
Non-deterministic Semantics for Intuitionistic Paraconsistent LogicsArnon AvronSchool of Computer ScienceTel-Aviv Universityemail: aa@math.tau.ac.il1 IntroductionThe survey [5] is devoted to paraconsistent extensions of positive classical logics (and especially to C-systemsof this kind). It seems however that positive intuitionistic logic is a better starting point for investigatingnegation. The valid sentences of this fragment are all intuitively correct. Positive classical logic, in contrast,includes counterintuitive tautologies like (A � B_C) � (A � B)_(A � C) or ((A � B) � A) � A. Moreover:the classical natural deduction rules for the positive connectives (^;_ and �) de�ne the intuitionistic positivelogic, not the classical one. It is only with the aid of the classical rules for the strong classical negation thatone can prove the counterintuitive positive tautologies mentioned above!Now it is well known that it is impossible to conservatively add to intuitionistic positive logic a negationwhich is both explosive (i.e.: :A;A ` B for all A;B) and for which LEM (the Law of Excluded Middle::A_A) is valid. With such an addition we get classical logic. The intuitionists reject indeed LEM, retainingthe explosive nature of negation. Paraconsistent logics, in contrast, choose the other alternative.In this paper we show that one can conservatively add to intuitionistic positive logic both types ofnegation. By this we get conservative extensions of intuitionistic logic which are LFIs (logics of FormalInconsistency) in the sense of [5], as well as paraconsistent conservative extensions of intuitionistic positivelogic which enjoy the relevance properties of the logic Pac from [2] (One of these logics is da Costa famoussystem C! ([6, 5])). The intuitionistic negation is added exactly as it is usually done in intuitionistic logic:by adding a bottom element ? (satisfying ? ` A for every A) and de�ning the strong negation of A to beA � ?. This results, of course, with the full propositional intuitionistic logic. This logic and its positivefragment serve then as bases for several conservative extensions having a nonexplosive negation respectingLEM. The weakest of these system is obtained by adding only LEM to positive intuitionistic logic. Thestrongest - by adding to full intuitionistic logic almost all the properties (with only one exception) of thenegation of the maximal paraconsistent logics Pac and J3 ([1, 2, 7, 8, 5]). We provide Gentzen-type systemsfor all these systems and prove an appropriate version of the non-analytic cut elimination theorem for them.We also provide Kripke-style semantics for all the logics, and prove soundness and completeness for thissemantics. The main idea in our semantics is to allow a certain amount of nondeterminism in the valuationswe use. We note that in the case of C! this semantics is signi�cantly simpler than the one given in [4].1



2 The Gentzen-Type SystemsIn what follows F denotes the set of formulas of the propositional language which is based on either f_;^;�;:g or f_;^;�;:;?g (depending on the context). p; q; r denote atomic formulas, A;B;C;  ; '; � denotearbitrary formulas (of F), and �;� denote �nite sets of formulas of F . A sequent of F has the form �) �.Following tradition, we write �; ' and �;� for � [ f'g and � [� (respectively).THE SYSTEM LJm+Axioms: A) AStructural Rules: Cut, Weakening (and the standard rules)Logical Rules: (�)) �) �; A B;�) �A � B;�) � �; A) B�) A � B ()�)(^ )) �; A;B ) ��; A ^ B ) � �) �; A �) �; B�) �; A ^ B () ^)(_ )) �; A) � �; B ) ��; A _ B ) � �) �; A;B�) �; A _ B () _)THE SYSTEM LJm: This is the system obtained from LJm+ by adding to it the following axioms for ?:? ) AThe system LJm is the propositional fragment of a well-known (see [11]) multiple-conclusion version ofLJ , Gentzen's sequent calculus for Intuitionistic logic, while LJm+ is its positive fragment. The systemsare sound and complete for these logics and admit cut-elimination. Note that (Positive) Classical logic isobtained from LJm (LJm+) simply by removing the restriction on ()�) to single-conclusion sequents. Analternative method of obtaining classical logic from LJm or LJm+ is to add : to the language together withits two classical rules. It is easy to see (using cuts) that this extension is not conservative and indeed producesclassical logic. What we do next is to conservatively add *paraconsistent* negation to these systems:THE SYSTEM GPB (GPB?): This is the system obtained from LJm+ (LJm) by adding to it the followingclassical rule for negation: 2



A;�) ��) �;:A () :)THE SYSTEM GPJ (GPJ?): This is the system obtained from GPB (GPB?) by adding to it the followingrules for negation:(:: )) A;�) �::A;�) � �) �; A�) �;::A () ::)(: �)) :B;�) �:(A � B);�) � �) �; A �);:B�) �;:(A � B) () : �)(:_ )) �;:A;:B ) ��;:(A _B)) � �) �;:A �) �;:B�) �;:(A _ B) () :_)(:^ )) �;:A) � �;:B ) ��;:(A ^B)) � �) �;:A;:B�) �;:(A ^ B) () :^)Note 1 GPJ and GPJ? are respectively subsystems of the 3-valued systems Pac ([2]) and J3 ([7]) 1. Hencethey are paraconsistent. GPJ? is also an LFI in the sense of [5], and even a C-system (see [5]) which isbased on intuitionistic logic rather than on classical logic (this will be proved below | see Corollary 8).Note 2 The f_;^;:g-rules of GPJ and GPJ? are identical to those of Pac (and J3), and the f_;^;:;?g-rules of GPJ? are identical to those of J3. The main di�erence is therefore the treatment of implication. Inthe Logic Pac the rule (: �)) allows to infer :(A � B);�) � from A;:B;�) �. This is equivalent tothe (: �)) rule of GPJ taken together with a rule which allows to infer :(A � B);�) � from A;�) �.As we shall see, by adding the latter to GPJ we get the full power of positive classical logic. Hence thisextension is not conservative.Note 3 In the original formulation of Gentzen ([9]) the rules (^ )) and () _) were split into two rules,each with only one side formula. It will be convenient to do the same here to (:_ )) and () :^). So weassume henceforth that instead of these rules GPJ and GPJ? have the following equivalent four rules:(:_ ))1 �;:A) ��;:(A _B)) � �;:B ) ��;:(A _ B)) � (:_ ))2() :^)1 �) �;:A�) �;:(A ^ B) �) �;:B�) �;:(A ^ B) () :^)21J3 is renamed LFI1 in [5]. That the language of J3 can be taken as f_;^;�;:;?g easily follows from the functionalcompleteness of this set for the set of classically closed 3-valued operations (proved in [3]).3



Note 4 Several paraconsistent intermediate systems can be obtained from the basic systems GPB andGPB? by adding to them any subset of the set of the rules for negation of GPJ . In particular: by addingto GPB the rule (:: )) we get Raggio's Gentzen-type formulation of Da Costa's C! ([10]).GPB, GPJ?, and all the systems in between have one defect: the cut-elimination theorem fails in allof them. It is easy to see in fact that the sequent ) p; q � :p cannot have a cut-free proof in GPJ?,but it can be derived using a cut from ) :p; p and :p ) q � :p, which are both easy theorems of GPB.Note however that the cut in this example is analytic: the cut formula is a subformula of the conclusion.The subformula property is indeed the most important consequence of cut-elimination. Hence elimination ofnon-analytic cuts is usually a quite satisfactory substitute for full cut-elimination. Now in the case of GPJthe logical rules themselves do not have the standard subformula property. We introduce therefore a versionof this property which is adequate for GPB and leads to an appropriate, useful version of the cut-eliminationtheorem for the various systems we investigate here.De�nition 11. nsf(') is inductively de�ned as follows:(a) If ' is atomic then nsf(') = f'g(b) If ' = :p (p atomic) then nsf(') = fp;:pg(c) If ' 2 f 1 ^  2;  1 _  2;  1 �  2g then nsf(') = f'g [ nsf( 1) [ nsf( 2)(d) If ' 2 f:( 1 ^  2);:( 1 _  2);:( 1 �  2)g then nsf(') = f'g [ nsf(: 1) [ nsf(: 2)2.  is called an n-subformula of ' if  2 nsf(')3. A cut in a proof of �) � is called n-analytic if it is done on some n-subformula of a formula in �[�We shall show that in all our systems cuts that are not n-analytic can be eliminated.3 The Non-deterministic Kripke-style SemanticsDe�nition 2 A non-deterministic frame (ndf) for F is a triple hV;�; vi such that:1. hV;�i is a nonempty, partially ordered set.2. v : V �F ! ft; fg is a valuation which satis�es the following condition:If v(a; ') = t and a � b then v(b; ') = t.3. v satis�es the following conditions:(a) v(a; ' ^  ) = t, v(a; ') = t and v(a;  ) = t(b) v(a; ' _  ) = t, v(a; ') = t or v(a;  ) = t4



(c) v(a; ' �  ) = t, 8b � a(v(b; ') = f or v(b;  ) = t)(d) v(a;?) = f (in case ? 2 F)4. If v(a; ') = f then v(a;:') = tDe�nition 3 Let R be a Gentzen-type rule. Suppose the premises of R are �; Ai ) � (1 � i � n) and� ) �; Bj (1 � j � k), and its conclusion is � ) �; C or �; C ) �. Let jCjR be t if the conclusion is�) �; C, and f if it is �; C ) �. The local constraint on frames which is induced by R is:If v(a;Ai) = f for 1 � i � n and v(a;Bj) = t for 1 � j � k then v(a; C) = jCjR :Here are the local constraints that are induced by the negation rules of GPJ :() :) If v(a; ') = f then v(a;:') = t() ::) If v(a; ') = t then v(a;::') = t(:: )) If v(a; ') = f then v(a;::') = f() :^)1 If v(a;:') = t then v(a;:(' ^  )) = t() :^)2 If v(a;: ) = t then v(a;:(' ^  )) = t(:^ )) If v(a;:') = f and v(a;: ) = f then v(a;:(' ^  )) = f() :_) If v(a;:') = t and v(a;: ) = t then v(a;:(' _  )) = t(:_ ))1 If v(a;:') = f then v(a;:(' _  )) = f(:_ ))2 If v(a;: ) = f then v(a;:(' _  )) = f() : �) If v(a; ') = t and v(a;: ) = t then v(a;:(' �  )) = t(: �)) If v(a;: ) = f then v(a;:(' �  )) = fNote. The constraint () :) was included already in our de�nition of an ndf, since the corresponding ruleis included in our basic system GPB.De�nition 4 Let GL be some Gentzen-type system which is obtained from GPB or GPB? by adding toit some of the negation rules of GPJ . An nd-frame is called a GL-frame if it satis�es the local constraintswhich are induced by the rules of GL.Examples:1. A GPB-frame is simply an ndf. 5



2. A GPJ-frame (or GPJ?-frame) is an ndf in which all the constraints in the list above are satis�ed.3. Let GC! be Raggio's system for da Costa's C! (see [10]). GC! is obtained from GPB by adding to itthe rule (:: )). Hence a GC!-frame is an ndf hV;�; vi such that v(a;::') = f wherever v(a; ') = f .The crucial property of GL-frames is given in the followingTheorem 5 Let hV;�i be a nonempty partially ordered set, and let F 0 be a subset of F which is closedunder n-subformulas. Assume that v0 : V �F 0 ! ft; fg satis�es with respect to F 0 the various conditions ofDe�nition 2 as well as the various constraints induced by the rules of GL (for example, if () :^) is a ruleof GL then v0 satis�es constraint () :^) in the sense that if :(' ^  ) 2 F 0 and v0(a;:') = v0(a;: ) = fthen v0(a;:('^ )) = f). Then there exists a valuation v : V �F ! ft; fg such that hV;� vi is a GL-frame,and v extends v0 (i.e. v=(V �F 0) = v0).Proof. We do the case of GPJ (the proofs for the other systems are practically identical).De�ne v recursively, letting v(a; ') = t except for the following ten cases (in which v(a; ') = f):1. ' is atomic, ' 2 F 0, and v0(a; ') = f2. ' = : , ' 2 F 0, and v0(a; ') = f3. ' =  1 _  2, and v(a;  1) = v(a;  2) = f4. ' =  1 ^  2, and v(a;  1) = f or v(a;  2) = f5. ' =  1 �  2 and there exists b � a such that v(b;  1) = t and v(b;  2) = f6. ' = :: 1 and v(a;  1) = f7. ' = :( 1 _  2) and v(a;: 1) = f8. ' = :( 1 _  2) and v(a;: 2) = f9. ' = :( 1 ^  2) and v(a;: 1) = v(a;: 2) = f10. ' = :( 1 �  2) and v(a;: 2) = fWe show now that v has the required properties.(I) We show that if ' 2 F 0 then v(a; ') = v0(a; '). We use induction on the complexity of '. The casewhere ' is atomic is immediate from the de�nition of v. If ' = : and v0(a; ') = f then againv(a; ') = v0(a; ') = f by de�nition of v. If ' = : and v0(a; ') = t then by I.H. (the InductionHypothesis) and the fact that v0 respects the various constraints, none of the conditions that forcev(a; ') to be f is satis�ed, and so v(a; ') = t = v0(a; '). For example: if ' = :( 1 ^  2), ' 2 F 0 and6



v0(a; ') = t, then : 1 2 F 0, : 2 2 F 0, and it cannot be the case that v0(a;: 1) = v0(a;: 2) = f ,because otherwise v0(a; ') = f by constraint (:^ )). Hence v0(a;: 1) = t or v0(a;: 2) = t, andso, by I.H., v(a;: 1) = t or v(a;: 2) = t. There is accordingly no condition that forces v(a; ') tobe f , and so v(a; ') = t = v0(a; '). If ' =  1 �  2 then v(a; ') is f i� there exists b � a such thatv(b;  1) = t and v(b;  2) = f . By I.H. this is the case i� there exists b � a such that v0(b;  1) = tand v0(b;  2) = f (since  1;  2 F 0 in this case), which happens i� v0(a; ') = f . It follows thatv(a; ') = v0(a; ') in this case too. The proofs in the cases ' =  ^  2 and ' =  1 _  2 are similar.(II) We show, again by induction on the complexity of ', that if v(a; ') = t and a � b then v(b; ') = t. Thisis obvious in case ' 2 F 0 by (I) and our assumption on v0. Assume therefore that ' 62 F 0. We need toshow that none of the conditions that might force v(b; ') to be f obtains. This is trivial for the �rst twoconditions (since ' 62 F 0) and is proved exactly as in the intuitionistic case if ' is not of the form : .It remains to treat the cases where ' = :: 1, ' = :( 1 ^  2), ' = :( 1 _  2), ' = :( 1 �  2). Wedo the last one as an example (the others are similar). So assume (for contradiction) that v(b; ') = fwhere ' = :( 1 �  2). The only possible reason for this is that the premise of condition (10) issatis�ed, i.e., that v(b;: 2) = f . By I.H. this entails that v(a;: 2) = f , and so v(a; ') = f (bycondition (10) again), contradicting our assumption about '.2(III) We show by induction that if v(a; ') = f then v(a;:') = t. By (I) and our assumption on v0, this isobvious in case :' 2 F 0. Assume that :' 62 F 0. Since t is the default value, it suÆces to show thatno constraint forces v(a;:') to be f . We have four cases:(i) ' = : . Since v(a; ') = f , v(a;  ) 6= f (otherwise v(a; ') = v(a;: ) = t by I.H. for  ). Hencethe only condition on v which might be relevant here, condition (6), is not applicable. Hencev(a;:') = v(a;:: ) = t.(ii) ' =  1 _  2. Since v(a; ') = f , necessarily v(a;  1) = v(a;  2) = f . It follows by I.H. thatv(a;: 1) = v(a;: 2) = t. Hence neither condition (7) not condition (8) is applicable here, andso there is no condition that forces v(a;:') to be f . It follows that v(a;:') = t.(iii) ' =  1 ^  2. Similar.(iv) ' =  1 �  2. Since v(a; ') = f , there exists b � a such that v(b;  1) = t and v(b;  2) = f . Thelatter implies (by I) that v(a;  2) = f . Hence v(a;: 2) = t by I.H. It follows that condition (10)(the only one which is relevant in this case) is not applicable, and so v(a;:') = t. 3(IV) The intuitionistic conditions concerning _;^, and � have been built into the de�nition of v.2Note that this point of the proof would break down if we add the classical (: )) rule or if we add the other (: �)) ruleof Pac [2], which allows the inference of �;:(' �  )) � from �; ') �.3Again this point of the proof would break down if we add the rule which allows the inference of �;:(' �  ) ) � from�; ') �! 7



(V) We show that v satis�es the various constraints which correspond to the rules of GPJ. For aconstraint which forces some formula to get the value f this follows from (I) and our assumptionon v0 (in case that formula is in F 0) and the de�nition of v (in case it is not). The validity of() :) was shown in (III). The other cases follow easily from the choice of t as the default value.We do the case of () : �) as an example. So assume that v(a; ') = t and v(a;: ) = t. If:(' �  ) 2 F 0 then v0(a;:(' �  )) = t by (I) and our assumption on v0. By (I) again, thisentails that v(a;:(' �  )) = t. If :(' �  ) 62 F then v(a;:(' �  )) can be f only in casev(a;: ) = f . Here, however, v(a;: ) = t, and so this case is not applicable. It follows thatv(a;:(' �  )) = t, as condition () : �) requires. �We turn now to the use of GL-frames for providing semantics for GL.De�nition 6 A sequent � ) � is valid in an ndf hV;�; vi if for every a 2 V , either v(a; ') = f for some' 2 �, or v(a;  ) = t for some  2 �.Theorem 7 Let GL be as in De�nition 4. If `GL �) � then �) � is valid in any GL-frame.Proof. By induction on the complexity of the proof of � ) �. The proof is like in the intuitionistic casefor the positive rules, while the various constraints take care of the negation rules.Corollary 8 GPJ (GPJ?) is a conservative extension of GMI+ (GMI).Proof. It is well known that GMI+ (GMI) is sound and complete for ordinary (intuitionistic) Kripkeframes (see e.g. [11]). Now with respect to the language of GMI+ (GMI) there is no di�erence betweensuch frames and our ndfs.We next simultaneously prove our two main results: the converse of Theorem 7, and and the possibilityto eliminate cuts which are not n-analytic.Theorem 9 Let GL be like in De�nition 4. If �) � is valid in any GL-frame then �) � has a proof inGL in which every cut is n-analytic.Proof. Let �) � be a sequent, and let F 0 be the set of n-subformulas of formulas in � [�. Call a proofin GL \good" if every cut in it is on a formula in F 0. We show that if � ) � does not have a good proofthen it has a �nite countermodel. We start with a simple lemma:Lemma. Suppose that �0 [ �0 � F 0 and �0 ) �0 does not have a good proof. Then there exist �� � �0,�� � �0, such that �� [�� = F 0 and �� ) �� does not have a good proof.8



The Lemma follows easily from the fact that if ' 2 F 0 and ' 62 �0 [�0 then at least one of �0 ) �0; 'and ';�0 ) �0 does not have a good proof (otherwise a cut on ' of these two sequents would give a goodproof of �0 ) �0). Hence �0 ) �0 can gradually be extended to a sequent �� ) �� as required.Let now V be the set of all sequents �0 ) �0 such that �0 [�0 = F 0 and �0 ) �0 does not have a goodproof. De�ne � on V by:(�1 ) �1) � (�2 ) �2) i� �1 � �2 (i� �1 � �2) :Obviously hV;�i is a partially ordered set. De�ne next a partial valuation v0 : V �F 0 ! ft; fg by:v0(�0 ) �0; ') = 8<:t ' 2 �0f  2 �0 :Note that v0 is well de�ned because �0 ) �0 does not have a good proof (and so, in particular, �0 \�0 = ;).We show now that it satis�es with respect to F 0 all the necessary conditions and constraints.� Suppose that v0(�1 ) �1; ') = t and �1 ) �1 � �2 ) �2. Then ' 2 �1, and �1 � �2. Hence ' 2 �2and so v0(�2 ) �2; ') = t.� Suppose that v0(�0 ) �0; ' ^  ) = t. Then ' ^  2 �0, and so ' ^  ; ' and  are in F 0. Since' ^  ) ' has a cut-free proof (in GMI+), ' 62 �0. Hence ' 2 �0 and so v0(�0 ) �0; ') = t. Theproof of the other conditions concerning ^ and _ similarly follows from the cut-free provability inGMI+ of ' ^  )  ; ';  ) ' ^  ; ' _  ) ';  ; ') ' _  ;  ) ' _  .� Assume v0(�0 ) �0; ' �  ) = t. Then ' �  2 �0. Assume now that �00 ) �00 � �0 ) �0 (i.e.,that �00 � �0). We have to show that either v0(�00 ) �00; ') = f or v0(�00 ) �00;  ) = t. Assumev0(�00 ) �00; ') 6= f . Then ' 2 �00. Since ' �  2 �0, ' �  2 �00 too. But '; ' �  )  has a cut-free proof in GMI+. Hence  cannot be in �00. It follows also that  2 �00, and so v0(�00 ) �00;  ) = t.� Assume that v0(�0 ) �0; ' �  ) = f . Then ' �  2 �0. Hence �0 ) ' �  does not have agood proof. Because of the ()�) rule this implies that �0; ' )  does not have a good proof. Itfollows by the lemma that there exists �00 � �0 [ f'g, �00 � f g such that �00 ) �00 2 V . Now�00 ) �00 � �0 ) �0 (since �00 � �0), and we have v0(�00 ) �00; ') = t, v0(�00 ) �00;  ) = f .� Assume that ? 2 F 0, and let �0 ) �0 2 V . Then �0 ) �0 does not have a good proof, and so ? 62 �0.Hence ? 2 �0, and so v0(�0 ) �0;?) = f .� Assume v0(�0 ) �0; ') = f and :' 2 F 0. Then ' 2 �0. Since ) :'; ' has a cut-free proof in GPB,:' 62 �0. Hence :' 2 �0 (because :' 2 F 0), and so v0(�0 ) �0;:') = t.� Let () ::) be one of the rules of GL. Suppose v0(�0 ) �0; ') = t and ::' 2 F 0. Then ' 2 �0.Since ' ) ::' has a cut-free proof in GL (using the () ::) rule), ::' 62 �0. Hence ::' 2 �0 andv0(�) �0;::') = t. 9



� The proofs of the other constraints corresponding to the negation rules of GL (whatever they are) aresimilar (and in each case only the relevant rule is used).It follows that hV;� v0i satis�es the assumptions of Theorem 5. Hence it can be extended to a GL-framehV;�; vi. Now since the original �) � does not have a good proof it can (by the lemma) be extended to asequent �� ) �� in V . Now if ' 2 � then ' 2 F 0 and ' 2 �� and so v(�� ) ��; ') = v0(�� ) ��; ') = t.Similarly, if  2 � then v(�� ) ��;  ) = f . Hence �) � is refuted in the element �� ) �� of V . �Corollary 10 Let GL be any of the systems considered above. If `GL � ) � then it has a proof in GL inwhich all the cuts are n-analytic (and so all formulas used in it are n-subformulas of �) �).Corollary 11 Let GL be any of the systems considered above. Then GL is a conservative extension of anyof its fragments. In particular: the f:;_;^g-fragment of GL is identical to that of Pac (and J3).Corollary 12 Let GL be any of the systems considered above. Then GL is decidable.First Proof. By Corollary 10, given a sequent � ) � it suÆces to search for a proof of � ) � in whichall cuts are n-analytic. Such a search requires only a �nite number of steps (that can be determined inadvance).Second Proof. By Theorems 9 (and its proof), 5, and 7 it suÆces to check whether a given sequent �) �is valid in all partial frames of the form hV;�; v0i where v0 : V �F 0 ! ft; fg, F 0 is the set of n-subformulasof �) �, and the number of elements of V is at most 2n, where n is the number of elements of F 0.Note 5 We have seen above that the proof of Theorem 5 (and so of Theorem 9 and of Corollary 10) failsin the presence of the following rule (which is valid in Pac): 4�; ') ��;:(' �  )) �The addition of this rule to the basic system GPB is indeed not conservative, over GMI+, since the sequent) '; ' �  , which is not intuitionistically valid, is provable in the resulting system. Here is the proof:' �  ) ' �  ') ') ' �  ;:(' �  ) :(' �  )) ') ' �  ; ' :Now the sequent ) '; ' �  is equivalent to the axiom ' _ (' �  ). It is well known that the additionof this axiom to (positive) intuitionistic logic suÆce for getting (positive) classical logic. It follows that byadding this rule to GPJ (GPJ?) we get the maximal paraconsistent classical logic Pac (J3).4The reason is that the condition that is induced by this rule (i.e.: If v(a; ') = f then v�a;:(' �  )� = f) may forcev(a;:(' �  )) to be f even in case v(a; ' �  ) = f (the latter only means that there is b � a in which v(b; ') = t andv(b;  ) = f . This still allows the possibility that v(a; ') = f).10
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