , y~=y 1 , t 2 (x,y')(y 2<y 2 
or achieve p

1 
(x,y') , y 1<yi,u 1 (x,y') , i 2 (x,y')'y2<Y2 

the 
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Since we have the upper bound u 1 (x,y') for the increasing y1 
and lower bound t 2 (x,y') for the decreasing y2 , if both y 1 and 

y
2 

are integers, then termination of this loop is guaranteed. In 

all the examples presented below, loop termination shall be guaran

teed by such a strict increase/decrease in at least one of the 

bounded integers. 

III. EXAMPLES 

In this section we describe the hand-synthesis of several pro

grams, with reference to the strategies of the previous section. 

Only the successful path of each synthesis is shown, though ob

viously an implemented system would take up false leads - or syn

thesize alternative programs - before backtracking and developing 

the programs as presented. 

It is assumed that we have all the necessary logical and arith

metic knowledge along with domain-dependent knowledge to perform 

the syntheses. Suchinformationshall be introduced when needed as 

fact statements. For example, 

fact (u,/v) ~ (u 2,v) where u~0 A integer(u) */ 

Example 1 

We begin with the synthesis of the integer square-root function. 

Our goal is to synthesize the program: 

1.1 begin constant integer x 

assert x~0 

variable integer z 

achieve z= L lxJ 

end 

In other words, we must construct a program which, for all integers 

x~0 , computes LlxJ (i.e., the largest integer less than or equal 

to the square-root of x ). Note that x is a constant whose value 

may not be changed by the program, while z is a program variable 

which upon termination must have the value llxJ . 

The top-level goal is 

achieve z=LlxJ . 

This fact is true for any expressions u or v. In this and 

other fa:cts, u , v ,. w , etc. are considered to be universally 

quantified. "fact p 1 (u) where p
2

(u)" means "fact (VÜ)[p (u) ::i 

P1 (Ü) ]". 2 
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Using facts about the floor and square-root functions, it may be 

transformed into the equivalent goal 

purpose z= L rxJ 
achieve z 2,x, x<(z+l) 2 eop 

This is a conjunctive subgoal, and since we do not succeed in 

directly achieving both conjuncts, we try the loop-until-repeat 

strategy. The conjunct z 2,x is chosen for the loop invariant, 

and x<(z+l) 2 for the exit test. 

l.= begin assert x~0 

achieve z 2,x 

loop assert z 2,x 

until x<(z+l) 2 
-- 2 2 
assert z (X , x~(z+l) 

achieve z 12,x, z'#z 

repeat 

assert z= L lxJ 
end 

To initialize the loop invariant, we must 

achieve z 2,x. 

Since we have asserted that 0(x, and inequality is transitive, 

i.e., 

fact U(V ~ U(W where V(W' 

it suffices - by the strengthening transformation (letting 

v=0 and w=x) - to 

achieve z 2,o . 

Our knowledge of squares allows this tobe replaced by 

achieve z=0 , 

which is readily achieved by the assignment: 

2 purpose z (x 

z +- 0 

assert z=0 eop 

2 u=z 

Before synthesizing the loop body, we would like to find the re

lation between z upon entrance to the loop and upon exit, and 

then apply the range strategy. Assuming x~0 z 0=o upon entrance, 
f2 f 2 • 0 0 f,- • and (z) (x<(z +l) upon exit, we can derive z = ~z ,vx , using 
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facts about square-roots. This is case (i) of the range strategy, 

which suggests increasing z in the loop body, with a lower bound 

0 and upper bound v'x for z , 

1.3 begin assert x)0 

z + 0 

assert z=0 

end 

assert z 2,x, o,z,rx 

until x<(z+l) 2 
-- 2 2 
assert z (X ' x)(z+l) ' o,z,rx 

achieve z 12 ,x, z'#z , 0(z 1 (v'x, z<z' 

repeat 

We now take up the loop body subgoal 

assert z 2,x , x)(z+1) 2 , o,z,rx 

achieve z 12 ,x , z<z'(v'x. 

Termination is assured since z is an increasing integer, bounded 

from above. The conjunct z',lx can be dropped since it is implied 

by z 12,x. We assert (z+l) 2,x and are looking for a z' such 

that z 12 ,x, so by the transitivity of inequality it is sufficient 

to 

achieve z 12 ,(z+l) 2 
, z<z' 

or (eliminating the square, since z'>z)0 ) 

achieve z<z',z+l . 

This is achieved by the assignment 

Eurpose z' 2,x 
' 

z<z 1 (/x 

z + z+l eop 

The complete annotated program is 

1,4 begin assert x~0 

purEOSe z 2,x, x<(z+1) 2 , o,z,rx 
2 

EUrEOSe z ,x ' o,z,rx 
z + 0 

assert z=0 eo~ 

lOOE assert z ,x' o,z,rx 

until x<(z+1) 2 
-- 2 
assert z ,x, o,z,rx, X)(z+1) 2 
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purpose z 12 ,x, z<z 1 (/x 

z + z+l ~ 

repeat 

assert z=LlxJ eop 

end 

We now wish to optimize this program. The exit test x<(z+l) 2 

is relatiuely difficult to compute since it involves multiplication. 

Accordingly, we wish to replace the exit test with x<y 1 and add 
2 the invariant y 1=(z+l) throughout the loop. The loop initializa-

tion had the 

2 purpose z ~x, O(z(/x 

(the conjunct o,z,/x was added by the range strategy), and now we 

wish to 

achieve z 2,x , o,z,/x, y 1=(z+l) 2 

The first two conjuncts were solved by setting z to O , so we 

are left with 

2 achieve z=O , y 1=(z+l) 

Our new initialization is therefore 

l (z,yl) + (0,1) 1 

We now re-solve the loop-body subgoal 

achieve z 12 ,x , z<z 1 (v'x, y 1=(z'+l) 2 

This becomes, 

achie~e z'=z+l , yi=Cz'+l)
2 

or by eliminating z' from the expression for y1 and expanding 

the square (in order to extract the old value of y 1 ) 

achieve z'=z+l, y 1=z 2+4z+4 

Having asserted that y 1=(z+l) 2=z 2+2z+l , we can set 

1 (z,y 1 ) + (z+l,y 1+2z+3) 1 

Similarly, if we wish to optimize the assignment 

we can also keep y 2=2z+3 invariant. Then, following 

cedure as above, we finally obtain the program: 

Y1 + yl+2z+3 ' 
the same pro-
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1.5 begin constant integer x 

assert x~0 

Example 2 

variable integer z,y 1 ,Y2 
purpose z 2,x , x<(z+l) 2 , o,z,lx, y 1=(z+l) 2 , y 2=2z+3 

(z,y 1 ,y 2) + (0,1,3) 

loop assert z 2,x, o,z,/x, y 1=(z+l) 2 , y 2=2z+3 

until x<y 1 -- 2 2 1 
purpose z' ,x, z<z',lx, yi=(z'+l) , y2=2z +3 

(z,y 1 ,y 2 ) + (z+l,y 1+y 2 ,y 2+2) eop 

repeat eop 

assert z=llxJ 

end 

We synthesize here a search for the maximum of an array: 

2.1 begin constant integer n 

assert 1,n 

constant real array X[l:n] 

variable integer z 

achieve X[z]~X[l:n] , l(z(n 

end 

where X[z]~X[i:j] is short for (Vk)(i,k,j)(X[z]~X[k]) . Our goal 

then is to 

Note that X is constant, so only the value of z may be changed. 

Strengthening, by transforming the implicit range, gives 

achieve X[z]~X[l:y 1J , 1,z,n , y
1

=n 

which is amenable to the loop-until-repeat strategy. (We usually 

prefer to transform the range part of a quantified expression. Note 

that y 1~n is sufficient for X[z]~X[l:y 1J to imply X[z]~X[l:n].) 

2.2 achieve X[z]~X[l:y
1

J , 1,z,n 

loop assert X[z]~X[l:y
1

J , 1,z,n 

until y 1=n 

assert X[z]~X[l:y
1

J , 1,z,n, y
1

#n 

achieve X[z']~X[l:yiJ , 1,z 1 ,n 

repeat 
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Using 

fact AC.1:u]=A[u] 

in order to eliminate the quantifier in X[l:y
1

J and matching u 

with y 1 and 1 , the initialization may be replaced by 

achieve X[z]~X[l] , y
1

=1 , lczcn 

The first conjunct can obviously be achieved by z=l , so we assign 

1 (z,yl) + (1,1) 1 

re row try the range strategy. Obviously y~=l, n=yi , and we 

therefore add the invariant lcy 1cn throughout the loop, and incre

ment y 1 within the loop body. 

loop asser+ X[z]~X[l:y 1 ] , lCz(n , 1,y 1cn 

until y 1=n 

assert X[z]~X[l:y 1 J , 1,z,n, y 1#n , 1,y 1,n 

achieve X[z'])X[l:y 1J , l(z'(n , 1,y 1,n , y 1<yi 

repeat 

Since the integer y 1 is bound from above and we require y 1<yi 

in the loop body, termination is guaranteed. (Note that the range 
strategy could have a~so been applied to z.) We are trying to solve 

assert X[z]~X[l:y 1 ] , lczcn, lcy 1<n 

achieve X[z'])X[l:y 1J , l(z',n, y 1<y1,n, 

and we use the 

fact (p(A[R.:m]) A p(A[m+l:u])) = p(A[.Q.:u]) where R.-1'mCu 

to split the range of the implied quantifier [l:yiJ into what has 

already been achieved ([l:y 1 ]) and what has yet tobe achieved 

([y 1+1:y 1]) . We get 

achieve X[z'])X[l:y
1

J , X[z']~X[y 1+1:y 1J , l(z',n, y 1<y1cn 

In order to simplify X[y 1+1:y 1] , we take y1=y1+1 and obtain the 

subgoal 

achieve X[z 1 ])X[l:y
1

J , X[z'])X[y 1+1] , 1,z',n, y 1=y1+1 , 

Y1<Y1'n 

which may be reduced to 

achieve X[z']~X[l:y 1 J , X[z']~X[y
1

+1] , 1,z'(n 

Y1 +- yl+l 
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We have asserted X[z])X[l:y 1J and wish to achieve X[z'])X[l:y 1J , 
so we break the goal into two disjuncts, protecting the relation in 

the first 
assert X[z])X[l:y 1 J , 1,z,n , 1,y 1<n 

achieve X[z])X[y 1+1] , 1,z,n, z'=z 

~ achieve X[z'])X[l:y 1J , X[z'])X[y 1+1] , l(z',n 

Using the if-then-else-fi strategy, we now construct a conditional 

statement and test for X[z])X[y 1+1] . 

purpose X[z 1 ])X[l:y 1 ] , X[z 1 ])X[y 1+1] , l(z'(n 

if X[z])X[y
1

+1] then assert X[z])X[l:y 1 ] , 1,z,n, 1,y 1<n, 

X[ zhX[y 1 +l] 

achieve z'=z 
else assert X[z])X[l:y 1 ] , 1,z,n, 1,y 1<n, 

X[z]<X[y 1+1] 

achieve X[z'])X[l:y 1 ] , X[z'])X[y 1+1] 

1,2 1 ,n 

The first subgoal is trivially achieved by the null statement. For 

the second subgoal we assume X[z]<X[y 1+1] and thereby know 

X[y 1+l]>X[z])X[l:y 1J and X[y 1+l])X[y 1+1] . So the second subgoal 

may be achi~ved by z'=y 1+1. 

All together, we have synthesized 

2.4 begin constant integer n 

assert 1,n 

constant real array X[l:n] ; variable integer z,y
1 

purpose X[zhX[l:n] , 1,z,n , y
1

=n 

(z,y 1 ) + 0,1) 

loop assert X[z])X[l:y 1] , 1,z,n, l<y
1

,n 

until y 1=n 

purpose X[z'])X[l:y 1 ] , X[z 1 ])X[y
1

+1] , l(z'<n 

if X[z])X[y 1+1] then null else z + y
1

+1 fi eop 

purpose X[z'])X[l:y 1] , 1,z 1 ,n, y1=y
1

+1 , y
1

<y1,n 

y1 + y 1+1 eop 

repeat eop 

assert X[z])X[l:n] , 1,z,n 

end 

At this point it is possible to optimize as in Example 1, e.g., 
by keeping y 2=X[z] invariant. 
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Example 3 

In this last example we illustrate a "top-down" development of 

the FIND algorithm (Hoare [1961, 1971], see also Dijkstra [1971]). 

This being a lengthy example, we shall leave out details of the more 

obvious steps. 

The problem is to rearrange the array A , so that A[f] is 

f-th in order of magnitude; all elements to the left of f have 

lesser values, and those to the right have greater values. Thus, 

we begin with 

3.1 begin constant integer f,n 

assert 1,f,n 

variable real array A[l:n] 

achieve A[l:f-l]<A[f],A[f+l:n] 

end 

We understand A[l:f-1],A[f],A[f+l:n] tobe equivalent to 

Note that the output specification should also include the require

ment that the final value of the array A be a permutation of the 

original. This shall be achieved by using the Operation 

exchange(A[i],A[j]) which has the effect: 

A'[i]=A[j] A A1 [j]=A[i] A (Yk)(k#iAk#j)(A'[k]=A[k]) 

Our goal is to 

This could be developed into a (partial) sort program. However, 

since we are looking for a more efficient solution, we introduce a 

quantifier and obtain the equivalent goal 

achieve A[l:f-1],A[f:f],A[f+l:n] . 

Now we transform the inner range, keeping the left side adjacent to 

the lower bound, and the right side adjacent to the upper bound. So 

What we have done is to divide A into three ordered segments 

A[l:i-1] , A[i:j] and A[j+l:n] and we shall try to shrink the 

middle segment A[i:j] into the single element A[f] 

We forma loop, with i=f=j as the exit test, and vacuously 

initialized the invariant by 

(i,j) +- (l,n) 
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Since 1,f,n, the range strategy suggests the invariant 1,i,f,j,n 

and increasing i and/or decreasing j , ensuring termination of 

the loop. (Since i,f,j , the exit test may be simplified to i=j.) 

3.2 begin assert 1,f,n 

(i,j) + (l,n) 

loop assert A[l:i-lJ,A[i:jJ,A[j+l:n] , 1,i,f,j,n 

until i=j 

end 

assert A[l:i-1],A[i:jJ,A[j+l:n] , 1,i,f,j,n , i#j 

achieve A'[l:i'-11,P.'[i.' :~ '],f-..'[~ '+:'..::-.] , i.<::.',::', 

j '=j 

or achieve A'[l:i'-1],A'[i':j 1 ],A'[j '+l:n] , :'"<= '<~, 

i'=i 

repeat 

In the disjunctive achieve we have omitted the possibility that 

both i and j are updated. Since i<i' and j '<j and we have 

already asserted the desired relation for A[l:i-1] and A[j+l:n] , 

we can separate out those parts of the achieve. Thus, after also 

substituting for i' and j' , we obtain 

achieve A'[l:i-1] (A'[i':j],A'[j+l:n] , 

A'[i:i'-l]ia;A'[i':j], 

i<i 'a;;f ' j '=j 

or achieve A1 [1:i-1J,A'[i:j 1 ], A'[j+l:n] , 

A 1 [ i: j '] a;;A 1 [ j '+1: j J 

fa.j'<j 'i'=i . 

We would like to apply the if-then-else-fi strategy to this dis

junctive goal, but we want to first unify the two disjuncts as much 

as possible. We notice that by introducing a new variable g , 

where g=i'-i in the first disjunct and g=j' in the second, the 

second lines of each disjunct are unified to A'[i:g],A'[g+l:j] . 

The goal, then, is transformed into 

assert A[l:i-1J,A[i:j]a;;A[j+l:n] , 1,i,fa.j,n, i#j 

achieve A'[l:i-1] a;;A'[g+l:jJ,A'[j+l:n] , 

A'[i:gJ,A'[g+l:j] , 

i<g+la;;f , i'=g+l , j '=j 

or achieve A'[l:i-l]a.A'[i:gJ, A'[j+l:n] , 

A'[i:gJ,A'[g+l:j] , 

f(g<j ' j '=g ' i'=i 
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We can extract from both disjuncts the identical conjunct 

A'[i:g],A'[g+l:j] , and since we have asserted i,f,j and want 

i,g<f in the first disjunct, and f,g<j in the second, we can also 

extract i,g<j . In the first disjunct we wish to maintain 

A'[l:i-l]~A'[g+l:j],A'[j+l:n] andin the second 

A'[l:i-1],A'[i:g],A'[j+l:n] . It is therefore sufficient to require 

the preservation of both, that is (since i,g<j ), 
_.'.._ 1 [ ::_: .::_- ::_ J c.:., [ _:_: ~ ] ,_.:_ 1 [ ~ + ~: n, • '.:° C 

achieve A'[l:i-1],A'[i:j],A'[j+l:n] , 

-----•~::_:;::~i:;_.'.._'[;::+::.:~J 'üg<~' 

(::_'=i+::_c· /\ j'=~) V (i'=i /\ j'=r:,~f) 

Topreserve the first coniunct we shall require that the multi

,
0

-
0 :.•=_:::_-::.~, .. '[>-~ ;;:--.. _.:•[-i+,:rJ "'Qucil A[l:-i-11, A[i:j] 

and A[=+l:n] , respectively. We have 

.-. ' [ _ : .::.-: _ = !-. ~ -:. : _ - ·_ , t._ ' : .:. : ~ l = P. [ i. : j l , A ' [ j + L : n] = A [ j + 1 : n 1 , 
A'[i:g],A'[g+l:j] , i,g<j , 

(i'=g+l,f A j'=j) V (i'=i A j'=g~f) ' 

Since we shall only exchange within the range [i:j] , these equali

ties wi~l be maintained and we omit them in the sequel. We now split 

oür g0al into +wo consecutive subgoals 

achieve A'[i:g],A'[g+l:j] , üg<j 

achieve A'=A, g'=g, i'=g+l, ~ 1 =j , g+l(f 

~ achieve A'=A, g'=g , i'=i , j'=g , g~f 

Since g+l,f and g~f are mutually exc:usive, we apply the if

then-else-fi strategy to the second subgoal obtaining 

3.3 assert A[l:i-l](A[i:jJ,A[j+l:n] , 1,i,r,j,n , i!j 

a er . .: (: 'i ": f-. ' [ .: : .2_ h l, ' [ g + : : = l ' i ":' , fJ + l ( i 

So far we have succeeded in synthesizing the shrinking of the 

middle segment A[i·j] by first dividing it around some point g 

and then expanding either the left segment A[l:i-1] to A[l:g] 

(i+g+l when g+l,f) or the right segment A[j+l:n] to A[g+l:n] 

(j+g when g~f) 

The remaining subgoal is actually a specification of Hoare's 

PARTITION subroutine. Its purpose is to rearrange an array segment 

A[i:j] so that there exists some point g which partitions [i:j] 
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into two ordered parts, 
We strengthen the current goal, by introducing a new program 

variable h : 

(Since the conjunct g+l,j was closely connected with the range 

[g+l:j] , both were transformed.) It is possible, for example, to 

let g=i and search for the minimum of A[i:j] • However in order 

to derive a more efficient program, we use the (tailor-made) 

which allows us to replace the nested quantified expression 

A'[i:gJ,A'[h+l:j] with a conjunction of two singly quantified ex

pressions A'[i:gJ,y and y,A'[h+l:j] . We obtain the stronger 

goal 

We now apply the loop-until-repeat strategy, testing for g=h, and 

must initialize 

Taking i=g and h+l=j , in order to eliminate the quantifiers, we 

are left with 

achieve A'[i]~y , y,A'[j] , i=g , h+l=j 

or, by strengthening the first conjunct, 

achieve y=A'[i] , A'[iJ,A'[j] , g=i , h=j-1 . 

A simple application of the if-then-else-fi strategy gives the ini

tialization 

if A[iJ,A[j] then null else exchange(A[i], A[j]) fi 

(y,g,h) + (A[i], i, j-1) 

It is now possible to determine bounds for g and h and use 

th t t . 0 . f f . 0 e range s ra egy, since g =i, g =h , J-l=h We assume 
• f hf h. i,g,g = , (J-1 , and therefore keep i,g,h<j-1 invariant, Fur-

thermore, we require that either g increases or h decreases, 

and the loop must terminate, 

We have, so far, the outer loop body: 
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3. 4 assert A[l:i-ll(A[i:jl(A[j+l:nl , l(i(f(7(n , itj 

if A[i],A[j] then null else exchange(A[i], A[j]) fi 

(y,g,h) + (A[i], i, j-1) 

assert y=A[i]~A[j] , (g,h)=(i,j-1) 

loop assert A[i:gJ,y,A[h+l:j], i,g,h,j-1 

until g=h 

achieve A'[i:g']~y',A'[h'+l:j] , g(g 1 (h 1 (h , (g<g 1 v h'<h) 

repeat 

if g~f then j + g else i + g+l fi 

For the inner loop body, we have the subgoal: 

assert A[i:g](y(A[h+l:j] , i(g<h(j-1 

a-:::<e·:e r.'[::'.:g'h•;'c.'.'[h'+l:=J 'g(g 1 (h 1 (h' (g<g' V h'<h). 

Protecting what has been asserted gives 

a::.:e·:e .---.•[::::g]=/..[::;:-], ·:'=•;, A'[h+l:jl=A[h+l:jl 

.:-. ! [ g-;- ~ : i? ! l ~ ·; ( ;.. ! [ :-. ! + L : h l , 

g(g'(h',h , (g<g' v h'<h) 

Now eliminating quantifiers (and omitting the first line) leaves 

achieve A' [g+l](y 
' 

g' =g+l 
' 

h'=h 

or achieve y,A' [h] 
' 

h' =h-1 
' 

g' =g 

or achieve A' [g+l],y(A' [h] 
' 

g'(h' 
' 

g' =g+l 

The if-then-else-fi strategy reduces this to 

assert A[i:gJ,y,A[h+l:j] , i,g<h,j-1 

if A[g+l](y then g + g+l 

else if y(A[h] then h + h-1 

else assert A[h]<y<A[g+l] 

achieve A'[g+l],y , g'=g+l , h'=h 

or achieve y,A'[h] , h'=h-1 , g'=g 

' 
h' =h-1 

or achieve A'[g+lJ,y,A'[h] , g+l,h-1 , g'=g+l , h'=h-1 

fi fi 

The last disjunct in this subgoal is prefered since it advances 

more towards the exit test g=h. Written in full, we have 

assert A[i:gJ,y,A[h+l:j] , i,g<h,j-1 , A[h]<y<A[g+l] 

achieve A'[i:g]=A[i:g] , y'=y, A'[h+l:j]=A[h+l:j] , 

A'[g+l]~y,A'[h] , g+l,h-1 , g'=g+l , h'=h-1 . 

The conjunct g+l,h-1 can be proven true, since A[h]<A[g+l] imp

lies htg+l and we also know g<h. It is sufficient to 
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achieve A'[i:g]=A[i:g] , y 1 =y , A'[h+l:j]=A[h+l:j] , 

A'[g+l]=A[h] , A'[h]=A[g+l] , g'=g+l , h'=h-1 

Since neither g+l nor h are in the ranges [i:g] and [h+l:j] , 

this is achievable by 

exchange(A[h],A[g+l]) 

(g,h) + (g+l , h-1) 

Note that both g+l and h are within the range [i:j] and the 

unwritten conjuncts A'[l:i-l]=A[l:i-1] , A'[i:j]=A[i:j] , 

A'[j+l:n]=A[j+l:n] are also satisfied. 

The complete program is: 

3.5 begin constant integer f,n 

assert 1,f,n 

variable real array A[l:n] 

variable integer i,j 
(i,j) + (l,n) 

loop assert A[l:i-1],A[i:jJ,A[j+l:n] , 1,i,f,j,n 

until i=j 

purposel A'[l:i'-l]~A'[i':j'],A'[j'+l:n] , 

Üi',f,j',j , (:<i' V='<=) 

variable integer g,h 

variable real y 

purpose2 A'[l:i-l]=A[l:i-1] , A'[i:j]=A[i:j] , 

A'[j+l:nl=A[j+l:n] , A'[i:g]O.'[g+::j] , üg<j 

if A[iJ,A[j] then null else exchange(A[i], A[j]) fi 

(y,g,h) + (A[i], i, i-1) 

loop assert A'[l:i-l]=A[l:i-1] , A'[i:j]=A[i:j] , 

A'[j+~:~]=A[j+l:n] , 

A'[i:g](y(A 1 [h+l:j] , i<g(h<j 
until g=h 

purpose3 A'[i:g'J,y'(A'[h'+l:j] , g,g',h',h , 

(g<g' V h'<h) 

if A[g+l](y then g + g+l 

else if y<A[h] then h + h-1 

else exchange(A[h], A[g+l]) 

(g,h) + (g+l, h-1) 

fi fi eop3 

repeat 
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assert A'[l:i-l]=A[l:i-1] , A'[i:j]=A[i:j] 

A'[7+l:nl=A[j+l:nl , 

A'[i:gJ,y,A'[g+l:j] , i(g = h<j eop2 

,.'Ll'f::'SeL P.'=A, f,:'=g, (i'=g+l,f111'=j)v(i'=i11j'=g~f) 

if g')f then j +- g else i +- g+l fi eop4 eopl 

reDeat 

asserT A'[l:f-l](A 1 [f],A 1 [f+l:n] , A'[l:n]=A[l:n] 

err-1 

IV. ABSTRACTION 

In tris section we illustrate the possibility of abstracting 

completed progrd~S, and later applying the subroutines and tech

niq 1Jes obtained. 

For example, after successfully synthesizing a binary search in 

a conotonic array (possib:y interactively, see Floyd [1971]), we 

would like to somehow extract the underlying search technique. We 

have, say, the annotated search program: 

-.~ 1 b~gin constant integer n; real x; real array X[l:n] 
~ ' :: . ' :.. c; ( :-. ·1 ' ;,: ,. :< :-. , r li l-- , , ) ( 1 , :- d. , r.i ) ( X [ k l , X [ Q l ) 1 

variable integer z,y,h 

(z,y) +- (l,n) 

l0op assert x~X[z] , x,X[y] , 1,z,y,n 

i.;,ntil z)y 

h +- (z+y)+2 

if x,X[h] then y +- ~ else z +- h+l fi 

repeat 

~:-~:- x-l[z. , xc/:z~ 

end 

; C.:t r. 

Analyzing the proof of this program shows that the following con

dition~ - derivab:e from the giv~n input assertion - are sufficient 

for proving correctness: 

(a) initialization. x~X[l] , x,X[n] , 1,n 

(b) then path. none 

(c) else path. (Vu)(~Cx,X[u]) ~ x')X[u+l]) . 

This condition is a "coverup" for the weaker 

(Vz ,y) ( x')X[z] 11 x,X[y] 11 1,z<y,n 11 ~(x,X[ (z+y)+2]) ~ 

x~X[ (z+y)+2+1]) 

Furthermore, the particular semantics of the predicates x~X[z] and 

x(X[z] are not needed, nor the fact that the lower bound of the 
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range of X is the constant 1. We accordingly abstract the program 

by replacing 1 with R.. , x~X[z] with p(z) and x(X[z] with 

q(z) . Thus, we have abstracted the schema 

4.2 begin constant integer t,n 

assert t,n, p(R..), q(n), (Vu)(~q(u);:) p(u+l)) 

variable integer z,y,h 

(z,y)-+- (R..,n) 

loop assert p(z) , q(y) , t,z,y,n 

until z.iy 

h-<- (z+y)+2 

if q(h) then y-<- h else z-+- h+l fi 

repeat 

assert p(z) , q(z) , t,z,n 

end 

This schema will solve a goal of the form 

provided we can prove (or first achieve): t,n , p(R..) , q(n) , and 

(Vu)(~q(u);:) p(u+l)) . 

Consider now our integer square-root problem. Our goal was 

assert o,x 
-h-.- 2 ( 1) 2 0 ac ieve z ,x , x< z+ , ,z . 

(The conjunct 0(z was suggested by the range strategy.) Matching 

this with the schema, we let p(z) be z 2,x, q(z) be x<(z+l) 2 

and R.. be 0 . 

The last conjunct achieved by the schema, z,n , has no counter

part, To apply the schema, we must have: o,n, o2,x, x<(n+l) 2 and 

(Vu)(x)(u+l) 2 ;:) (u+l) 2,x) , The second and fourth conditions are 

trivially proved, leaving the subgoal 

achieve o,n , x<(n+1) 2 

tobe achieved (e.g., by n+x) before applying the schema. In this 

manner, we have arrived at an (unoptimized) binary search program 

for the integer square-root, 

As a second example consider the search for an array maximum 

that we synthesized in Example 2. The solution may be straightfor

wardly abstracted to obtain the schema 
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begin assert x.(;n, p(x.,O, p(z,[x.:y
1

])A~p(z,y
1

+1) ~ 

p(yl+l,[x. :yl+l]) 

(z,y 1 ) +- (t,.0 

loop assert p(z,[t:y 1 ]) , t,z,n , t,y
1

,n 

until y 1=n 

if p(z,y 1+1) then null else z +- y 1+1 fi 

Y1 +- yl+l 
repeat 

assert p(z,[,:.:n]) , x.~z~n , y
1

=n 

end 

H-ere p(z,[t:n]) is short for ('v'k)(Uk,n)(p(z,k)). This schema 

can then be used for either maximum or minimum, both of which sa

tisfy the input assertion for p . 

If we are presented with the problem 

achieve z 2=X[z 1 J , X[z 1 J,x[i:j] , i,z 1,j 

we could solve it by using the above schema and adding the conjunct 

z
2

=X[z
1

] as an invariant throughout the loop (cf. the suggestion 

for optimization at the end of the example) or simply by assigning 

z
2
+-X[z

1
] after achieving X[z 1 J,x[i:j] . In a sort program, if 

we have a subgoal 

ac~.iE,l'" l'[::.hl.'[i::-.] , l'[::::-,l=Y.[i:r,] 

we might separate it into a search for a maximum followed by an ex

change: 

achieve X[z])X[i:n] , i,z,n 

achieve X'[i]=X[z] , X'[i:n]=X[i:n] 

Another possibility for abstraction: first synthesize an itera

tive version of a recursive program, say factorial, and then abst

ract it to a more general recursion-to-iteration translation schema 

such as those of Darlington and Burstall [1973]. 

V. CONCLUSION 

Clearly the work described in this paper is but a small step to

ward the distant, albeit important, goal of fully or semi-automated 

programming. The aspects we have dealt with and other facets of the 

overall goal are the subject of much current research. 

Same of the still outstanding problems are typical of artificial 

intelligence research. Specific items in need of further investiga

tion are: providing the system with a "sense of direction", intro-
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ducing more complex data structures, developing tools for the evalu

ation and comparison of program efficiency, formulating more general 

termination strategies; determining which program segments are wor

thy of remembering and formalizing the details of their abstraction, 

formulating precise criteria for schema application, and specifying 

methods for adapting a schema which does not quite fit. 

A programming system such as that suggested here is obviously li

mited by the power of the theorem prover used. We are planning the 

implementation of the strategies described in QLISP (Reboh and Sa

cerdoti [1973]) using Waldinger and Levitt's [1974] program verifi

cation system. 
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