Predicting local fMRI activations from EEG: a
Feasibility Study Using Both Classical and Modern
Machine Learning Pipelines
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Abstract—fMRDI’s clinical use is limited by cost, while EEG is
more accessible but lacks spatial detail and deep brain coverage.
Research aims to predict deep brain activations from combined
fMRI and EEG data. We compare classical machine learning and
a CNN-transformer pipeline for this mapping across multiple
brain regions. As we show, in the first dataset, which is heavily
tilted toward visual perception, the activations in the Hippocam-
pus cannot be recovered reliably from EEG, using either pipeline.
However, in other regions, predictability is much higher, and in
those cases, the deep learning pipeline obtains better predictions.
In a second dataset that is based on musical feedback while the
visual is blocked, both pipelines yield improved results in the
Hippocampus.

Index Terms—fMRI fingerprinting, EEG time series analysis,
Self-supervised learning.

I. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) measures
and map brain activity through blood flow changes. It offers
high spatial resolution and detailed information about brain
regions, including deep ones [1], [2]. Electroencephalography
(EEG) provides high temporal resolution but limited spatial
resolution, especially for deep brain regions [3]. EEG equip-
ment is significantly less expensive to purchase, maintain,
and operate compared to MRI machines. Predicting fMRI
signals from EEG data aims to merge the strengths of both
modalities with lower cost, providing a more comprehensive
understanding of brain activity, cognitive processes, and their
applications in research and clinical contexts. It also represents
an interdisciplinary approach to unraveling the intricacies of
brain function. Previous studies on the feasibility of an EEG
to fMRI mapping have been conducted. [4], [5] have shown
its feasibility using Ridge regression, and [6] have used Partial
Least Squares regression (PLS).

In this work, we repeat these studies, which rely on a
classical machine learning pipeline, and also employ a modern
deep learning pipeline for predicting fMRI signals from EEG
data. The deep learning approach follows recent work in ECG
mapping to other types of measurements [7] and employs
contrastive learning as an unsupervised pre-training phase,
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followed by finetuning for the specific goal of fMRI signal
prediction using a regression objective.

We evaluated both the classical machine learning pipeline
and the modern deep learning one on two paired fMRI and
EEG datasets. As we show, in the first dataset, effective
prediction is feasible, only on some of the brain regions.
Where it is possible, there is an improved performance of the
deep learning pipeline. In the second dataset, better results in
the Hippocampus are obtained by both pipelines.

Our main claims are: (1) The novel deep learning pipeline
outperforms the classical one when the signal is strong enough;
(2) There is a significant impact of the data collection setup
on the models’ correlations to the ground truth; and (3) Self-
supervised pre-training leads to superior prediction results.

II. RELATED WORK

Self-supervised learning, has gained significant research at-
tention in recent years by allowing create a general represen-
tation from unlabeled data in different domains [8]—[14].
Contrastive learning become popular as an effective self-
supervised learning paradigm. This approach leverages the
inherent structure within unlabeled data by contrasting positive
pairs against negative pairs. In computer vision, the pre-
training of SimCLR [15] is achieved by augmenting the same
image as positive examples while taking the rest of the images
as negative examples in a large batch size for training. In
the field of signal processing, [12] introduces a method that
encodes speech audio into latent representations and then
masks spans of these representations. Similarly [16] pre-train
their models on large, unlabeled EEG datasets, following [12]
at a high level. Then, they fine-tune these models for a specific
classification tasks, such as sleep stage classification in their
work. Most similar to our work, [7] apply temporal and
contextual contrastive losses to the latent features produced
by their encoder. They pre-train their model on unlabeled
ECG data, then fine-tune it using a classification head for
various tasks, such as glucose levels classifcation and emotion
classifcation.



Our work is differs from previous studies in several key
aspects. First, we adopt the extensive set of contrastive losses
introduced by [7], with specific adaptations for EEG being
multi-channel data. Second, to handle our pre-processed EEG
data, we use a smaller encoder in terms of both the number of
layers and features compared to [16]. Third, we use the same
dataset in the pre-training and fine-tuning phases. Finally, our
downstream task is regression, compared to the classification
tasks in [7], [16].

III. DATASETS

fMRI data was acquired on a 3T GE scanner using
T2*-weighted EPI (TR/TEAlip: 3000/35/90; FOV: 20x20cm;
39 3mm axial slices). Preprocessing was performed using
fMRIPrep included coregistration, normalization, unwrapping,
noise component extraction, segmentation, and skull-stripping.
ROI time series were extracted using NiftiLabelsMasker with
zscore standardization and a frequency band of 0.01-0.1 Hz,
without smoothing. The first 10 frames were discarded to
account for T2* equilibration effects.

EEG data was recorded continuously during scanning via a
BrainAmp ExG MRI-compatible system, with sampling rate
of 5000 Hz and 30 or 31 EEG channels. The preprocessing
included gradient artifacts using the FASTR algorithm [17],
downsampling to 250Hz and ICA components decomposition.
Additional steps involved band-pass filtering, removal of noisy
segments, and correction of outliers. We next represented the
preprocessed EEG time series in the time-frequency domain
in each channel, extracting the log-power of eight frequency
bands from the time series of each channel. The band power
estimation was performed in sliding windows of 1 [sec] and
an overlap of 0.5 [sec], resulting in a time-series with the
sampling rate of 2 Hz. The division into bands is [0-2; 2-4; 4-
8; 8-12; 12-16; 16-20; 20-25; 25-40] total of 8. To account for
the hemodynamic response of fMRI data, -12 to -2.5 seconds
was taken, 19 features per channel.

A. Datasets:

The study utilized two datasets of synchronized EEG and
fMRI. The first dataset (D7) obtained from [18] included data
from 32 healthy subjects, while they were watching 40 nine-
second film clips. The second dataset (D5) sourced from [19]
included data from 26 healthy subjects, who passively listened
to pleasurable musical excerpts with their eyes closed. A total
of eight excerpts, lasting three minutes each, in two runs.

Formally, the datasets are defined as follows: D; =
{(X;,Y;)}28512) where X; € R!I9%30x8 and v; € RL
Dy = {(X;,Y;)}82590, where X; € R19%31x8 and v; € RL.
In both datasets, Y; represents the mean of fMRI values in
the specific target region, while X; is a three-dimensional
tensor composed of (#EEG features) x (#EEG channels) x
(#frequency bands).

B. Brain regions:

Hippocampus is a curved structure located in the medial
temporal lobe, and is associated with memory formation and
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Fig. 1. The figure below depicts the fMRI signal prediction deep learning
pipeline with pre-training and fine-tuning phases. Orange boxes denote
trainable modules, while blue indicating frozen ones. Yellow represents vector
outputs, and green denotes simple operations functions. During pre-training,
X, 1s passed though FE, followed by F', where masking and cropping are
applied along with addition of the CLS token at the beginning of the resulting
vectors. Subsequently, 7" is applied, producing e;, €;, both projected using
W}.. Then optimization is performed for all objectives. In the fine-tuning
phase, X;,, passes through the frozen module E, and the CLS token is added.
T is then applied with a linear layer C' on top. Finally, optimization is executed
using the mean square error (M SE).

spatial navigation. Pallidum is part of the basal ganglia,
located in the subcortical regions of the brain, involved in
motor control and various cognitive functions. Precuneus is
a region located in the parietal lobe, and its role has been
studied extensively in neuroscience. Inferior parietal lobule
is located in the parietal lobe, and involved in various cognitive
functions. Visual is a region located in the occipital lobe,
which is primarily associated with visual processing.

IV. METHOD

In the classical machine learning pipeline, regularized re-
gression algorithms are applied on the flatten vectors X; , €
R0 X; € RA'2 for the first and second dataset,
respectively. In the deep learning pipeline we keep the time-
step dimension and work on input vectors X;, € R19%240,
X

tdl
i € R19%248 for the first and second dataset, respectively.
The deep learning pipeline is composed of two main mod-
ules as in [16]: E, a convolution-based encoder, and 7T, a
transformer. We train both networks in a two-step process
similar to [7], first pre-training and then fine-tuning. See Fig. 1
for illustration. All models in both pipelines predicts the fMRI
activations from EEG signals.

Pre-training  This phase consists of two tasks: predicting
future time-steps and matching masked and unmasked latent
features. The CNN encoder E, processes X;,, producing
the latent vector Z; = E(X,,), where Z; = [z},...,2]].
Then, within function F, the following steps are executed: (1)
Applying Masking of length M to a copy of Z;, initiating
from each time-step with a random probability of P, resulting
in the vector Z;. (2) Sampling ¢t ~ {1,..,7 — K} where
K denotes the number of future time-steps to predict in the
contrastive loss. (3) Cropping Z;, Z; at index t. Lastly, a
trainable CLS token is added at the beginning of the vec-
tors like in [9], [20]. In total, CLS(F(Z;)) = [2/,Z]] =
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Fig. 2. Comparison of the different methods on subject 1 in the left and right
visual region, respectively.

[[CLS, 2}, ..., 24, [CLS, 2}, ..., 2t]]. Then, T is applied on
both vectors: T(Zg),T(Z-) = e;, 6;. where ¢;, é; € R? are the
output embeddings of the CLS token, and d is the dimension
of T'. Our objectives are:
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where sim(a,b) = aTb/||a||||b]| is the cosine similarity
metric, and N is the size of the batch.

To calculate Lpc, L}C, we use additional K linear layers

(W}). The pre-training objective is the sum Lyre_irqin =
M (Lre + ﬁTc) + X (Loc + ﬁcc) where A1, A2 are hyper-
parameters.
Fine-tuning During this phase, the layers of
E are frozen, and the output of 7 is fed to an
additional linear layer C. The fine-tuning objective is
Linewne = MSE(C(T(CLS(E(X;)))),y:), where the
function C'LS(Z;) adds the CLS token at the beginning. We
use another linear layer C as a final step, and then optimize
using mean square error (MSE) as a loss function.

Architecture  The network E has three blocks, each one
of them is composed of a convolution layer, a dropout layer,
a Group Normalization [21], and a GELU [22] activation
function, like in [16]. The convolution layers channel size is
256, kernel sizes are (3, 5, 7) padding (1, 2, 3) and stride of
1 for all convolution layers. T" has a dimension of d = 512,
2 layers, 2 heads. Since we apply pre-processing on the EEG

TABLE I
THE PEARSON CORRELATION SCORES AND P-VALUES BETWEEN THE
MODELS’ OUTPUTS AND THE MEAN FMRI SIGNAL VALUES IN VARIOUS
BRAIN REGIONS FOR THE FIRST DATASET.

Brain region Left brain Pearson correlation

Ridge PLS Lasso DL pipeline
Hipp. 0.025 £ 0.02 0.024 + 0.03 0.019 £ 0.02 —0.010 £ 0.02
Pallidum 0.008 £ 0.03 0.038 = 0.04 0.070 £ 0.05 0.076 £ 0.03
Precuneus  0.035 4 0.04 0.036 £ 0.04 0.043 £ 0.05 0.006 %+ 0.03
I-parietal ~ 0.061 £ 0.04 0.088 £ 0.04 0.073 £ 0.04 0.108 £ 0.06
Visual 0.297 £ 0.05 0.333 £ 0.06 0.325 £ 0.05 0.353 £ 0.06

Brain region Right brain Pearson correlation

Ridge PLS Lasso DL pipeline
Hipp. 0.025 £ 0.03 0.030 £ 0.03 0.019 £ 0.02 0.004 £ 0.03
Pallidum 0.018 £ 0.04 0.029 4 0.03 0.067 £ 0.05 0.087 £ 0.03
Precuneus  0.064 + 0.04 0.067 £ 0.03 0.072 £ 0.03 0.079 &+ 0.04
I-parietal ~ 0.039 = 0.02 0.077 £ 0.03 0.091 £ 0.04 0.123 + 0.03
Visual 0.290 £ 0.05 0.325 4 0.05 0.319 £ 0.05 0.342 £+ 0.06

Brain region Left brain p-values

Ridge PLS Lasso DL pipeline
Hipp. 0.250 £ 0.36 0.107 +0.13 0.270 £ 0.31 0.293 £ 0.32
Pallidum 0.245 £ 0.37 0.187 £ 0.34 0.112 £ 0.29 0.015 £+ 0.04
Precuneus  0.082 + 0.23 0.048 £ 0.12 0.065 £ 0.18 0.181 + 0.19
I-parietal ~ 0.054 &+ 0.09 0.000 £ 0.00 0.019 £ 0.04 0.013 + 0.04
Visual 0.000 =£ 0.00 0.000 £ 0.00 0.000 = 0.00 0.000 £ 0.00

Brain region Right brain p-values

Ridge PLS Lasso DL pipeline
Hipp. 0.159 £ 0.23 0.233 £ 0.32 0.269 =+ 0.29 0.262 + 0.38
Pallidum  0.282 %+ 0.29 0.374 £ 0.33 0.125 £ 0.26 0.001 % 0.00
Precuneus  0.051 &£ 0.15 0.040 &£ 0.10 0.018 + 0.05 0.000 % 0.00
I-parietal ~ 0.098 £ 0.22 0.001 &£ 0.00 0.002 = 0.00 0.000 % 0.00
Visual 0.000 = 0.00 0.000 == 0.00 0.000 = 0.00 0.000 £ 0.00

TABLE 11
THE PEARSON CORRELATION SCORES BETWEEN THE MODELS’ OUTPUTS
AND THE MEAN FMRI SIGNAL VALUES FOR THE SECOND DATASET.

Brain region Ridge PLS Lasso DL pipeline

0.117 £0.02 0.153 4+ 0.03 0.133 £ 0.03 0.155 £ 0.02
0.103 £0.02 0.134 £ 0.03 0.117 £ 0.02 0.135 £ 0.02

Hipp. left
Hipp. right

data, our networks F, and 7" are much lighter than [16]. E does
not down sample the time dimension, and has smaller number
of convolution blocks and features. 7' has lower dimension
and smaller number of heads and transformer layers.

V. EXPERIMENTS

To evaluate the effectiveness of the deep learning pipeline
and compare it against other baselines, we utilize a repeated
10-fold cross-validation, allocating 20% of the data for testing
in each fold. The data is stratified by patients, ensuring that
all data related to a specific patient is either in the train
or test set. To optimize hyperparameters within each fold,
we conduct an inner 5-fold cross-validation. We measure the
Pearson correlation score between the fMRI signals and the
different model’s prediction in all experiments.

In the machine learning pipeline, we perform a grid search
to find best hyperparameters. In Lasso (Regression) and Ridge



TABLE III
PEARSON CORRELATION SCORES FROM THE ABLATION STUDY ON THE
FIRST DATASET, ASSESSING DIFFERENT ALTERNATIVE METHODS.

Left brain
Fully Supervised Unfreeze CNN

Brain region

DL pipeline

Hipp. —0.031 £ 0.040 —0.010 + 0.018 —0.010 £+ 0.019
Pallidum 0.060 +0.031 0.078 +0.040 0.076 £ 0.030
Precuneus 0.019 +0.022 0.008 +0.032 0.006 £ 0.030
I-parietal 0.093 £0.034 0.103 +0.056 0.108 & 0.056
Visual 0.318 £ 0.043 0.367 +0.060 0.353 4+ 0.064

Brain region Right brain

Fully Supervised Unfreeze CNN DL pipeline

Hipp. 0.000 £ 0.032 0.012 4 0.024 0.004 £ 0.030
Pallidum 0.038 £0.018 0.082 % 0.038 0.087 £ 0.034
Precuneus  0.052 £ 0.032 0.085 £ 0.033 0.079 £ 0.040
I-parietal 0.115£0.033 0.119 £ 0.037 0.123 £ 0.031
Visual 0.315 £ 0.040 0.353 = 0.058 0.342 £ 0.063

(Regression), with alpha values in (0.001, 0.01, 0.02), and in
PLS with number of components varies in (5, 7, 10). In all
three methods we set a maximum of 2000 iterations. In the
deep learning pipeline, we choose the number of epochs for
both pre-training and fine-tuning phases, both with maximum
of twelve epochs, based on the best validation score.

A comparison between the predictions of different methods
and the ground truth for the first dataset is shown in Fig. 2.

Implementation details for the deep learning pipeline In
the pre-training phase, we choose a masking probability of
P = 0.1, a masking length of M = 2, and a future time-
step prediction length of K = 5 due to short time-step length
compare to [7]. Additional parameters include a learning rate
of 4e7®, and A\; = 1, Ao = 0.7 as in [7]. In the fine-tuning
phase, we use a learning rate of e . In both phases we use a
batch size of 128, Adam optimizer [23] with a weight decay
of 3e7%, B1 = 0.9, and By = 0.99.

Results  As can be seen in Tab. I, the results for the Hip-
pocampus in the first dataset, across all methods are poor, with
a very low correlation and a standard deviation of the same
order of magnitude. This outcome was expected, due to noise
activation produced from the visual regions. In the Pallidum,
Precuneus, and Inferiorparietal, the results are slightly better.
In these cases, the deep learning pipeline outperforms the
classical methods in all cases, except for the left Precuneus.
In the Visual region, as expected, a much better correlation
is observed in all methods. In this case, the deep learning
pipeline outperforms others on both sides.

In the second dataset, the results for the Hippocampus
are better for both pipelines compared to the first dataset.
Additionally, all P-values are 0.

Analysis (1) Predicting fMRI activations from EEG in
the visual region is easier than other regions during visual
experiment. In the first dataset, the p-values of all methods
on both visual sides are O, and the correlation values are the
highest.

(2) Predicting fMRI activations from EEG in deeper brain
regions is harder. In the first dataset, the p-values of most other

regions, which are deeper within the brain than the Visual re-
gion, vary between low values in the Pallidum, Precuneus, and
Inferiorparietal, to high values in the Hippocampus. However,
during experiments with a musical feedback-based task in the
second dataset, where noise from visual regions is reduced
compared to the first dataset, the p-value decreases to O in the
Hippocampus. This indicates greater reliability in predictions
under these conditions. Nonetheless, the correlation values
remain lower than those of the visual regions in the first
dataset, further supporting our claim.

(3) The predictability in different brain regions is affected
by the task paradigm. In the first dataset, the p-values are
higher in the Hippocampus, comparing the second dataset,
where experimenting with a musical feedback-based task, are
0.

(4) Where predictability is low — meaning, with low Pearson
correlation values — the results of all methods are poor, and
there is no advantage to the deep learning method. In the first
dataset, the p-values of all methods in the Hippocampus, where
predictability is low, are higher than 0.1.

(5) Where predictability is high, i.e., have high Pearson
correlation values, the deep learning pipeline is more reliable
than other methods. In regions where the correlation values
are above 0.1 for the deep learning pipeline — such as in the
Inferiorparietal and Visual on both sides in the first dataset
— the p-values are same (0) or better than other methods in
those regions. The same holds for the second dataset, where
the Hippocampus p-value is 0.

Ablation study We compare the deep learning pipeline with
partial variants, reported in Tab. III. In the “Fully Supervised*
variant, we trained our networks without pre-training, and
during the finetuning, both networks E and 7" kept unfrozen. In
the “Unfreeze CNN* variant, we perform pre-training as usual.
However, during fine-tuning, we keep network E unfrozen.

As can be seen, the Fully Supervised variant underper-
forms in comparison to the other variants. The results of the
“Unfreeze CNN* variant are comparable to the adopted deep
learning pipeline, with slightly improved results in some of
the regions. This last result is surprising in light of previous
work [7], [16] but the differences are not large.

VI. CONCLUSIONS

Employing EEG in place of fMRI can open the door for
both diagnostic and therapeutic applications. Our experiments
show that for the dataset at hand, which is not very large but is
as large as most fMRI-based studies, and is also heavily tilted
toward visual stimuli, one can reliably predict the activations
in multiple brain regions but not in the Hippocampus.

It is evident from the results that deep learning methods
are favorable over classical ones, even in the regime of
limited-sized datasets. As the ablation study shows, this is
enabled by the use of self-supervised learning. Other recent
advancements in deep learning can improve results further. For
example, in addition to the efforts reported here, we have been
experimenting with using diffusion models for this prediction
task [24], [25], still without significant success.
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