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Abstract

Flash memory is a type of electrically erasable pro-
grammable read-only memory (EEPROM). Because flash
memories are nonvolatile and relatively dense, they are now
used to store files and other persistent objects in handheld
computers, mobile phones, digital cameras, portable music
players, and many other computer systems in which mag-
netic disks are inappropriate. Flash, like earlier EEPROM
devices, suffers from two limitations. First, bits can only be
cleared by erasing a large block of memory. Second, each
block can only sustain a limited number of erasures, after
which it can no longer reliably store data. Due to these limi-
tations, sophisticated data structures and algorithms are re-
quired to effectively use flash memories. These algorithms
and data structures support efficient not-in-place updates of
data, reduce the number of erasures, and level the wear of
the blocks in the device. This survey presents these algo-
rithms and data structures as well as open theoretical prob-
lems that arise in this area.

1. Introduction

Flash memory is a type of electrically erasable pro-
grammable read-only memory (EEPROM). Flash memory
is nonvolatile (retains its content without power), so it is
used to store files and other persistent objects in worksta-
tions and servers (for the BIOS), in handheld computers and
mobile phones, in digital cameras, and in portable music
players.

The read/write/erase behaviors of flash memory is radi-
cally different than that of other programmable memories,
such as volatile RAM and magnetic disks. Perhaps more im-
portantly, memory cells in a flash device (as well as in other
types of EEPROM memory) can be written to only a lim-
ited number of times, between 10,000 and 1,000,000, after
which they wear out and become unreliable.

In fact, flash memories come in two flavors, NOR and
NAND, that are also quite different from each other. In
both types, write operations can only clear bits (change their
value from 1 to 0). The only way to set bits (change their
value from 0 to 1) is to erase an entire region of mem-
ory. These regions have fixed size in a given device, typ-
ically ranging from several kilobytes to hundreds of kilo-
bytes, and are called erase units. NOR flash, the older type,
is a random-access device that is directly addressable by
the processor. Each bit in a NOR flash can be individually
cleared once per erase cycle of the erase unit containing it.
NOR devices suffers from high erase times. NAND flash,
the newer type, enjoys much faster erase times, but it is not
directly addressable (it is accessed by issuing commands to
a controller), access is by page (a fraction of an erase unit,
typically 512 bytes), not by bit or byte, and each page can
be modified only a small number of times in each erase cy-
cle. That is, after a few writes to a page, subsequent writes
cannot reliably clear additional bits in the page; the entire
erase unit must be erased before further modifications of the
page are possible.

Because of these peculiarities, storage-management
techniques that were designed for other types of memory
devices, such as magnetic disks, are not always appropri-
ate for flash. To address these issues, flash-specific storage
techniques have been developed since the widespread in-
troduction of flash memories in the early 1990s. Some of
these techniques were invented specifically for flash memo-
ries, but many have been adapted from techniques that were
originally invented for other storage devices. This article
surveys the data structures and algorithms that have been
developed for management of flash storage, and highlights
theoretical open problems that arise in this area.

Most of the paper is devoted to a discussion of flash
data structures that store an array of fixed- or variable-
length blocks. Such data structures typically emulate mag-
netic disks, where each block in the array represents one
disk sector. Even these simple data structures pose many



flash-specific challenges, such as wear leveling and efficient
reclamation. These challenges and techniques to address
them are discussed in detail in Section 2. Section 3 men-
tions flash-specific file systems and other flash-specific data
structures. Section 4 presents open problems, and Section 5
summarizes the paper.

2. Block-Mapping Techniques

One approach to using flash memory is to treat it as a
block device that allows fixed-size data blocks to be read
and written, much like disk sectors. This allows standard
file systems designed for magnetic disks, such as FAT, to
utilize flash devices. In this setup, the file system code calls
a device driver, requesting block read or write operations.
The device driver stores and retrieves blocks from the flash
device. (Some removable flash devices, like CompactFlash,
even incorporate a complete ATA disk interface, so they can
actually be used through the standard disk driver.)

However, mapping the blocks onto flash addresses in a
simple linear fashion presents two problems. First, some
data blocks may be written to much more than others. This
presents no problem for magnetic disks, so conventional file
systems do not attempt to avoid such situations. But when
the file system in mapped onto a flash device, frequently-
used erase units wear out quickly, slowing down access
times, and eventually burning out. This problem can be ad-
dressed by using a more sophisticated block-to-flash map-
ping scheme and by moving around blocks. Techniques that
implement such strategies are called wear-leveling tech-
niques.

The second problem that the identity mapping poses is
the inability to write data blocks smaller than a flash erase
unit. Suppose that the data blocks that the file system uses
are 4 KB each, and that flash erase units are 128 KB each.
If 4 KB blocks are mapped to flash addresses using the
identity mapping, writing a 4 KB block requires copying
a 128 KB flash erase unit to RAM, overwriting the appropri-
ate 4 KB region, erasing the flash erase unit, and rewriting
it from RAM. Furthermore, if power is lost before the entire
flash erase unit is rewritten to the device, 128 KB of data are
lost; in a magnetic disk, only the 4 KB data block would be
lost. It turns out that wear-leveling technique automatically
address this issue as well.

2.1. The Block-Mapping Idea

The basic idea behind all the wear-leveling techniques
is to map the block number presented by the host, called
a virtual block number, to a physical flash address called a
sector. (Some authors and vendors use a slightly different
terminology.) When a virtual block needs to be rewritten,
the new data does not overwrite the sector where the block is

currently stored. Instead, the new data is written to another
sector and the virtual-block-to-sector map is updated.

Typically, sectors have a fixed size and occupy a fraction
of an erase unit. In NAND devices, sectors usually occupy
one flash page. But in NOR devices, it is also possible to use
variable-length sectors.

This mapping serves several purposes:

• First, writing frequently-modified blocks to a different
sectors in every modification evens out the wear of dif-
ferent erase units.

• Second, the mapping allows writing a single block
to flash without erasing and rewriting an entire erase
unit [1, 2, 3].

• Third, the mapping allows block writes to be imple-
mented atomically, so that if power is lost during a
write operation, the block reverts to its pre-write state
when flash is used again.

Atomicity is achieved using the following technique. Each
sector is associated with a small header, which may be ad-
jacent to the sector or elsewhere in the erase unit. When a
block is to be written, the software searches for an free and
erased sector. In that state, all the bits in both the sector
and its header are all 1. Then a free/used bit in the header
of the sector is cleared, to mark that the sector is no longer
free. Then the virtual block number is written to its header,
and the new data is written to the chosen sector . Next, the
pre-valid/valid bit in the header is cleared, to mark the sec-
tor is ready for reading. Finally, the valid/obsolete bit in
the header of the old sector is cleared, to mark that it is no
longer contains the most recent copy of the virtual block.

In some cases, it is possible to optimize this procedure,
for example by combining the free/used bit with the virtual
block number: if the virtual block number is all 1s, then the
sector is still free, otherwise it is in use.

If power is lost during a write operation, the flash may
be in two possible states with respect to the modified block.
If power was lost before the new sector was marked valid,
its contents are ignored when the flash is next used, and its
valid/obsolete bit can be set, to mark it ready for erasure.
If power was lost after the new sector was marked valid
but before the old one was marked obsolete, both copies
are legitimate (indicating two possible serializations of the
failure and write events), and the system can choose either
one and mark the other obsolete. If choosing the most recent
version is important, a two-bit version number can indicate
which one is more recent. Since there can be at most two
valid versions with consecutive version numbers modulo 4,
1 is newer than 0, 2 than 1, 3 than 2, and 0 is newer than
3 [4].



2.2. Data Structures for Mapping

How does the system find the sector that contains a given
block? Fundamentally, there are two kinds of data struc-
tures that represent such mappings. Direct maps are essen-
tially arrays that store in the ith location the index of the
sector that currently contains block i. Inverse maps store
in the ith location the identity of the block stored in the ith
sector. In other words, direct maps allow efficient mapping
of blocks to sectors, and inverse maps allow efficient map-
ping of sectors to blocks. In some cases, direct maps are
not simple arrays but more complex data structure. But a
direct map, whether implemented as an array or not, always
allows efficient mapping of blocks to sectors. Inverse maps
are almost always arrays, although they may not be contigu-
ous in physical memory.

Inverse maps are stored on the flash device itself. When
a block is written to a sector, the identity of the block is also
written. The block’s identity is always written in the same
erase unit as the block itself, so that they are erased together.
The block’s identity may be stored in a header immediately
preceding the data, or it may be written to some other area
in the unit, often a sector of block numbers. The main use of
the inverse map is to reconstruct a direct map during device
initialization (when the flash device is inserted into a system
or when the system boots).

Direct maps are stored at least partially in RAM, which
is volatile. The reason that direct maps are stored in RAM
is that by definition, they support fast lookups. This implies
that when a block is rewritten and moved from one sector
to another, a fixed lookup location must be updated. Flash
does not support this kind of in-place modification.

To summarize, the indirect map on the flash device it-
self ensures that sectors can always be associated with the
blocks that they contain. The direct map, which is stored in
RAM, allows the system to quickly find the sector that con-
tains a given block. These block-mapping data structures
are illustrated in Figure 1.

A direct map is not absolutely necessary. The system
can search sequentially through the indirect map to find a
valid sector containing a requested block. This is slow, but
efficient in terms of RAM usage. By only allowing each
block to be stored on a small number of sectors, searching
can be performed much faster (perhaps through the use of
hardware comparators, as patented in [1, 2]). This tech-
nique, which is similar to set-associative caches, reduces
the amount of RAM or hardware comparators required for
the searches, but reduces the flexibility of the mapping. The
reduced flexibility can lead to more frequent erases and to
accelerated wear.

The Flash Translation Layer (FTL) is a technique to store
some of the direct map within the flash device itself while
trying to reduce the cost of updating the map on the flash

device. This technique was originally patented by Ban [5],
and was later adopted as a PCMCIA standard [6].

The FTL uses a combination of mechanisms, illustrated
in Figure 2, to perform the block-to-sector mapping.

1. Block numbers are first mapped to logical block num-
bers, which consist of a logical erase unit number
(specified by the most significant bits of the logical
block number) and a sector index within the erase unit.
This mechanism allows the valid sectors of an erase
unit to be copied to a newly erased erase unit without
changing the block-to-logical-block map, since each
sector is copied to the same location in the new erase
unit.

2. This block-to-logical-block map can be stored partially
in RAM and partially within the flash itself. The map-
ping of the first blocks, which in FAT-formatted devices
change frequently, can be stored in RAM, while the rest
is stored in the flash device. The transition point can be
configured when the flash is formatted, and is stored in
a header in the beginning of the flash device.

3. The flash portion of the block-to-logical-block map is
not stored contiguously in the flash, but is scattered
throughout the device, along with an inverse map. A
direct map in RAM, which is reconstructed during ini-
tialization, points to the sectors of the map. To look up
a the logical number of a block, the system first finds
the sector containing the mapping in the top-level RAM
map, and then retrieves the mapping itself. In short, the
map is stored in a two-level hierarchical structure.

4. When a block is rewritten and moved to a new sector,
its mapping must be changed. To allow this to happen
at least some of the time without rewriting the relevant
mapping block, a backup map is used. If the relevant
entry in the backup map, which is also stored on flash,
is available (all 1s), the original entry in the main map
is cleared, and the new location is written to the backup
map. Otherwise, the mapping sector must be rewritten.
During lookup, if the mapping entry is all 0s, the sys-
tem looks up the mapping in the backup map. This
mechanism favors sequential modification of blocks,
since in such cases multiple mappings are moved from
the main map to the backup map before a new mapping
sector must be written. The backup map can be sparse;
not every mapping sector must have a backup sector.

5. Finally, logical erase units are mapped to physical
erase units using a small direct map in RAM. Because
it is small (one entry per erase unit, not per sector), the
RAM overhead is small. It is constructed during initial-
ization from an inverse map; each physical erase unit
stores its logical number. This direct map is updated
whenever an erase unit is reclaimed.
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Figure 1. Block mapping in a flash device. The gray array on the right is the virtual block to physical
sector direct map, residing in RAM. Each physical sector contains a header and data. The header
contains the index of the virtual block stored in the sector, an erase counter, valid and obsolete
bits, and perhaps an error-correction code and a version number. The virtual block numbers in the
headers of populated sectors constitute the inverse map, from which a direct map can be constructed.
A version number allows the system to determine which of two valid sectors containing the same
virtual block is more recent.

Ban later patented a translation layer for NAND devices,
called NFTL [7]. It is simpler than the FTL and comes in
two flavors: one for devices with spare storage for each sec-
tor (sometimes called out-of-band data), and one for devices
without such storage. The flavor for devices without spare
data is less efficient, but simpler, so we’ll start with it. The
virtual block number is broken up into a logical erase-unit
number and a sector number within the erase unit. A data
structure in RAM maps each logical erase unit to a chain of
physical units. To locate a block, say block 5 in logical unit
7, the system searches the appropriate chain. The units in
the chain are examined sequentially. As soon as one of them
contains a valid sector in position 5, it is returned. The 5th
sectors in earlier units in the chain are obsolete, and the 5th
sectors in later units are still free. To update block 5, the
new data is written to sector 5 in the first unit in the chain
where it is still free. If sector 5 is used in all the units in the
chain, the system adds another unit to the chain. To reclaim
space, the system folds all the valid sectors in the chain to
the last unit in the chain. That unit becomes the first unit
in the new chain, and all the other units in the old chain are
erased. The length of chains is one or longer.

If spare data is available in every sector, the chains are
always of length one or two. The first unit in the chain is
the primary unit, and blocks are stored in it in their nominal
sectors (sector 5 in our example). When a valid sector in
the primary unit is updated, the new data are written to an

arbitrary sector in the second unit in the chain, the replace-
ment unit. The replacement unit can contain many copies
of the same virtual block, but only one of them is valid. To
reclaim space, or when the replacement unit becomes full,
the valid sectors in the chain are copied to a new unit and
the two units in the old chain are erased.

It is also possible to map variable-length logical blocks
onto flash memory, as shown in Figure 3. Wells at al.
patented such a technique [8], and a similar technique was
used by Microsoft Flash File System [9]. The motivation for
the Wells-Husbun-Robinson patent was compressed storage
of standard disk sectors. For example, if the last 200 bytes
of a 512-byte sector are all zeros, the zeros can be repre-
sented implicitly rather than explicitly, thereby saving stor-
age. The main idea in such techniques is to fill an erase units
with variable-length data blocks from one end of the unit,
say the low end, while filling fixed-size headers from the
other end. Each header contains a pointer to the variable-
length data block that it represents. The fixed-size headers
allow constant-time access to data (that is, to the first word
of the data). The fixed-size headers offer another potential
advantage to systems that reference data blocks by logical
erase-unit number and a block index within the unit. The
Microsoft Flash File System is one such system. In such a
system, a unit can be reclaimed and defragmented without
any need to update references to the blocks that were relo-
cated. We describe this mechanism in more detail below.
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Figure 2. An example of the FTL mapping structures. The system in the figure maps two logical erase
units onto three physical units. Each erase unit contains four sectors. Sectors that contain page
maps contain four mappings each. Pointers represented as gray rectangles are stored in RAM. The
virtual-to-logical page maps, shown on the top right, are not contiguous, so a map in RAM maps their
sectors. Normally, the first sectors in the primary map reside in RAM as well. The replacement map
contains only one sector; not every primary map sector must have a replacement. The illustration of
the entire device on the bottom also shows the page-map sectors. In the mapping of virtual block 5,
the replacement map entry is used, because it is not free (all 1’s).

Smith and Garvin patented a similar system, but at a
coarser granularity [10]. Their system divides each erase
unit into a header, an allocation map, and several fixed-size
sectors. The system allocates storage in blocks comprised
of one or more contiguous sectors. Such blocks are usually
called extents. Each allocated extent is described by an en-
try in the allocation map. The entry specifies the location
and length of the extent, and the virtual block number of the
first sector in the extent (the other sectors in the extent store
consecutive virtual blocks). When a virtual block within an
extent is updated, the extent is broken into two or three new
extents, one of which contain the now obsolete block. The
original entry for the extent in the allocation map is marked
as invalid, and one or two new entries are added at the end
of the map.

2.3. Erase-Unit Reclamation

Over time, the flash device accumulates obsolete sectors
and the number of free sectors decrease. To make space for
new blocks and for updated blocks, obsolete sectors must
be reclaimed. Since the only way to reclaim a sector is to

erase an entire unit, reclamation (sometimes called garbage
collection) operates on entire erase units.

Reclamation can take place either in the background
(when the CPU is idle) or on-demand when the amount of
free space drops below a predetermined threshold. The sys-
tem reclaims space in several stages.

• One or more erase units are selected for reclamation.

• The valid sectors of these units are copied to newly
allocated free space elsewhere in the device. Copy-
ing the valid data prior to erasing the reclaimed units
ensures persistence even if a fault occurs during recla-
mation.

• The data structures that map logical blocks to sectors
are updated if necessary, to reflect the relocation.

• Finally, the reclaimed erase units are erased and their
sectors are added to the free-sector reserve. This stage
might also include writing an erase-unit header on each
newly-erased unit.
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Figure 3. Block mapping with variable-length sectors. Fixed sized headers are added to one end of
the erase unit, and variable-length sectors are added to the other size. The figure shows a unit with
four valid sectors, two obsolete ones, and some free space (including a free header, the third one).

Immediately following the reclamation of a unit, the num-
ber of free sectors in the device is at least one unit’s worth.
Therefore, the maximum amount of useful data that a de-
vice can contain is smaller by one erase unit than its physi-
cal size. In many cases, the system keeps at least one or two
free and erased units at all times, to allow all the valid data
in a unit that is being reclaimed to be relocated to a single
erase unit. This scheme is absolutely necessary when data is
stored on the unit in variable-size blocks, since in that case
fragmentation may prevent reclamation altogether.

2.3.1. Reclamation Policies

The reclamation mechanism is governed by two policies:
which units to reclaim, and where to relocate valid sectors
to. These policies are related to another policy, which gov-
erns sector allocation during block updates. These three in-
terrelated policies affect the system in three ways. They
affect the effectiveness of the reclamation process, which is
measured by the number of obsolete sectors in reclaimed
units, they affect wear leveling, and they affect the map-
ping data structures (some relocations require simple map
updates and some require complex updates).

The goals of wear leveling and efficient reclamation
are often contradictory. Suppose that an erase unit con-
tains only so-called static data, data that is never or rarely
updated. Efficiency considerations suggest that this unit
should not be reclaimed, since reclaiming it would not free
up any storage—its data will simply be copied to another
erase unit, which will immediately become full. But al-
though reclaiming the unit is inefficient, this reclamation
can reduce the wear on other units, and thereby level the
wear. Our supposition that the data is static implies that it
will not change soon (or ever). Thereby, by copying the
contents of the unit to another unit which has undergone

many erasures, we can reduce future wear on the other unit.
Several groups developed heuristic reclamation poli-

cies [11, 12, 13, 14, 15, 16, 17]. Most of these policies
attempt to balance wear and efficiency concerns. Due to
lack of space, we cannot describe these policies in detail.

Erase-unit reclamation involves a fourth policy, but it
is irrelevant to our discussion. The fourth policy triggers
reclamation events. Clearly, reclamation must take place
when the system needs to update a block, but no free sec-
tor is available. This is called on-demand reclamation. But
some systems can also reclaim erase units in the background
when the flash device, or the system as a whole, are idle.
The ability to reclaim in the background is largely deter-
mined by the overall structure of the system, which is be-
yond the scope of this paper. Real-time systems that must
not miss deadlines cannot reclaim on demand, but must in-
stead plan the reclamation schedule to ensure that the sys-
tem can meet its deadlines. Chang and Kuo proposed a
guaranteed reclamation policy for real-time systems with
periodic tasks [18].

2.3.2. Maintaining or Estimating Erasure Counts

The decisions taken by most of the heuristic reclamation
and wear-leveling policies depend on how many times each
erase unit has been erased. Clearly, any technique that re-
lies on explicit erase counters in the erase-unit headers is
susceptible to loss of an erase counter if power is lost af-
ter a unit is erased but before the new counter is written to
the header. This section describes several solutions to this
problem.

One way to address this risk is to store the erase counter
of unit i on another unit j �= i. One such technique was
patented by Marshall and Manning, as part of a flash file
system [19]. Their system stores an erase counter in the



header of each unit. Prior to the reclamation of unit i, the
counter is copied to a specially-marked area in an arbitrary
unit j �= i. Should power be lost during the reclamation, the
erase count of i will be recovered from unit j after power
is restored. Assar et al. patented a simpler but less efficient
solution [3]. They proposed a bounded unary 8-bit erase
counter, which is stored on another erase unit. The counter
of unit i, which is stored on another unit j �= i, starts at all
ones, and a bit is cleared every time i is erased. Because
the counter can be updated, it does not need to be erased ev-
ery time unit i is erased. On the other hand, the number of
updates to the erase counter is bounded. When it reaches
the maximum (8 in their patent), further erases of unit i
will cause loss of accuracy in the counter. In their system,
such counters were coupled with periodic global restarts of
the wear-leveling mechanism, in which all the counters are
rolled back to the erased state.

Jou and Jeppesen patented a technique that maintains an
upper bound on the wear (number of erasures) [20]. The
bound is always correct, but not necessarily tight. Their
system uses an erase-before-write strategy: the valid con-
tents of an erase unit chosen for reclamation are copied to
another unit, but the unit is not erased immediately. Instead,
it is marked in the flash device as an erasure candidate, and
added to a priority queue of candidates in RAM. The queue
is sorted by wear; the unit with the least wear in the queue
(actually the least wear bound) is erased when the system
needs a free unit. If power is lost during an erasure, the new
bound for the erased unit is set to the minimum wear among
the other erase candidates plus 1. Since the pre-erasure
bound on the unit was less than or equal to that of all the
other ones in the queue, the new bound may be too high,
but it is correct. (The patent does not increase the bound
by 1 over that of the minimum in the queue; this yields a
wear estimate that may be just as useful in practice, but not
a bound.) This technique levels the wear to some extent, by
delaying reuse of worn-out units. The evenness of the wear
in this technique depends on the number of surplus units:
if the queue of candidates is short, reuse of worn-out units
cannot be delayed much.

Another solution to the same problem, patented by
Han [21], relies on wear-estimation using erase latencies.
On some flash devices the erase latency increases with wear.
Han’s technique compares erase times in order to rank erase
unit by wear. This avoids altogether the need to store erase
counters. The wear rankings can be used in a wear-leveling
relocation or allocation policy. Without explicit erase coun-
ters, the system can only estimate the wear of a unit only
after it is erased in a session. Therefore, this technique is
probably not applicable in its pure form (without counters)
when sessions are short and only erase a few units.

Another approach to wear leveling is to rely on ran-
domness rather than on estimates of actual wear. Wood-

house proposed a simple randomized wear-leveling tech-
nique [22]. Every 100th reclamation, the system selects
for reclamation a unit containing only valid data, at ran-
dom. This has the effect of moving static data from units
with little wear to units with more wear. If this technique is
used in a system that otherwise always favors reclamation
efficiency over wear leveling, extreme wear imbalance can
still occur. If units are selected for reclamation based solely
upon the amount of invalid data they contain, a little worn-
out unit with a small amount of invalid data may never be
reclaimed.

At about the same time, Ban patented a more robust tech-
nique [23]. His technique, like the one of Lofgren et al., re-
lies on a spare unit. Every certain number of reclamations,
an erase unit is selected at random, its contents relocated to
the spare unit, and is marked as the new spare. The trig-
ger for this wear-leveling event can be deterministic, say
the 1000th erase since the last event, or random. Using a
random trigger ensures that wear leveling is triggered even
if every session is short and encompasses only a few erase
operations. The aim of this technique is to have every unit
undergo a fairly large number of random swaps, say 100,
during the lifetime of the flash device. The large number of
swaps is supposed to diminish the likelihood that an erase
unit stores static data for much of the device’s lifetime. In
addition, the total overhead of wear leveling in this tech-
nique is predictable and evenly spread in time.

It appears that the idea behind this technique was used in
earlier software. M-Systems developed and marketed soft-
ware called TrueFFS, a block-mapping device driver that
implements the FTL. The M-Systems literature [24] states
that TrueFFS uses a wear-leveling technique that combines
randomness with erase counts. Their literature claimed that
the use of randomness eliminates the need to protect the ex-
act erase counts stored in each erase unit. The details of the
wear-leveling algorithm of TrueFFS are not described in the
open literature or in patents.

3. Beyond Block Mapping

Block-mapping technique present the flash device to
higher-level software, in particular file systems, as a
rewritable block device. The block device driver (or a
hardware equivalent) performs the block-to-sector map-
ping, erase-unit reclamation, wear leveling, and perhaps
even recovery of the block device to a designated state fol-
lowing a crash. Another approach is to expose the hardware
characteristics of the flash device to the file-system layer or
even to the application layer, and let it manage erase units
and wear. The argument is that an end-to-end solution can
be more efficient than stacking a file system designed for
the characteristics of magnetic hard disks on top of a device
driver designed to emulate disks using flash.



Due to lack of space in this abstract, we cannot describe
in detail flash-specific file systems and other data structure.
We note, however, that several flash-specific file systems
have been proposed in articles [13, 25, 9, 22], patents [26,
27, 28, 29, 30, 19, 31] and web sites.12345

Application-specific data structures, especially search
trees, have also been adapted to flash memories [32, 33].

4. Open Problems

Even though flash memories have been widely used for
more than a decade, many interesting problems remain
open. In particular, the policy issues that arise in flash-
based systems have been discusses only in the computer-
systems literature. To the best of our knowledge, the the-
oretical issues have never been investigated, so there are
no provably-good on-line algorithms (policies) and no the-
oretical bounds. In this section we present theoretical open
problems whose solution might lead to better understanding
of flash memories and to better systems.

The simplest problem is the whole-unit wear-leveling
problem. This is an on-line problem that assumes that each
erase unit contains a header and exactly one sector. That is,
each sector occupies an entire erase unit, except perhaps for
an erase-unit header. We model the flash as an array of m
erase units. Each erase unit can sustain w erasures before it
wears out. The flash is used to store n ≤ m distinct sectors
named 1, 2, . . . , n. Initially, sector i is stored in erase unit
i, and if n < m, then erase units n + 1, . . . , m are empty.
In each step, an adversary updates one of the sectors. Sup-
pose that the adversary updates sector i, which is currently
stored on erase unit j. The system must choose where to
store the updated sector. It can store it back into erase unit
j, which will cost one erasure on j. It can also decide to
store it on another erase unit k, which is currently empty,
which also costs one erasure on j. If the system decides to
store sector i on an erase unit k′ which is not empty, it will
need to erase both j and k′, and to write the contents of k′

to some other erase unit, perhaps back to j. If the system
swaps the contents of j and k′ to satisfy the adversary’s up-
date request, then the cost is an erasure on each unit. If the
system stores the contents of k′ elsewhere, the cost might be
higher, depending whether the new location is empty or not.
In general, the response to the adversary’s request can be ei-
ther a cycle of � transfers (for example, � = 2 if j and k′

are swapped) or a path of � transfers ending in a previously
empty erase unit. The objective of the on-line algorithm is

1http://www.hcc-embedded.com
2http://www.blunkmicro.com
3http://www.smxinfo.com/rtos/fileio/smxffs.htm
4http://developer.axis.com/software/jffs/
5http://www.aleph1.co.uk/yaffs/index.html

to satisfy as many update requests by the adversary as pos-
sible before a unit wears out.

The fractional-unit wear-leveling problem generalizes
the whole-unit problem. This problem is closer to actual
systems but more challenging. Here each erase unit stores
several fixed-size sectors that the adversary can update. Fol-
lowing an update request, the online algorithm can perform
a series of zero or more erase-unit reclamations, after which
it must store the updated sector in a yet-unused portion of
a unit. The online algorithm uses three related policies:
the selection of units to reclaim, the redistribution policy
(where to store valid sectors during reclamation), and the
allocation policy (where to store the updated sector).

The fractional-unit wear-leveling problem ignores the
question of how the system locates a particular sector. If
sectors are small, it may be impractical to store the direct
map as a table in RAM. In such cases, the structure of the
direct map (and perhaps also of the inverse map) may re-
strict the range of appropriate redistribution policies. It is
not clear how to incorporate this concern into the theoreti-
cal online problem.

Two other issues that complicate the online problems are
variable-size sectors and higher-level semantic information.
In some cases, sectors vary in size. Perhaps the best way to
model this situation is with an adversary that can create a
new sector with a given size or delete an existing sector, but
not update a sector. The objective here would be to maxi-
mize the total size of the sectors that the adversary creates
before a unit wears out. When the flash is used to directly
store a file system or an application-specific data structure,
the online algorithm might have some semantic information
regarding sectors. For example, it may be known that a sec-
tor will not be updated before another sector is updated.

5. Summary

Flash memories have been an enabling technology for
the introduction of computers into numerous handheld de-
vices. A decade ago, flash memories were used mostly
in boot loaders (BIOS chips) and as disk replacements for
ruggedized computers. Today, flash memories are also used
in mobile phones and PDA’s, portable music players and
audio recorders, digital cameras, USB memory devices, re-
mote controls, and more. Flash memories provide these de-
vices with fast and reliable storage capabilities thanks to the
sophisticated data structures and algorithms that this article
surveys.

Our aim has been to survey flash-management tech-
niques in order to provide both practitioners and researchers
with a broad overview of existing techniques. Due to lack of
space in this abstract, we have not been able to describe in
detail every technique; the full paper presents such descrip-
tions. We hope that our paper will encourage researchers



to analyze these techniques, both theoretically and experi-
mentally. In particular, we hope that the clear description
of open theoretical problems in Section 4 will lead to the-
oretical research in this area. We also hope that this paper
will facilitate the development of new and improved flash-
management techniques.
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