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Abstract. The JavaTM developers kit requires a size() operation for
all objects. Unfortunately, the best known solution, available in the Java
concurrency package, has a blocking concurrent implementation that
does not scale. This paper presents a highly scalable wait-free imple-
mentation of a concurrent size() operation based on a new lock-free
interrupting snapshots algorithm for the classical atomic snapshot prob-
lem. This is perhaps the first example of the potential benefit from using
atomic snapshots in real industrial code (the concurrency package is cur-
rently deployed on over 10 million desktops).

The key idea behind the new algorithm is to allow snapshot scans to
interrupt each other until they agree on a shared linearization point
with respect to updates, rather than trying, as was done in the past,
to have them coordinate the collecting of a shared global view. As we
show, the new algorithm scales well, significantly outperforming existing
implementations.

1 Introduction

The Java developers kit requires a size () operation, counting the number of
elements in the data structure, to be made available for all objects. Accordingly,
the Java concurrency package (currently deployed on over 10 million desktops),
includes a concurrent implementation of the size () operation. Unfortunately,
this global-counter based implementation has two problems: (a) it is blocking, so
non-blocking structures such as the ConcurrentSkipListMap, unfortunately have
a blocking size () operation during which other operations on the structure are
delayed, and (b) if all modifying operations update the size, the implementation
simply does not scale. To allow scalability one must update infrequently and
accordingly relax the specification so that size () is only an approximation of the
actual data structure size.

This paper overcomes the above limitations, presenting a wait-free, lineariz-
able, and highly scalable implementation of the Java size () operation that can
be added seamlessly to any concurrent data structure. Our solution is based on a
new interrupting snapshots algorithm for the classical atomic snapshots problem
[1, 2].



1.1 Atomic Snapshots

To implement a scalable size counter, the frequent operations that update size
must have a very low overhead, and the burden of the implementation should be
placed on the relatively infrequent calls to size (). One solution that immediately
pops to mind is to use localized individual counters, one per each of the n threads,
to track changes to the structure, and use an atomic snapshot operation [1, 2] to
collect an instantaneous coherent view of all the individual counters. An atomic
snapshot object thus has two operations, an update() that writes to its given
location and a scan() that collects a view of all locations.

The problem is that the classical read-write register-based snapshot algo-
rithms such as [1–3] have an O(n) and higher update complexity even when
uncontended (see [4] for a survey). The only practical algorithm with an O(1)
common case update complexity is the coordinated collect algorithm of Riany
et. al [4]. However, it requires O(n) costly read-modify-write operations (such
as compare-and-swap (CAS)) to shared locations to coordinate the collection
of a shared snapshot view. To implement a scalable size() operation, we must
therefore devise a new type of snapshot algorithm, one that uses a small number
of CAS operations to collect the snapshot view.

1.2 Interrupting Snapshots in a Nutshell

Our quest for an algorithm begins with an implementation of a new lock-free
snapshot algorithm. As a basis, we start out with the single scanner algorithm of
Riany et. al [4] which is in turn based on the single scanner algorithm of [5]. This
single scanner algorithm uses an array of 2n entries, a recent and a previous entry
per thread, and a scan sequence number incremented by the single scanner at the
start of every scan (the structure is depicted in part (a) of Figure 1). The recent
and previous values are tagged with a scan sequence number. Updaters start by
reading the scan counter and then update the recent field as long as the field’s
sequence number is the same as the counter value they read. Upon detecting
a newer scan counter value, the updater performs a “copy on write”, it copies
the recent field to the previous field before writing the new value into recent. To
collect a snapshot, the single scanner, after incrementing the scan counter, passes
through the array, and for every location collects the recent value if the sequence
number is less than the scan’s sequence number, and collects the previous value
if the recent sequence number is equal to the scan’s number (because there is a
single scanner it cannot be greater). The collection of values forms a snapshot
because the counter increment is a linearization point for the scan: any update
that starts after this point will not be collected as we will always collect the
latest previous value.

To make this algorithm support multiple scanners, one cannot simply have all
scanners increment a shared sequence counter using a CAS operation because
different scanners can collect old and new values forming inconsistent views.
Riany et. al [4] solved the problem by having threads coordinate the collection
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Fig. 1. Sample executions of the algorithm. Part (a) describes an execution of the
single scanner algorithm. A scan increments the global sequence number g seq to 3,
then while it collects its view an updater with value y reads this new global sequence
number. It must therefor copy its old value x from recent to previous and update its
recent field to y with sequence 3. When the scan reads this recent field it will see that
its seq is 3, so it started after the scan, and will therefore use the previous value x. In
part (b) we see a wait-free algorithm with the seq number now shared among scans.
A scan of seq 3 is concurrent with a scan with seq 4, and an updater thread reads 4,
updates its recent field to a new value y with sequence 4. When the scan with seq 3
reads this recent field it will see that its seq 4 is greater than 3 and will be forced to
retry the scan. Even if it misses this update and completes collecting values, it will be
forced to retry when it finally checks that the global sequence number has remained
3. It will perform the retry with a value of 4, unless when it checks the g view field it
finds that the scan with 4 has updated the view, in which case it adopts and returns
this new view.

of a single shared snapshot view, a process which unfortunately entails using n

CAS operations even in the uncontended case.

The key to our new interrupting snapshots algorithm is to avoid collecting
a shared view. Instead, we allow scanners to interrupt each other, forcing a
retry of the scan. We add a new shared g view field that contains the sequence
number of the last successful scanner. Each scanner begins by incrementing the
shared scan counter g seq using a CAS (this is done per scan, not per update).
It next collects its own snapshot view, checking to see that there are no updated
fields with a sequence number greater than its own. If there are such sequence
numbers, then clearly a later scan has started concurrently (See the example in
part (a) of Figure 1). If a scan does complete the collection of values, it checks to
see that the shared g seq counter still contains its own sequence number, and if
this number has changed, it again was interrupted. Our idea then is to have the
interrupted scan retry collecting its snapshot again. However, this time it does

not increment the shared g seq counter. Instead, it uses the sequence number of
the scan that interrupted it. This way, if no scan succeeds, then eventually all
scans agree on the same sequence number and no longer interrupt each other.
The final step in our algorithm is that each scan that successfully collected a
view tries to be the next successful scan by increasing the g view field to its
sequence number. If it detects that the g view field already has a higher value,
then it has failed and restarts from the beginning, incrementing the g seq etc.



How does this help us in collecting a lock-free scan? Well, as we prove, every
time a scanner is interrupted it must be because it has seen a sequence number
of a later scan, and it adopts this scan’s number. After at most n − 1 threads
have all started a scan, if none of them succeed they will all eventually agree on
the highest sequence number. They will all collect a view and one of them will
succeed in CASing g view to the new sequence number and complete the scan.
Thus, the only way in which new sequence numbers can be continuously gener-
ated and prevent a scanner from completing is if at least one scan successfully
completed and increased the g view field, implying that scans are lock-free.

We can now extend the lock-free interrupting snapshot to implement a wait-
free size () implementation in a straightforward fashion. As in Figure 1, we add to
g view a field that contains the snapshot view (in our case an integer representing
the collected size) of the last successfully completed scan, and as before, it also
contains its sequence number. Successful scans CAS both their sequence number
and the view they collected into this location. If a thread is interrupted while
performing its lock-free interrupting scan, it checks to see if the g view field has
a sequence greater than its own, that is, it contains a size value collected by
some interrupting scan that has started after it did. If it finds such one then
it can safely return that size. Otherwise, it continues in the lock-free collection
attempt. The algorithm is wait-free because either a scanner is eventually not
interrupted and completes a scan, or it must be that there are other successful
scans continuously interrupting it, implying that it can return the size collected
by one of them.

Our new wait-free size () algorithm thus has a “take the view of some thread
that interrupted you” flavor of former algorithms such as [1], but unlike these
algorithms, the interruptions are between scans, not between scans and updates,
which is the key to the new algorithm’s efficiency.

1.3 Benefits of the new algorithm

As we prove, unlike existing solutions, our new size algorithm is wait-free, lin-
earizable, and has an update() operation that in the uncontended case requires
only a couple of loads and one store and a scan() operation that requires O(n)
loads and two CAS operations. We show that it can be added to any data struc-
ture to provide a linearizable size () implementation.

We also note that the wait-free size () implementation we presented can be
extended to allow a general scalable wait-free snapshot implementation with a
view larger than a single word (in the case of size () we use the fact that the
view is contained in a single word to transform the lock-free snapshot scan() to
a wait-free size ()). 3

In the performance section we compare our new wait-free size () implemen-
tation to the one offered by the Java concurrency package as well as one imple-

3 The most straightforward practical way to do this is to have a scanner allocate a
structure in which its view is collected and use the CASable shared location to store
a reference to this structure.



mented using the practical snapshot algorithm of Riany et. al. [4]. Our bench-
marking was performed on two state-of-the-art multiprocessor machines: an Azul
Vega2 (7200 series) distributed shared memory with up to 768 processors and a
Sun Maramba 128-way multicore machine. As can be seen, our algorithm shows
impressive scalability while the other algorithms simply do not scale.

In summary, the strong progress and coherence properties combined with
high scalability of the new algorithm lead us to suggest that it is a good candidate
for replacing the current size operation in the Java concurrency package. It
is perhaps satisfying that a theoretically motivated data structure, the atomic
snapshot object, introduced in the late 80s [1, 2], can finally find real-world
applicability.

2 The Algorithm

Our computation model and specification of atomic snapshots follows [1, 4], with
the small exception of replacing load-linked/store conditional operations (LLSC)
by compare-and-swap (CAS) operations.

Following [1] an atomic snapshot object provides two operations, update()
and scan() with the usual semantics.

Section 1.2 provided a high level view of our new algorithm. Here we provide
a more detailed walk through its pseudo-code. As we did earlier, we start by
describing our lock-free interrupting snapshots algorithm, and then modify it
into a wait-free size operation. The main difference between size () and an atomic
snapshot is that to store a full snapshot we need an array of values, while for
size, one integer word is enough.

The pseudo-code of the lock-free snapshot algorithm is provided in Figure 2.
Each updater maintains two values, recent and previous , each with an associated
sequence number which is the value the updater observed in the global counter
just before updating this value. The two values together are stored in a struct

called data() (Line 4). The Data of thread i is in Thread[i ]. To keep track on
which value belongs to which snapshot we maintain a global counter, called g seq,
which each scanner atomically fetches and increments when it starts the scan.
Each updater reads before writing a new value. Using these values a scanner
can tell which values are associated with its scan. Each scan is identified by the
sequence number it obtained in the atomic fetch and increment at the beginning
of the scan.

The scanner obtains a snapshot by reading from the updater’s locations in
Lines 25 to 37. The point in time where it increments g seq is a “line in the
sand”. All updates starting after this point are ignored and those before it can
be part of the snapshot.

Consider a read from the j-th location. If thread j’s recent sequence number
is smaller than the scanner’s sequence number then clearly the value j had in
its recent field (associated with the read sequence number) was its valid value
at the time that the scanner performed its increment of g seq and the scanner
then takes this value (Line 29). If j’s recent number was equal the scanner’s



1 data structures
2 ——————————————–
3 struct view { view [1], view [2], . . . view[n] } // Holds a snapshot
4 struct Data { int value , seq ; }; // a pair <value; seq number>
5 struct Thread {
6 Data recent ;
7 Data prev; };
8 int g view seq ;
9 int g seq ; //global snapshot sequence(counter)

10 Thread∗ g mem; //array of Thread struct , with an entry for each thread
11 g view g view; //holds the latest global view with its associated seq#
12 ——————————————–
13 method wait free update( i , new value)
14 ——————————————–
15 if (g seq != g mem[i]. recent . seq) { g mem[i]. prev := g mem[i]. recent ; }
16 g mem[i]. recent := {new value, g seq};
17 ——————————————–
18 method lock free scan ()
19 ——————————————–
20 start view seq := g view seq ;
21 scan seq :=AtomicIncAndFetch(g seq);
22 do

23 n scan := view[1, . . . n] ;
24 scan ok := true;
25 for ( i =:0; i < N; ++i) {
26 prev := g mem[i]. prev ;
27 recent := g mem[i]. recent ;
28 if (recent . seq < scan seq) {
29 n scan[ i ] := recent . value ;
30 } else if (recent . seq == scan seq) 4 {
31 n scan[ i ] := prev. value ;
32 } else {scan ok := false ;
33 start view seq := g view seq ;
34 scan seq := g mem[i]. recent . seq ;
35 if (scan seq == start view seq){CAS(g seq, scan seq, scan seq+1); scan seq=g seq;}
36 break;
37 } } // end for
38 if (scan ok) {
39 if (CAS (g view seq, start view seq , scan seq)) {
40 return n scan;
41 } start view seq := g view seq ;
42 } endif
43 while (true);

Fig. 2. The lock-free interrupting snapshots algorithm.

sequence number, then the scanner takes j’s previous value into the snapshot



view. If however, j’s recent sequence number is greater than the scan’s sequence
number then the scanner has been interrupted by a later thread. In this case
the scanner starts a new attempt to collect a snapshot, this time adopting the
higher number of the interrupting scanner (Line 34). Finally, to keep linerization
the a scanner must check that no scan operation completed during its interval.
And this is what the CAS is for in Line 39.

Clearly if no scanner succeeds and the scanners run to infinity then consider
the highest sequence number scanner, this scanner must eventually succeed or a
new scanner joins in. But the number of scanner is bounded so the algorithm is
lock-free.

A scanner that succeeds cannot just return the scan it obtained, because it
may not be linearized with other successful and concurrent scans. To this end we
add a global view location g view seq storing the sequence number of the most
recent scan that successfully collected a view. In effect we guarantee that at any
point of time there is (in retrospect) only one scan that is going to succeed. A
scan will complete and return if it can successfully CAS its sequence number into
the g view seq (Line 39) replacing the global view sequence number it has seen
just before starting its most recent scan attempt. This is also the motivation of
the CAS, to ensure the linearizability by the invariant that at any point of time
there is in effect only one uninterrupted scan that is going to succeed.

The pseudo-code of the wait-free size () described in Figure 3 is a modification
of the lock-free code presented above. The key to turning the above lock-free
snapshot algorithm into a wait-free size () algorithm, is to add a global view
(in our case consisting of a size integer fitting in a single word) that a scanner
may check if it is interrupted by another. Thus, either a scanner succeeds in
the lock-free scan attempt, or it is interrupted by another scan with a higher
sequence number. Since such repeated failures can only happen if some thread
continuously succeeds, then if each interrupted scanner checks the g view, it will
eventually observe a value with a larger sequence number than its own in g view.
It can safely adopt the size stored in this view, because the execution interval of
the scan of the interrupting thread started after its own.

Due to space limitations the proofs of the algorithms are omitted from this
abstract.

3 Performance Evaluation

The JDK’s ConcurrentHashMap size () makes two attempts at a successful ”dou-
ble collects” in the style of [1] and if it does not succeed it locks all segments and
counts the size. To use our wait-free size () solution, we simply had to add the
wait-free-size object to the JDK’s ConcurrentHashMap, and initialize its number
of threads to the number of threads in the system (i.e., the concurrency level in
JDK). Then we replace the JDK’s size () method with a call to wait free size().
The add & remove methods of segment i, just call update(i, new value), and
no other changed were required (each thread maintains locally the total number
of keys it is responsible for, which the new value).



1 data structures
2 ——————————————–
3 struct Data { int value , seq ; };// a pair <value; seq number>
4 struct Thread {
5 Data recent ;
6 Data prev; };
7 int g seq ; //global snapshot sequence(counter)
8 Thread∗ g mem; //array of Thread struct , with an entry for each thread
9 Data g view; //holds the latest size result with its associated seq#

10 ——————————————–
11 method wait free update( i , new) // Threads count locally and update with the new value.
12 ——————————————–
13 if (g seq != g mem[i]. recent . seq) { g mem[i]. prev := g mem[i]. recent ;}
14 g mem[i]. recent := { new, g seq};
15 ——————————————–
16 method wait free size ()
17 ——————————————–
18 start view := g view;
19 scan seq :=AtomicIncAndFetch(g seq);
20 first seq := scan seq;
21 do

22 size := 0 ;
23 scan ok := true;
24 for ( i =:0; i < N; ++i) {
25 prev := g mem[i]. prev ;
26 recent := g mem[i]. recent ;
27 if (recent . seq < scan seq) {
28 size += recent. value;
29 } else if (recent . seq == scan seq) 5 {
30 size += prev. value;
31 } else {scan ok := false ;
32 start view := g view;
33 scan seq := g mem[i]. recent . seq ;
34 break;
35 } } // end if and end for
36 if ( first seq ≤ (g view. seq)) {
37 return (g view. view ); }
38 if (scan ok) {
39 if (CAS (g view, start view , [ scan seq , size ])) {
40 return size ;
41 } start view := g view;
42 } endif
43 while (true);

Fig. 3. The wait-free size () algorithm.

3.1 Benchmarks Layout

Two comparisons are carried out in this section. First we compare the JDK’s
ConcurrentHashMap size (), to the new wait-free size (). Second, we compare



Fig. 4. Scheme I : how the number of threads affects the performances

Fig. 5. Scheme I : how the the scan() & update() operations affects the performance

our lock-free-snapshot algorithm, to the previous lock-free snapshot algorithm of
Riany, Shavit, and Touitou [4].

Evaluations are performed using micro-benchmarks similar to those used by
[4]. The update() operation is equivalent to add() (add a key) and remove()
(remove a key). The scan() operation is equivalent to the size () (get the number
of keys) operation. And the contain() (check if a key exists), does not effects the
snapshot.

Fig. 6. Scheme II : Each thread performs one type of an operation



Two schemes are used in the evaluation, in benchmark-scheme Scheme I, we
assign to each thread a predefined mixture of operations, the percent of update(),
scan(), and contain() is set and is equal for all threads (see Figure 6). We consider
this scheme a bit more realistic, and not restricting, from the user point-of-view.

In benchmark-scheme Scheme II, each thread performs only one type of oper-
ation, e.g. update(), or scan(), or contain(). And then we measure the throughput

of each operation (see Figure 6).
We implemented the size () using four different algorithms. The first is JDK,

its the original JDK’s ConcurrentHashMap with the blocking size (). The sec-
ond is NWF it is our new implementation of size () using the wait-free-size.
Third implementation, NLF, is our implementation of size () based on the lock-

free snapshot. And the fourth implementation, RST, is the coordinated collect

algorithm from [4].
The benchmarks were done on two architectures to make sure the algorithm

is not architecture specific. The first architecture is SPARC II UltraSPARC
T2 Plus processor, it has eight-core 1.2GHz, with two processors per system,
maximum 128 threads, and up to 256GB of memory. The second architecture is
AZUL Vega2 Java-machine, the 7200 series contains up to 768 processing cores
on 16 processor chips with 768GB of memory, each processor chip has 48 core.

3.2 Benchmark Scheme I:

In figure Figure 4 we test how the number of threads affects the performance
of the scan() & update()operations. We measure the throughput, the number of
operation per millisecond. Our NWF implementation almost not affect by the
number of threads, while the JDK & RST do not scale at all, this is because
JDK beehives like a global-lock, and the complexity of RST give it the same
behavior.

In figure Figure 5 we test how the percent of the scan() operations affects
the performance of the scan() & update()operations. Increasing Our NWF im-
plementation almost not affect by the number of threads, while the JDK &
RST do not scale at all, this is because JDK beehives like a global-lock, and the
complexity of RST give it the same behavior.

3.3 Benchmark Scheme II:

Figure 6 is perhaps the more interesting benchmark as it shows the benefit of
adding the mechanism to “adopt the view of interrupting scans” that we added
to our size () implementation to make it wait-free over the lock-free scan() on
which it is based.
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