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Abstract

The notion of bilattice was introduced by Ginsberg, and further
examined by Fitting, as a general framework for many applications.
In the present paper we develop proof systems, which correspond to
bilattices in an essential way. For this goal we introduce the notion
of logical bilattices. We also show how they can be used for efficient
inferences from possibly inconsistent data. For this we incorporate
certain ideas of Kifer and Lozinskii, which happen to suit well the
context of our work. The outcome are paraconsistent logics with a lot
of desirable properties .

1 Introduction

When using multiple-valued logics, it is usual to order the truth values in
a lattice structure. In most cases such a partial order intuitively reflects
differences in the “measure of truth” that the lattice elements are supposed
to represent. There exist, however, other intuitive criteria of ordering that
might be useful. Another reasonable ordering might reflect, for example, dif-
ferences in the amount of knowledge or in the amount of information that
each of these elements exhibits. Obviously, therefore, there might be cases
in which two partial orders, each reflecting a different intuitive concept,
might be useful. This, for example, has been the case with Belnap’s famous

! A preliminary version of this paper appears in [].



four-valued logic [, ]. Belnap’s logic was generalized in [|, where Ginsberg
introduced the notion of bilattices, which are algebraic structures that con-
tain two partial orders simultaneously (see definition 2.1). His motivation
was to present a general framework for many applications, like truth main-
tenance systems and default inferences. The notion was further investigated
and applied for logic programming and other purposes by Fitting [, , , , , |.

In all of their applications so far, the role of bilattices was algebraic
in nature. In this paper we try to carry bilattices to a new stage in their
development by constructing logics (i.e.: consequence relations) which are
based on bilattices, as well as corresponding proof systems. For this purpose
we have found it useful to introduce and investigate the notion of a logical
bilattice. (All the known bilattices which were actually proposed for appli-
cations in the literature fall under this category). The general logic of these
bilattices turned out to have a very nice proof theory. We also show how
to use logical bilattices in a more specific way for non-monotonic reasoning
and for efficient inferences from inconsistent data (these were, respectively,
the original purposes of Belnap and Ginsberg). For this we incorporate cer-
tain ideas from []. We show (so we believe) that bilattices provide a better
framework for applying these ideas than the one used in the original paper.

The paper is organized as follows: In the next section we introduce and
investigate the notion of logical bilattice. In section 3 we investigate (from
semantical and proof-theoretical points of view) the general logic that is
naturally associated with them. This logic is monotonic and paraconsistent.
In section 4 we consider a refined consequence relation which is shown to
be non-monotonic, and very useful for reasoning in the presence of incon-
sistency.

2 Logical Bilattices

2.1 Bilattices - General Background

Definition 2.1 A bilattice is a structure B = (B, <;, <k, ) such that B
is a non empty set containing at least two elements; (B, <;), (B, <) are
complete? lattices; and — is a unary operation on B that has the following

2This is Ginsberg’s original definition in []. Some authors have dropped this require-
ment of completion. We have retained it since we need it in section 3.5, but apart of that
section all our results are valid without this assumption.



properties:
1. if a<;b, then —a>;—b,
2. if a<pb, then —a<g b,
3. mma=a.

Following Fitting, we shall use A and V for the lattice operations which
correspond to <;, and ®, ¢ for those that correspond to <j. While A and Vv
can be associated with their usual intuitive meanings of “and” and “or”, one
may understand @ and @ as the “consensus” and the “gullibility” (“accept
all”) operators, respectively; p ® ¢ is the most that p and ¢ can agree on,
while p @& ¢ accepts the combined knowledge of p with that of ¢ (see also
[, ])- A practical application of ® and & is provided, for example, in an
implementation of a logic programming language designed for distributed
knowledge-bases (see [] for more details).

Note that negation is order preserving w.r.t <g. This reflects the intu-
ition that <j corrsponds to differences in our knowledge about formulae and
not to their degrees of truth. Hence, while one expects negation to invert the
notion of truth, the role of negation w.r.t. <j is somewhat less transparent:
we know no more and no less about —p than we know about p (see [, p.269],
and [, p.239], for further discussion).

We will denote by f and by ¢ the least element and the greatest element
(respectively) of B w.r.t <;, while L and T will denote the least element
and the greatest element of B w.r.t <, 3. f,t, L, and T are all different by
lemma 2.5(a) below, and by the fact that a bilattice contains at least two
elements.

Definition 2.2 A bilattice is called distributive [] if all the twelve possible
distributive laws concerning A, V, @, and @ hold %. Tt is called interlaced |]
if each one of A, V, ®, and @ is monotonic with respect to both <; and <.

Lemma 2.3 [] Every distributive bilattice is interlaced.

?1 and T could be thought of as representing no information and inconsistent knowl-
edge, respectively.

* Infinitary laws have also been considered in the literature (see, e.g., [, definition 3.3]).
In this paper we do not use such laws. They might be more useful when we enter more
deeply to quantification theory in the future.
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Figure 1: FOUR and NINE

Example 2.4 Figures 1 and 2 contain double Hasse diagrams of some useful
bilattices. In these diagrams y is an immediate <;-successor of x iff y is on
the right side of z, and there is an edge between them; similarly, y is an
immediate <g-successor of x iff y is above z, and there is an edge between
them.

Belnap’s FOUR |, |, drawn in figure 1, is the smallest bilattice. It easy
to check that FOUR is distributive. Ginsberg’s DEFAULT (figure 2) was
introduced in [] as a tool for non-monotonic reasoning. The truth values
that have a prefix “d” in their names are supposed to represent values of
default assumptions (dt = true by default; etc.). It easy to verify that
-df =dt; ~dt =df; -dT =dT. The negations of T,t, f, L are identical to
that of FOUR (see lemma 2.5(a) below). This bilattice is not even interlaced
;. NINE (figure 1), on the other hand, is distributive, and it contains the
default values of DEFAULT. In addition, NINE has two more truth values,
ot and of, where —of =0t and —ot=0f.

Lemma 2.5 Let B = (B, <, <j, ) be a bilattice, and let a,b€ B.

a) [] ~(anb) = ~av=b; —(avb) = ~an—b; —(a@b) = —a®-b; —(adb) = —afb.
Also, =f=t; =t=f; -L=1; =T=T.

b) [] If B is interlaced, then: LAT=f; LVT=t; fot=1; fOt=T.

*For example, f <; df, while f@dT =dT >; df =df®dT.
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Figure 2: DEFAULT

Definition 2.6 [] Let (L,<) be a complete lattice. The structure LOL=(Lx
L,<4,<p,m) is defined as follows:

(y1,y2) >t (21, 22) iff y1 > 21 and yp <wy,

(y1,y2) >k (w1, 22) iff y1 > 2 and y2 > 2y,

—|($1, $2) = ($2, $1).

Lemma 2.7 Let (L,<) be a complete lattice. Then:
a) [ LOL is an interlaced bilattice.
b) [] If L is distributive, then sois L® L.

L® L was introduced in [], and later examined by Fitting as a general
method for constructing bilattices. A truth value (z,y) € L& L may in-
tuitively be understood so that z represents the amount of belief for an
assertion, and y is the degree of belief against it.

Example 2.8 Denote the standard two valued structure {0,1} by TWO.
Then FOUR is isomorphic to TWO ©TWO. Similarly, NINFE is isomorphic
to {L1,0,1}®{L1,0,1}.

We conclude this introductory part by considering another bilattice op-
eration, and a corresponding family of bilattices:

Definition 2.9 [] A conflation, L, is a unary operation on a bilattice B
that has the following properties:



if a<pbthen La>p Lb,
if a<;bthen La<; Lb,
lla=a,
l-a=-1a®.

=W N

Lemma 2.10 [] Let B = (B, <y, <y, ) be a bilattice, and let a,b€ B.
L(anb) = Lanlb; L(avb) = Lavlb; L(a®b)= LadLlb; L(adb) = La®Llb.
Also, Lf=f; 1lt=t; L1=T; LT=1.

Definition 2.11 [] A bilattice with a conflation is called classical, if for
every b€ B, bV L-b=t".

Example 2.12 FOUR is a classical bilattice (where “L1” is defined accord-
ing to lemma 2.10).

Classical bilattices were presented is order to allow analogues of classical
tautologies. In particular, in classical bilattices it is really the combination
1= that plays the role of classical negation.

2.2 Bifilters and Logicality

One of the most important component in a many-valued logic is the subset
of the designated truth values. This subset is used for defining validity of
formulae and a consequence relation. Frequently, in an algebraic treatment
of the subject, the set of the designated values forms a filter, or even a
prime (ultra-) filter, relative to some natural ordering of the truth values.
Natural analogues for bilattices of filters, prime filters, ultrafilters, and set
of designated values in general, are the following:

Definition 2.13

a) A bifilter of a bilattice B = (B, <;, <) is a nonempty subset F C B,
F# B, such that:

anbeFiff ac F and beF

anbe Fiff aec F and be F

6This requirement is not part of Fitting’s original definition. Nevertheless, it is usually
assumed when dealing with bilattices that have conflation, and useful for our purposes.

"In the original definition of classical bilattice, Fitting requires that the bilattice would
be distributive. This requirement is not essential for the present treatment of such
bilattices.



Figure 3: FIVE

b) A bifilter F is called prime, if it satisfies also:

avbeFiff aeF orbeF

abbeFiff acF orbeF

c) Let B be a bilattice with a conflation. F is an ultrabifilter in B, if it is a
prime bifilter, and be F iff L-bg F.

Example 2.14 FOUR and DEFAULT contain exactly one bifilter: {T,¢},
which is prime in both, and an ultrabifilter in FOUR. {T,t} is also the
only bifilter of FIVE (figure 3), but it is not prime there: dTV L=t, while
dT ¢ F, and L ¢ F. NINE contains two bifilters: {T,ot,t}, as well as
{T,ot,t,of,dT,dt}; both are prime, but neither is an ultrabifilter.

Proposition 2.15 (Basic properties of bifilters) Let F be a bifilter of B;
Then:

a) F is upward-closed w.r.t both <; and <y.

b) t, T € F, while f, 1L ¢ F.

¢) In classical bilattices every prime bifilter is also an ultrabifilter.

Proof: Claim (a) follows immediately from the definition of F; the first
part of (b) follows from (a), and from the maximality of ¢ and T; the fact
that the minimal elements are not in F follows also from (a), since F # B.
Finally, part (c) obtains since on the one hand in every classical bilattice
bv L-b=te F, and since F is prime, either b€ F or L-be F. On the other
hand, L=bAb= L=(bV L-b)= L-t= f ¢ F, therefore L=bAb¢ F, and so
either b¢ F or L-bgF. O



Definition 2.16 A logical bilattice is a pair (B, F), in which B is a bilattice,
and F is a prime bifilter on 5.

In the next section we shall use logical bilattices for defining logics in a
way which is completely analogous to the way Boolean algebras and prime
filters are used in classical logic. The role which TW QO has among Boolean

algebras is taken here by FOUR:

Theorem 2.17 Let (B, F) be a logical bilattice. Then there exists a unique
homomorphism h : B — FOUR, such that h(b)c{T,t} iff be F.

Proof: It is immediate that the only function h : B — FOUR that satisfies
the condition, and is also an homomorphism w.r.t negation, is the following
one:

T ifbeF and ~beF
t ifbeF and ~bgF
f if bgF and ~beF
1 if bgF and ~bgF

This entails uniqueness. For existence, note first that h is obviously an ho-
momorphism w.r.t =. It remains to show that it is also a homomorphism
w.r.t A,V,®, and P.

a) The case of \:

1. Suppose that aAb € F and —(aAb)€ F. Then a€ F and be F. In
addition, =(aAb) € F, hence maV-b € F, and so ~a € F or =b e F
(since F is prime). It follows that {a,—a} CF or {b,—b} C F, hence
either h(a)=T or h(b)=T. Since both h(a) and h(b) are in {T,t},
and TAT=TAt=T, it follows that h(a)Ah(b)=T =h(aAb).

2. If anbeF but ~(anb)¢F, then a€ F and b€ F, but —aV-bgF, and
so neither —a nor —b are in F. It follows that h(a)=h(b)=t, so this
time h(a)Ah(b)=t="h(anb).

3. Suppose that aAb & F and —(aAb) € F. Then either —a € F or
=b € F. Assume, e.g., that —a € F. If a ¢ F then h(a) = f and so
h(a)Nh(b)= f=h(anb). If, on the other hand, a € F, then h(a)=T. In
addition b¢ F (otherwise we would have aAb€ F), and so h(b)e{f, L}.
Since in FOUR TAf=TAL=f, in this case h(a)AR(b)= f=h(aAb).



4. Suppose that aAb ¢ F and ~(aAb)¢g F. Then —a g F, b ¢ F and
either a ¢ F or b ¢ F. It follows that either h(a) = L or h(b) = L.
Assume, e.g., the former. Since =b¢ F, then h(b) € {t, L}. But since
AAt=LAL=1, ha)ANh(b)=_L="h(aAb) in this case.

b) The case of V:

Since aVb==(-aA=b), this case follows from the previous one.

c) The case of ®:

1. If a@be F and =(a®b) € F, then since =(a®b)=-a®-b, we have that
a,b,—a,=beF, hence h(a)=h(b)=T, and so h(a)Rh(b)=TRT=T=
h(a®b).

2. f awbe F and =(a®@b) ¢ F, then a € F, be F, and either ~a ¢ F or
-b¢ F. It follows that both h(a) and h(b) are in {T,t}, and at least
one of them is ¢. hence, h(a)@h(b)=t=h(a®b).

3. The case that a®@b¢ F and —(a®b) € F is similar to the previous one.

4. If awb ¢ F and =(a®@b) ¢ F then either a ¢ F or b ¢ F, and also
either ma@F or ~b¢F. Assume, e.g., that ag¢ F. If also ma ¢ F, then
h(a)= 1, and so h(a)2h(b)= L =h(axb). If, on the other hand, —a € F,
then —b¢ F, and so we get that h(a)=f, and h(b)€{t, L}. Since in
FOUR fot=f®L=1, we have again that h(a)@h(b)=L="h(a®@b).

d) The case of &:

1. Assume that a®beF and —(a®b)€F. Then a€F or be F. Assume,
e.g., that a € F; then h(a) € {T,t}. If in addition —a € F, then
h(a)=T, and so h(a)Bh(b)=T=~h(adb). Otherwise, ~b€ F, and so
h(b)e{T, f}. Since in FOUR, T&T=T@t=Taf=tdf=T, we have
that h(a)®h(b)=T=h(a®b).

2. If adbe F and —~(adb) ¢ F, then a€ F or be F, and neither —a nor
=b are in F. It follows that A(a), h(b) are both in {¢, L}, and at least
on of then is ¢. Hence, h(a)®h(b)=t=h(a®d).

3. The case that a®b¢ F and —(a®b) € F is similar to the previous one.

4. If adbg F and =(adb) ¢ F, then a,-a,b, b are all not in F, and so
h(a)=h(b)= L. It follows that h(a)Bh(b)=L=h(aPb). O



Note: For Boolean algebras we have, in fact, a weaker theorem: given
x from a Boolean algebra B, and a filter F C B s.t. 2 ¢ I, we have an
homomorphism h, : B — TWO w.rt =, A,V s.t. hy(z) € F(TWO), and
hy(y) € F(TWO) for every y € F. In our case, the same h is good for all z.
On the other hand, in Boolean algebras we have the property that if z,y € B
and x # y, then there is an homomorphism h: B — TWO which separates
them. This further implies that equalities which hold in TWO are valid in
any Boolean algebra. Logical bilattices and FOUR, in contrast, do not enjoy
this property. Thus, the distributive law aA(bVe)=(aAb)V(aAc)is valid in
FOUR, but not in every logical bilattice in general (take, e.g., DEFAULT).

Definition 2.18 An wltralogical bilattice is a pair (B, F), where B is a bi-
lattice with a conflation, and F is an ultrabifilter on B.

As it follows from proposition 2.15(c), ultralogical bilattices are natural
extensions of Fitting’s notion of classical bilattices. Also, thay have several
similar properties to those of logical bilattices. The next proposition is one
such an instance (cf. theorem 2.17):

Proposition 2.19 Let (B, F) be an ultralogical bilattice. Then there exists
a unique homomorphism h : B — FOUR, such that h(b)e{T,t} iff be F.

Proof: Similar to that of theorem 2.17. The only extra thing that we need
to check is the case of conflation. Again, we shall examine the four possible
cases:

1 h(b)=T = bEF, ~beF = L-bgF, L-=bgF = ~LbgF, LbgF
= h(Lb)= L= Lh(b).

2. h(b)=t = beF, ~bgF = L-bgF, L~-beF = ~LbgF, LbeF =
h(Lb)=t= Lh(b).

3. h(b)=f = bgF, beF = L-beF, L-=bgF = ~LbeF, Lbg F
= h(Lb)=f=Lh(b).

4. h(b)=1 = bgF, -b¢F = L-beF, L-=beF = ~LbeF, LbeF
= h(L1b)=T=Lh(b). O

Since ultralogical bilattices seems to be quite rare 8

in what follows on logical bilattices.

, we shall concentrate

8Even NINE with either one of its two prime bifilters is not ultralogical bilattice.
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Next we discuss the existence of bifilters and prime bifilters, concentrat-
ing on an important special case:

Definition 2.20 Let B be a bilattice. Define:
o Dy(B) d:ef{ x|la>pt} (designated values of B w.r.t <j)

o Dy(B) d:ef{ x|lae> T} (designated values of B w.r.t <;)

Intuitively, each element of Dy(B) represents a truth value which is
known to be “at least true” ([, p.36]). Hence it seems that Dy(B) is a
particulary natural candidate to play the role of the set of the designated
values of 5.

Example 2.21

a) Dy(FOUR) = Dy(FOUR) = {T, 1.

b) Di(FIVE) = Dy(FIVE) = {T,1}.

¢) Dr(DEFAULT) = Dy DEFAULT) = {T,t}.

d) Dy(NINE) = D,(NINE) = {T, ot, 1.

e) Di(LoL)=Dy(LoL)={ (sup(L),z) |z €L }.

Proposition 2.22 (Basic properties of Dy(B) and Dy(B))
a) t, T € Di(B), while f, L & Dy(B). The same is true for Dy(B).
b) Dp(B)UD(B) C F.

Proof: The first part concerning Di(B) of (a) is obvious. To see that
f€Dr(B), assume the countrary. Then f>; ¢ and so also —f >, —t, which
means that ¢ >}, f, hence f=t. This entails that B contains just one element,
but this contradicts the definition of a bilattice. An even simpler argumenet
holds for L. Claim (b) follows immediately from proposition 2.15. O

Proposition 2.23 If Dy(B)="Dy(B), then Dy(B)is the smallest bifilter (i.e:
it is contained in any other bifilter).

Proof: For every a,b€ B, anbeDy(B) iff anb>,T,iff a>, T and b>,T, iff
a€Dy(B) and beDy(B). Similarly, a®be Dy(B) iff a € Dy(B) and be Dy(B).
Hence, if Dy(B) = Dy(B) then Dy(B) is a bifilter of B. That Dy(B) is the
smallest bifilter in this case follows from proposition 2.22(b). O

Notation 2.24

a) We shall sometimes write D(B) instead of D(B) or D¢(B) when Dy(B) =
Dy(B).

b) The pair (B,D(B)), when defined, will be denoted by (B).

11



Proposition 2.25 Let B be an interlaced bilattice. Then:
a) Di(B)=DyB).
b) {b,-b}CD(B)iff b =T.

Proof: Suppose that B is interlaced. Then:

a) b> T = bAT=T = BAT >4t = bV(BAT)>,bVE = b>, L.
Similarly, b>,t = b@t=t = bRt>T = bBH(bRt)>,bBT = b>,T.
Hence Di(B) = D«(B).

b) If b=T, then b=-b=T >, ¢, hence {b, —b} € Di(B). The other direction:
if {b,-b} €Dy(B), then b>yt and ~b>; ¢, hance b>;t and b=—-b>; ~t=f,
and so b>,tHf=T (see lemma 2.5(b)). But T is the greatest element w.r.t
<k, hence b=T. O

Corollary 2.26 For every interlaced bilattice B, (B) is defined (In partic-
ular, (L® L) is defined for every complete lattice ).

Proof: Follows from section (a) of the last proposition, and from proposi-
tion 2.23. O

From the last corollary it follows that if B is interlaced, then (B) is a logical
bilattice iff D(B) is prime. In fact, (B) is logical bilattice in all the examples
which were actually used in the literature for constructive purposes. This
is true even for (DEFAULT), although it is not interlaced. (FIVE),in con-

trast, is not a logical bilattice.

We next provide a sufficient and necessary conditions for D(B) to be
prime in a particularly important case. It will follow that logical bilattices
are very common, and easily constructed:

Proposition 2.27 If L is a complete lattice, then (LL) is a logical bilattice
iff sup(L) is join irreducible (i.e.: if aVb = sup(L), then a = sup(L) or
b=sup(L)).

Proof: Denote the suprimum of I by V. Then:

(<) Assume that Vy, is join irreducible. Since L® L is interlaced, then by
corollary 2.26, D(L® L) is a bifilter. It remains to show that it is also a
prime bifilter. Indeed, (z1,22)V(y1,y2) € D(LOL) iff (21 VLyr, 22 ALYy2) €
D(LOL) i (z1Vpy) =V (see example 2.21(e)), iff 24 =V or 4y =V,
iff (z1,22)€D(LOL) or (y1,y2) € D(LEOL). The proof in the case of & is
similar.

12



(=) Assume that L ® L is prime, and that avVy =V, for z,y € L. Take
arbitrary z € L. Then, (z,2)V(y,2)=(2Vy,2)=(Vr,2)€D(LOL), hence
(z,2)eD(LOL) or (y,z) e D(LOL). Tt follows that 2 =V, or y=Vp, (by
example 2.21(e) again). O

Corollary 2.28

a) (FOUR) (= ({0,1}®{0,1}) ) and (NINE) (= ({L11,0,1}>{L1,0,1}))
are both logical bilattices.

b) More generally, if L is a chain, or if sup(L) has a unique predecessor,
then (L® L) is a logical bilattice.

3 The Basic Logic of Logical Bilattices

3.1 Syntax and Semantics

We shall first treat the propositional case.

Definition 3.1

a) The language BL (Bilattice-based Language) is the standard proposi-
tional language over {A,V, -, ®,®}.

b) BL™ is BL together with a unary connective, L, for conflation.

c) BL(4) (BL™(4))is BL (BL™) enriched with the propositional constants
{f.t, L, T}

d) Let (B,F) be a logical bilattice. BL(B) is BL enriched with a proposi-
tional constant for each element in B. We shall usually employ the same
symbol and name for each b € B and its corresponding propositional con-
stant.

Given a bilattice B=(B, <¢, <g, ), perhaps with conflation, the seman-
tic notion of a valuation in B for sentences in BL(B) is defined in the obvious
way. The associated logics are also defined in the most natural way:

Definition 3.2

a) Let (B,F) be a logical bilattice. I'l=pr5.7)A (where I', A are finite sets
of formulae in BL(B)) iff for every valuation v such that v()€F for every
€T, there exists some ¢ € A such that v(¢)€F as well.

b) Suppose that all the sentences in I'UA are in the language BL (resp. in
BL(4)). Then I'i=pr A (resp. I'i=pryA), iff I'lEppi,7) A for every (B, F).

Two important properties of |=p7, are given in the following proposition:

13



Proposition 3.3
a) =pr, has no tautologies.
b) =g is paraconsistent: p, —p~prq.

Proof:

a) Let 1 be any sentence in BL, and suppose that v is a valuation (in
FOUR, say) that assigns all the propositional variables in 1) the value L.
Then v()= L as well, so ¥ is not valid.

b) Set, e.g., v(p)=T and v(¢q)=f. O

Note that the first part of the last proposition fails in BL(4), since both
t and T are valid.

Our next theorem is an easy consequence of theorem 2.17. It shows that
in order to check consequence in any logical bilattice, it is sufficient to check

it in (FOUR).

Theorem 3.4 Let I' and A be finite sets of formulae in BL (in BL(4)).
ThenT'=pr A (U'EpryA) iff T'Eroury A °

Proof: One direction is trivial. For the other, suppose that for some logical
bilattice (B, F), I'Eprs,7) A, where I', Ain BL(4). Let v be an assignment
in B such that v(yp)e Fif ¢ €l', and v(yp) € F if v € A. Then hov, where h is
the homomorphism defined in theorem 2.17, is easily seen to be a valuation
in FOUR with the same properties, hence I' |7$<FOUR>A. a

The next proposition, which provides a semi-CNF for formulae, will be
needed later.

Proposition 3.5 Let (B,F) be a logical bilattice. For every sentence
in BL(B) one can construct a sentence ', so that ¢’ is a A-conjunction of
V-disjunction of literals, and for every v over B, v(¢) e F iff v(¢)e F. If
is in BL(4) then the same ¢ is good for every logical bilattice (B, F).

Proof: From the properties of negation it is obvious that for every sentence
¢ we can find a sentence ¢ in a negation normal form (i.e. in ¢’ the negation
precedes only propositional variables), s.t. v(¢)=v(1’) for every valuation
v. It suffices, therefore, to prove the proposition for sentences in a negation

*There is a related, weaker theorem (10.5) in [].
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normal form. This is done by an induction on the number of operations in
1 (negation excluded): the case where 1) is literal is obvious. If 1 =11 A1,
or P = Dby, take ' =i A, Then for every v, v(¢) € F iff v(yy) €F
and v(vy) € F, iff v(¥)) € F and v()) € F, iff v()Ah) e F,iff v(¢') e F.
Finally, suppose that 1) =1 Vg or ¢p =11 Bepa. Let ) = Qb’% /\zb’% A AT
and ', = Qb’%/\zb’g/\.../\lb’? (where 97 are V-disjunction of literals). Let
V' = Nicicnicicm (1 V'), Assume that v(tp) € F. Then either v(t1) e F
or v(1y) € F. Assume, e.g., the former. Then 1/(1#”1) € F for every 1<i<n,
hence v(¢'] V') € F for every ¢, 7, and so v(¢') € F. For the converse, as-
sume that v(¢) ¢ F. Then both v(11) and v(1)7) are not in F, hence v('h)
and v(¢'}) are not in F for some 1, j, and so v(¢'1Ve')) ¢ F. It follows that
v(¢')gF. B

Notes:

1. ¢ and v’ above are not equivalent, i.e: there may be some valuation
v, s.t. v(p)#£v(y'). All the proposition claims is that ¢ and ¢’ are
true with respect to the same valuations. '°

2. We could, of course, use @ and & (or @ and V, etc.) instead of A and
V, without any change in the proof.

3.2 Proof Theory

Since =gy, does not have valid formulae, it cannot have a Hilbert-type rep-
resentation. However, there is a nice Gentzen-type formulation, which we

shall call GBL (GBL(4)):
The System GBL:
Axioms:
L=, A
Ruls: Exchange, Contraction, and the following logical rules:

Iy, 0= A I'=Ay T'= A ¢

UEdi vy wreeayy T= A drd

[=A]

%The situation is in some sense analogous to that of Skolemizing and satisfiability in
first order classical logic; The Skolemized version of a sentence is satisfiable iff the original
sentence is satisfiable, but the two sentences are not equivalent.
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I'= A,"Qﬁ,"@b

In GBL(4) the following axioms are also included:

I-t= A

I,f=A
L=A
-1L=A

T A -ng N
I'=> A, 0
T=aove =V
P A% T'=s A-¢
F=asve oY
F=A¢ T'=>A¢
T=Adog 7o
P=A-% T'= A ¢
F=A-(og o
I'=> A, 0
TSavas F
F:>A7_'¢7_'¢
TS a-wag =Y
= Ao
r=a-—s =
I'= At
= A, -f
= AT
= A, =T

The positive rules for A and ® are identical. Both behave as classical con-
junction. The difference is with respect to the negations of pAg and p®q.
Unlike the conjunction of classical logic, the negation of pRq is equivalent to
—p®-q. This follows from the fact that p <; ¢ iff -p <; —¢. The difference

between V and @ is similar.

Definition 3.6 A follows from I' in GBL (notation: I'tgpr, A) if I' = A is

provable in GBL.
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Theorem 3.7

a) (Soundness and Completeness) I'l=pr, A iff I'Fapr, A.

b) (Cut Elimination) If I'y Farr, A1, v and e, ¢ Fapr Ay, then I'y, 'y ey
Aq, As.

Proof: The soundness part is easy, and is left to the reader. We prove
completeness and cut-elimination together by showing that if '= A has no
cut-free proof then I' 2 gr, A. The proof is by an induction on the complexity
of the sequent I'= A:

e The base step: Suppose that I' = A consists only of literals. If I' and
A have a literal in common then I'= A is obviously valid (and is provable
without cut), while if I' and A have no literal in common, then consider the
following assignment v in FOUR:

T if both p and —p arein I’

def | L if both p and —p are in A
t if (pel and =p¢T) or (p€A and ~peA)
f if (pgl" and =pel’) or (p€ A and ~p¢gA)

Obviously, this is a well defined valuation, which gives all the literals in I’
values in {T,t}, and all the literals in A values in {1, f}. Hence v refutes
I'==Ain (FOUR). Hence, I' £pr, A.

e The induction step: The crucial observation is that all the rules of the
system GBL are reversible, both semantically and proof-theoretically (a di-
rect demonstration in the proof-theoretical case requires cuts). There are
many cases to consider here. We shall treat in deltail only the case in which
a sentence of the form A ¢ is in I' U A. Before doing so we note that the
case in which a sentence of the form = belongs to I' U A should be split
into the subcases ¥y ==¢, 1) =¢1 A¢pa, etc. (The case in which 1y =-p where
p is atomic was already taken care of in the base step).

(7) Suppose that YAP €T, i.e.: T'=T",9Ap. Consider the sequent I, ¢, p= A.
By induction hypothesis, either I, 1, ¢ = A is provable without a cut (and
then TV, 9 A¢ = A is provable without cut, using [A =]), or else there is a
valuation that refutes IV ¢, ¢ = A. In the latter case the same valuation
refutes IV, ) A= A as well.

(i) Suppose that YAp€ A, i.e.: A=A’ ¢Ap. Consider the sequents I'= A,
and I'= A’, ¢. Again, either both have cut-free proofs, and then I' = A’, ¢)A@
also has a proof without a cut (using [=- A]), or there is an assignment that
refutes either sequent, and the same assignment refutes I'= A’ 1A as well.
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a

Notes:

1. It is obvious from the proof that we can delete contraction from the
list of the rules, and restrict the axioms to the case that I', A, 1, and

¢ contains only literals.

2. The {A,V,—} fragment of GBL was called “the basic {A,V,—} sys-
tem” in [], and was introduced there following a different motivation.
It had generally been known as the system of “first degree entailments”
in relevance logic (see [, ]), since it is well known that ¢q,...,%, =
D1y .., O is provable in it, iff YA ... AY, — PV ...V, is provable
in the system R (or V) of Anderson and Belnap, iff v(¢1 A ... AP, ) <4
v(¢1V ... V) for every valuation v in FOUR. It is not difficult to
show that this fragment of GBL is valid in any distributive lattice with
an involution (“valid” — in the sense that ¢n,...,%, = ¢1,..., ¢4 is
provable in GBL if v(i1)N. . . Av(2by) <¢ v(P1 V.. V() for every val-
uation v). Hence we have an alternative soundness and completeness
theorem relative to these structures.

3. In [] it is shown that if we add T',=-%,?% = A as an axiom to the
{N,V, =} (or {A,V, =, f,t}) fragment of GBL, we get a sound and com-
plete system for Kleene 3-valued logic, while if we add I" = A, ¥, -
we get one of the basic three-valued paraconsistent logics (Also known
as basic Js — see, e.g., chapter IX of [] as well as [, , , ]). By adding
both axioms, we get classical logic.

4. In order to add a conflation to GBS one needs to expand it with ad-
ditional rules for the left and right combination of 1L with A,V,®,®
and L (10 new rules altogether). These rules are the duals of the
corresponding rules of negation. For example,

I, 1y, Lo, = A
[, L(pA¢)= A

iy =A T, 1lo6=> A
I L(p©¢)= A

[LA=] [L®=]

In addition, one should add four more rules for the combination of
negation and conflation:

I'= A
D, L= = A

I¢yv=A

[L==] T= A, -0

[= 1]
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I'= A9 ¢y=A
D=1y = A = A -1%
Using theorem 2.19 it is straightforward to extend the proof of theorem
3.7 to the case of ultralogical bilattices and the resulting systems. Note
that in the presence of conflation we do have provable sequents of the
form I'= and = A.

[—|J_ :>] [:> J_—|]

5. In order to get a sound and complete system for BL(B) for any logical
bilattice B, we have to add axioms to GBL for every b€ B, according
to the homomorphism A of theorem 2.17. For example, if for some

be B h(b)=t, then we add I'== A, b and I', =b= A.

For the single-conclusioned fragment of |=p;, we have a stronger result:

Definition 3.8 GBL; (Intuitionistic GBL) is the system obtained from GBL
by allowing a sequent to have exactly one formula to the r.h.s of =, and
by replacing the rules which have more than one formula on their r.h.s (or
empty r.h.s) by the corresponding intuitionistic rules. GBL(4) is defined
similarly 1.

For example, in GBLy, [= V] is replaced with the following two rules:

I'= I'=o¢
F'=¢ve F'=¢ve

In case of BL(4), all the axioms of the form b = (where be{f,—t,L,-1})
are replaced by b = ¢ for arbitrary .

Theorem 3.9 I'l=pr ¢ iff I'tgpr, . A similar result holds for BL(4).
Proof: We start with two lemmas:

Lemma 3.9a: Suppose that Fgpr I' = A, where A is not empty, and I’
consists only of literals. Then Fgpr,, I' =1 for some ¢ in A (note that if A
is empty, then Fgpr,, I'= ¢ for every ).

Proof of Lemma 3.9a: By an easy induction on the length of a cut-free
proof of I' = A in GBL: It is trivial in the case where I'= A is an axiom.

"' Note that =—¢ = ¢ obtains in both new systems, so the analogy with intuitionistic
logic is not perfect.
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For the induction step we use the fact that since I' consists of literals, all
the rules employed are r.h.s rules. We will prove the case of the rules for Vv
as an example:

e Suppose that A=A’ ¢V7 and I' = A was inferred from I'= A’, ¢, 7. By
induction hypothesis either Fgpr,, I'= ¢, or Fapr,, I'=7, or Fapr,, I'= 1, for
some ¥ € A’. In the third case we are done, while in the first two we infer
Fapr, I'= ¢V 1 using the intuitionistic rules for introduction of V.

e Suppose that A=A’ =(¢Vv7) and I'= A was inferred from I'= A’, ~¢ and
I' = A’,=7. By induction hypothesis either Fgpr, T' = 1, for some ¢ € A’,
in which case we are done, or both Fgpr,, I'= —¢ and Fgpr, I'= —7. In this
case, I'==(¢ v 7) follows immediately by [= —V].

Lemma 3.9b: For every I' there exist sets I'; (i = 1...n) s.t:

1. For every 7, I'; consists of literals.

2. For every A, Fapr, I'= A iff for every 2, Fagr Iy = A

3. For every A there is a cut-free proof of I'= A from I';=A (i =1...n),
where A is the r.h.s of all the sequents involved, and the only rules used are
L.h.s rules.

Proof of lemma 3.9b: By induction on the complexity of I', using the
fact that all the L.h.s rules of GBL are reversible, and their active formulae
belong to the l.h.s of the premises.

Proof of theorem 3.9: Assume that Fegr, I' = . Then Fagr I = o for
the I';’s given in lemma 3.9b. Lemma 3.9a implies, then, that Fgpr, I'; =
¥ (i = 1...n). The third property of I';,...I', in lemma 3.9b implies that
Fapr, I'=1, since GBL; and GBL have the same L.h.s rules. O

Notice that the last theorem is still true if we add I', ¢, =@ = A to the axioms
of GBL, and I',, 1) = ¢ to the axioms of GBL;. In contrast, the theorem
fails if we add I'= A, 1, =4 as an axiom, or the classical introduction rules
of =, or implication with the classical rules. That is why classical logic is not
a conservative extension of intuitionistic logic. This is also the reason why
the theorem fails for the conservative extension of GBL with the implication
we introduce in the forthcomming sections.

We end this subsection with two other fundamental properties of |=pr:

Theorem 3.10 (Monotonicity and Compactness) Let I', A be arbitrary sets
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of formulae in BL (possibly infinite). Define I'l=p1, A exactly as in the finite
case. Then T |=pr A iff there exist finite sets I, A’ such that T'CT, A'CA,
and IV |:BL A! (iff Fasr I'= A/).

Proof: Suppose that I', A are sets for which no such I, A’ exist. Construct
a refuting v in FOUR as follows: first, extend the pair (I', A) to a maximal
pair (I'*, A*) with the same property. Then, for any 1, either ¢ € I'* or
e A* (Otherwise, (I"U{#}, A*) and (I'*, A*U{+}) do not have the property,
and so there are finite IV CI'™*, and A’ C A* such that IV, ¢ |=pr, A’ and there
are finite T C T*, and A” C A* such that ' |=pg1 ¥, A”. Tt follows that
Ul =g, A'UA”, contradicting the definition of (I'™*, A*) ).

Define v from the set of all sentences to FOUR as follows:

T if pel™ and ~peI'™

def | 1t if ¥ eT™* and ~p € A*
vP) =9 if € A* and —p €T
1 if b€ A* and —p € A*

Obviously, v(v) € D(FOUR) for all o € I'*, while v(¢)) € D(FOUR) if ¢ €
A*. It remains to show that v is indeed a valuation (i.e. it respects the
operations). We will prove the case of A, leaving the other cases to the
reader. For this, we first note the following facts:

1. If € A* or p€ A, then pAPpE A*
(Since YA¢l=pr Y and YA ERL P, AP cannot be in ')

2. If peT™, then Y A peT* (€ A*)iff peT* (€ A*). Similarly, If g™,
then o A eI (€ A¥) iff €T (€ A*).
(Suppose that €™ If also ¢ €I'*, then ¥ A¢ cannot be in A*, since
v, o EBLYNAD, So YAPET™ as well. If, on the other hand, ¢ € A*, then
also Y APEA*, by (1) ).

3. If =y eT™ or ~¢p €™, then =(¢pAgp) €™ (similar to (1)).
4. If = € A* then =(¢pA¢p) € A* iff =€ A* (similar to (2)).

Using (1)-(4), it is straightforward to check that v(¥A¢)=v(y)Av(¢) for
every 1, ¢. For example, if v(10)= f then € A* and =y € I'*, thus, by (1)
and (3), YA€ A* and =(1pA¢)€1™. Hence v(¢pAd)=f=v(1p)Av(¢) in this

case. The other cases are handled similarly. O
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Theorem 3.11 (Interpulation) Suppose that I'1,I's = Ay, Ay is provable
in BL(4). Then there exists a sentence 1 such that both I'y = Ay,% and
¥, I'ys = Ay are provable in BL(4), and 1 contains only atomic formulae
which are common to I'y = A and to I'y; = A,. In particular, ¢ = ¢ iff ¢
and ¢ have an interpolant.

Proof: By Maehera’s method (see [, chapter 1]). O

3.3 The Symmetric Consequence Relation

The consequence relation, =gz, as defined above, meets the symmetry con-
ditions for =, A,V as defined in []. It follows from the discussion there that
it is possible to define an associated symmetric consequence relation, |=%;,
for which proposition 3.13 below will be valid:

Definition 3.12 The symmetric version, |=%;, of |=pr, is defined as fol-

lows: q,..., 0 F% 01, ..., & If
a) for every 1§]§m7 ¢17' . '7¢n7_'¢17' . '7_'¢j—17_'¢j+17' . '7_'¢m |:BL¢j7
b) for every 1§7/§n7 ¢17‘ : '7¢i—17¢i—|—17- . '7¢n7_'¢17 .. '7_'¢m |:BL_'¢2'-

Proposition 3.13 [=%; has the following properties:
a) |=%; is a consequence relation in the extended sense of [, ]. In other

words: ¥ =% 1 for every formula ¢, and if I'y |E5; Ay, ¢ and 'y, o =5 Ag
(where I'y, I'y, Ay and Ay are multisets of formulae) then I'v, Iy =% Aq, As.

b) If F|ISBL ¥, then I'l=pr 9.

c) — is an internal negation with respect to =%, ie.: I' E5 o, A iff
[,y A, and T, ¢y A ff T'EY ~¢, A.

d) =%, is the maximal single-conclusioned consequence relation having
properties (a)-(c).

e) A and V are, respectively, combining conjunction and disjunction for

Ey: Dy 0Ae, AT TS ¢, A and Ty 6, A. Similarly, ', Ve =g, A
T, ¢Sy A and T, ¢l=%, A
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f) Epr and =%; have the same logical theorems. In other words, for any

U, ErL v iff v

g) From ¢ |=%; ¢ and ¢ =% 1 it follows that ©() E5, O(¢) and O(¢) F3r,
O(7) for every scheme © (The proof is by induction on the complexity of

0).
Notes:

1. Similar symmetric versions, with similar properties, can be given, of
course, to the other consequence relations defined in the previous sec-
tion.

2. The converse of property (b) above does not hold (unless I' is empty,
as in property (f)). Thus, p,¢=prp but p, ¢~%; p (which shows also
that E=%; is non-monotonic). Hence the single-conclusioned fragment
of |=%; is strictly weaker then that of =pr. Thus, =%; can be used
to express stronger connections than those allowed by |=pr.

3. Both weakening and contraction fail for |=%;. We have already seen
an example for the failure of weakening. As for contraction, we note
that |=%;, ~¥ Vi, ~p Vb, but £ =9 Ve 2. This demonstrates great
similarity with linear logic ([]). In fact, = behaves exactly as linear
negation, while A and V corresponds to the “additives” of linear logic.
In the next subsection we will introduce connectives which correspond
to the “multiplicatives” of linear logic as well. On the other hand,
there is nothing in linear logic which corresponds to either @ or ¢ 14

4. Property (g) above fails for |=pr,. Thus, pVg [=pgr pPg, and pBg =L pVe,
but ~(p®q) Err —(pVq). Moreover, for the implication D we introduce
in the next section, we have that p D pl=pr¢Dq and ¢ D ql=pLp D p,
while =(p D p) B =(¢ D q). For the fragment of {—,A,V} we do
have (g) as an admissible rule. In other words, if 1 and ¢ are in this
fragment, and it is actually the case that ¢ |=pr ¢ and ¢ |=pr, ¢, then
O(v) Epr ©(¢). This follows (using induction on the complexity of
0) from the fact that for such ¢ and ¢, if ¢ |=p1, ¢ then —¢ |=p1, 1.

12For the case of |=pz, but not =5L(4), this holds in fact vacuously. The situation is
different, though, for the stronger language introduced below.

13This can directly be seen from the definition of |=%;. It can also be inferred from
3.13(b), using only the fact that Epr V.

! Clearly not the connectives which have the same notations in []!
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However, this rule is not derivable: from 1= ¢ and ¢=-1) one cannot

inferin GBL —1p = —¢.

3.4 Implication Connectives
3.4.1 Weak Implication

As we have noted, |=pr, and |=%; correspond to different degrees of entail-
ment between premises and conclusions. Being consequence relations they
can be used, however, only as separated frameworks for making conclusions.
It would be much more convenient to be able to treat them within one frame-
work. For this we need appropriate implication connectives, which would
correspond to those consequence relations. In general, the existence of an
appropriate implication connective is a major requirement for a logic. First
of all, it allows us to reduce questions of deducibility to questions of theo-
remhood, and to express the various consequence relations among sentences
by other sentences of the language. Moreover, higher order rules (like: “if
1 entails ¢ then not-¢ entails that not-1”) can be expressed only if we have
a corresponding implication in our disposal. If more than one consequence
relation is relevant, the use of corresponding implication connectives allow
us also to express higher-order connections among those relations.

Unfortunately, the language BL, rich as it is, lacks an appropriate general
implication connectives (this is clear from the fact that it has no tautologies).
We can try to use =)V¢ as expressing implication of ¢ by 1 (henceforth we
shall use ~+ for this connective), but this is not adequate, since both modus
ponens and the deduction theorem fail for this connective. The natural thing
to do, therefore, is to enrich the language of BL so that this problem will be
eliminated. Again, [] provides a clue how to get implication connectives that
correspond to both Epr and |=%;, by adding only one connective. What
we need is an internal implication, D, for |=pr, which satisfies the symmetry
conditions for implication:

o I VR ¢, Al EpL Y D ¢, A,
o If 'Y, ~¢l=pr A then I',=(¢) D ¢) FrL A.
o f I'=pr o, Aand I'lEpr —¢, A, then T'l=py, —|(¢ D (b),A

These conditions can easily be translated into rules of a sequential calcu-
lus. Therefore, it is easier to start by extending the language and the proof
system, then to look for an appropriate semantics.
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Definition 3.14

a) BL~, BL+(4), BL~(B) are the extensions of the various languages defined
above with the connective D.

b) GBL~ (GBL+(4)) is obtained from GBL (GBL(4)) by the additions of the

following rules:

I'=¢v.A To=A I'.¢= ¢, A
L=l s 0oa T 456,48 0]
¢, —n¢=A I'=¢v,A T'=-¢ A
R Y I=-woo.a 777

¢) I'kapro A ff I' = A is provable in GBLS.
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We turn now to the semantics of D:

Definition 3.15

a) Given a logical bilatice (B, F), the operation D is defined as follows:

def ) b ifaeF
@36 = {t ifag F

b) Using part (a), the consequence relation =gy, ([Fpr4)) is extended to
FBL, (FBLo4)) in the language BL- (BL5(4)) in the obvious way.

Proposition 3.16 Both modus ponens and the deduction theorem are valid
for >in [=pr5 (FBLS(4)-

Proof: Easy, and is left to the reader. O

Proposition 3.17 Theorem 2.17 is still valid when D is allowed: if (B, F)
is a logical bilattice, then there exists a unique homomorphizm (relative to

=, AV, ®@,P,and D) h: B — FOUR, s.t. h(b)e{T,t}iff be F.

Proof: Almost identical to that of theorem 2.17. We only have to check
that h as defined there is an homomorphism w.r.t D also. Well, if a € F,
then a Db=0b,s0 h(aDb)=h(b)="h(a) Dh(b), since h(a)e{T,t} when a € F.
On the other hand, if a ¢ F, then ¢ Db=1 and so h(a D b)=h(t)=1. But
since in this case h(a) € {L, f}, then h(a)D h(b) is also ¢, no matter what
h(b)is. O

Proposition 3.18 Let I' and A be finite sets of formulae in BL (in BL(4)).
Then F |IBLD A (F |:BL3(4) A) lﬁ F |:<FOUR> A

Proof: Identical to the proof of theorem 3.4, using the previous proposition
instead of theorem 2.17. O

Note: In contrast to theorem 3.4, proposition 3.5 fails for BL-. Thus,
pDpis always valid (i.e.: always has a value in F), while the language of
{=,A,V,®,®} contains no such formula. The same argument shows also
the following proposition:

Proposition 3.19 Bl is a proper extension of BL.

1®Note that unlike the operations we delt with so far, D is defined only for logical
bilattices.
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Theorem 3.20
a) (Soundness, Completeness)I' =pr,o Aiff I'Fgpro A (similarly for GBL5(4))
16

b) The Cut Elimination Theorem is valid for GBL+ and for GBL~(4).

Proof: Soundness is easy, and is again left to the reader. The combined
proof of completeness and cut-elimination is identical to that in the case of
g1, (theorem 3.7). We only have to check that all the rules of O are again
reversible, both proof theoretically and semantically. We do this here for the
case of [wD=]: First, we observe that it is easy to show that ¢, == (1) D
¢) is provable, and so it is valid (by soundness). Hence, if I, = (¢ D ¢) = A
is valid (provable), then a cut (which is a valid rule) with ¢, =¢=—(¢) D ¢)
gives that I', 1, 7¢= A is also valid (provable). O

Corollary 3.21

a) GBL+ is a conservative extension of GBL.

b) GBL+ is still paraconsistent.

c¢) The {A,V, D}-part of =gz is identical of that of classical logic.

Proof:

a) This is direct implication of cut-elimination. It also a corollary of the
soundness and completeness results for both.

b) We still have that p, ~p FEapr- ¢.

¢) The {A,V, D}-part of GBL+ is identical to that of the usual Gentzen-
type system of classical logic. By cut-elimination, this part of the system is
complete for the corresponding fragment of |=pr, 7.0

Other properties of |=pr, which can be generalized to =pr are compact-
ness and interpolation:

Theorem 3.22 =gy, enjoys compactness, monotonicity, and interpola-
tion.

Proof: Identical to these of theorems 3.10 and 3.11. The only necessary
addition to the proof of 3.10 is showing that v as defined there is a valuation
also with respect to D (i.e.: v(¢ D ¢) = v(¥p) Dv(¢p)). We leave this to the

18Tt is not difficult to check that in FOUR our definition of O is the only possible
definition for which this is true.
17From part (c) of the corollary it follows that the critical connective of GBL is negation.
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reader (compare to the proof of proposition 3.17). O

On the other hand, theorem 3.9 cannot be extended to |=pr,. This is
obvious from the fact that the {A,V, D}-fragment of GBL+ is identical to
the classical one, and so it is strictly stronger than its intuitionistic version

(Thus, (¢ D ¢) D Fapr, ¥, but (¥ D @) DY Fapr, ¥).

We have already noted that unlike |=pr,, |=pr,, does have valid formu-
lae. This fact, together with the existence of an internal implication, indicate
that for =gz, it might be possible to provide a sound and complete Hilbert-
type representation. This indeed is the case: ¥

The System HBL

Defined Connective:

b= (D @) A (6D )

Inference Rule:

Y ¥D¢

¢

Axloms:

D1l ¥D2>¢D%

[>2] (¥2¢2>7)D>(¥D¢)D (D7)
D3] (¥D>¢)D¥)D

[AD] YA9DY  bAPD S

DA ¢¥D2¢DvAQ

[@D] Yv@oDY PRPD

D®] ¢D>¢Dve

DVl ¢D>9yVveé ¢DYPVe

1811 the formulae below the association of nested implications should be taken to the
right.
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Vo] (®>7)2(¢D7)D(¥pVeDT)
D&l YvDov@Eed DD

[©2] (WD7T)2(D>7)D(WdeDT)
[FA] A(b A=V g

[-V] A V)= Aad

2] ~(bed)=-v ¢

8] ~(b@Be)=-vd o

[-2] (¥ Dd) =y A9

=] =9

Note: Again we note the critical role of negation in this system.

Theorem 3.23 GBL- and HBL are equivalent. In particular:

a) ¢17"'7¢n l_GBLD ¢17"'7¢m iff '_HBL ¢1A7"'7A¢n D) ¢1V,-..,\/¢m (OI’
just @1V, ..., Vo, in case that n=0).

b) Let ' be any set of sentences, and ¢ — a sentence. Then I' Fgpp, ¢ iff
every valuation v in FOUR, which gives all the sentences in I' designated
values, does the same to 2.

Proof: It is possible to prove (a) purely proof theoretically. This is easy
but tedious (the well-known fact that every {A,V, D}-classical tautology is
provable from the corresponding fragment of HBL can shorten things a lot,
though). Part (b) follows then from the completeness and the compactness
of GBL+. Alternatively, one can prove (b) first (and then (a) is an immediate
corollary). For this, assume that I't/gpr, v. Extend I' to a maximal theory
I'*, such that I'"*/gpr, 1. By the deduction theorem for O (which obviously
obtains here), and from the maximality of I', I V/ygnr, ¢ iff 1™ Fugr ¢ D 1.
Hence, if 7 is any sentence, then if I /ypr, v D 7, then I Fypr (v D7) D
and so I'* Fypr ¢ by [D3]; a contradiction. It follows that I'*Fgpr ¢ D for
every 7, and so for every ¢ and 7:

(*) if I* VHBL(b then I'Fypr oD .

Define now a valuation v as follows:
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T if I'™ Fypr ¢ and I'* Fggr, —¢
def 1 if I'* |7/HBL (b and I'* |7/HBL —|(b
t if I'™ Fygr, (b and I'* |7/HBL —|(b
f it I Vppr, ¢ and I Fppr, ~¢

Obviously, v(¢) is designated whenever I Fpypr, ¢, while v(1) is not. It
remains to show that v is actually a valuation. We shall show that v(¢ D
T7)=v(¢) Dv(r), and that v(¢VT)=v(¢)Vr(T), leaving the other cases for
the reader.

To show that v(¢V 1) =rv(¢)Vr(r), we note first that axioms [D V] and
[V D], together with the above characterization (*) of the non-theorems of
I'*, imply that I'* Fggr ¢V 71 iff either I'™* Fygr, ¢, or I'* Fypr, 7. Axiom
[~V], on the other hand, entails that I'* Fppr, = (¢ V1) iff both I'™* Fypr, —¢,
and I'* Fgypr, —7. From these facts the desired equation easily follows.

In showing that v(¢ D7)=v(¢) Dv(r), we destinguish between two cases:
case 1: v(p) € {f, L}. This means, on the one hand, that v(¢) D v(7)="t.
On the other hand, it is equivalent to I'* /ggr, ¢. By (*) above, and by
axiom [— D] this entails that I Fypr, ¢ O 7 but I'"* ypr, ~(¢ D 7). Hence
v(¢DT)=t=v(d)Dr(r).

case 2: v(¢p)€{t, T}. Then v(¢) D v(r)=v(r). In addition, it means that
I™* kgl ¢, and so (by axioms [D 1] and [-D]), I*Fpgr ¢ D7 iff T*Fppp 7,
and I'"Fgpr (¢ D7) iff I"Fppr—7. It follows that v(¢D7)=v(7) too. O

Corollary 3.24 HBL is well-axiomatized: a complete and sound axiomati-
zation of every fragment of |=pr,, which includes D, is given by the axioms
of HBL which mention only the connectives of that fragment.

Proof: The above proof shows, as it is, the completeness of the axioms
which mention only {V, D, =} for the corresponding fragment. All the other
cases in which — is included are similar. If - is not included, then the system
is identical to the system for positive classical logic, which is known to have
this property 19. O

Note: The {—,A,V, D}-fragment of GBL- and HBL were called in [] the
“basic systems”. Again, it is shown there that by adding I' = A, ¢, -

¥ Note that without — there is no difference between A and ®, and no difference between

V and @.
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to GBL~, and either =)V or (¢ D ¢) D (=¥ D ¢) D ¢ to HBL, we get
complete proof systems for the full three-valued logic of {¢t, f, L}. This logic
is an extension of Kleene three-valued logic, which is equivalent to the logic
of LPF ([, ]). If, on the other hand, we add I',%, -9 = A to GBL+ and
=10 D (¢ D ¢) to HBL, we get complete proof systems for the three-valued
logic of {t, f, T} (also known as J3 — see note (3) after theorem 3.7).

3.4.2 Strong Implication

The implication connective D has two drawbacks: the main one is that even
in case ¥ D ¢ and ¢ Dt are both valid, ¢ and ¢ might not be equivalent
(in the sense that one can be substituted for the other in any context). For
example, if ©» = =(7 D p) and ¢ = TA-p, then both 1y D ¢ and ¢ D ¢ are
valid, but =) D —¢ is not. The second disadvantage is that ¥ D ¢ may be
true, its conclusion false, without this entailing that the premise is also false
(for example: LD f=t).

This drawbacks of D are, in fact, drawbacks of |=pr,-, the consequence
relation on which it is based. What we can do, however, using the general
theory developed in [], is to define in |=pgr, an implication connective, which
corresponds to =y, and does not suffer from these disadvantages.

Definition 3.25 (strong implication) 2°

def

e — ¢ (D) A (~d D )
op = ¢ L (=) A (d— 1)

Proposition 3.26 |:§3LD has all the properties stated for |=%; in proposi-
tion 3.13. In addition, — is an internal implication for it: I', ¢ |:§3LD ¢ iff
I'Egy, v —¢ (in particular, 1, ¥ —@=5_ ¢).

Proof: These are all immediate consequences of the general theory in [],
and the fact that -, A and D satisfy in |=pr- their corresponding symmetry
conditions as defined there (basically this means that the relevant rules of
GBL~ are valid). O

Proposition 3.27 Let ¢, ¢, 7 be formulae in BL5, and v — any evaluation
in FOUR. Then:

a) v(¢ — ¢) € D(FOUR), iff v(¢) <y v(9).

b) v(¢ — ¢) € D(FOUR), iff v(¢) = v(¢).

2%Tn this definition too, the role of negation is critical.
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Proof: Left to the reader. O

Corollary 3.28 ¢ — ¢ |=pr, O(1) — O(¢) for every scheme O. In other
words, < is a congruence connective.

Proof: Immediate from part (b) of the last proposition, and from the fact
that [=pr- is the same as |=(poyg). O

Proposition 3.27 provides us with an easy method of checking validity or
invalidity of sentences containing —. Using this method it is straightforward
to check the next two propositions:

Proposition 3.29 The following are valid in [Fp1- (Fpro(4)):
b — b
(Pp—=¢)—=(¢—7) = (Y—7)
(V—=¢—=T)=d—=tp—rT
(V—=90)—tv—1t—29¢
VANG—P . YAP— ¢
(V=N (P —T) =Y —=oAT
VRd—1Y . YOo—9¢
V=90 —T)=P =007
b—=PbVe . 9=V
(V=T)V(@—=T)=¢Vo—rT
V=Y Ddd , d—VvDo
W—=T)B(p—=T)—=VBo—T
¥ = 2

(¥ = @) <= (=¢ — ~¢)
APV T) = (PAPV(PAT)
YO (eBT) = (vOP)B(vOT)
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(PAP) = Vg
PV @) = Y Ag
PR P) = YR
(YD P) > YD

—

—

(
(
(
(

Proposition 3.30 The following are not valid in Epr- (Eppo):
v—¢—1

(W=t —=9)=v—20¢

=P =9

vV—=¢—1VANO

V==Y

Notes:

1. If we compare the list above with the usual formal system for the rel-
evance logic R ([, ]), we see that the only axiom of R which is not
valid for this interpretation of — is the contraction axiom: (¢ — 1) —
¢) — 1 — ¢. It is worth noting that the omission of this axiom is
also the main difference between the linear logic of Girard (see []) and
the usual relevance logics. In fact, the last two propositions are true
for linear logic as well (with the exception of the converse of contrac-
tion, the distributive schemes, and the parts concerning @ and &, of
course), if we interprate = and — as linear negation and implication
(respectively), and A,V as the “additives”. Note, however, that the
“mix” (or “mingle”) axiom 1 — 1) — 1) is valid.

2. On {t,f, L}, — is exactly Lukasiewicz implication ([, ]), while on
{t, f, T} it is Sobocinski implication ([]), which is the implication of
RMs - the strongest logic in the family of relevance logics.

3. By using —, we can sometimes translate “annotated atomic formulae”
from Subrahmanian’s annotated logic (see [, , , , ]): The translation
of 1 : b to BL(4) when b € FOUR, and when the partial order in the
(semi)lattice is <, is simply b— 1.
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Proposition 3.31 |=pr (¥ D¢) < ¢V (v— (1 —¢))

Proof: This can easily be checked in FOUR. O

The last proposition means that it is possible to choose — rather than D
as the primitive implication of the language. We prefer the latter, though,
since the intuitive meaning of both is then clearer. Also, the corresponding
proof systems are much simpler if we follow this choice. Using —, on the
other hand, is more convenient for relating our logic to other known logics,
as we have just seen.

Our next proposition brings us back to the relations between our logic
and relevance logic:

Proposition 3.32 Let ¢ and ¢ be in the language of {—, A, V}; then the
following assertions are equivalent:

a) Y EBLo

b) ¢ =h ¢

c) FBL Y D¢

d) Fprv—¢

e) FryY—¢

Proof: That ¢ |=pp ¢ iff |=r 1 — ¢ was noted already after theorem 3.7.
That =g, ¥ D ¢ iff ¥ |=pr ¢ is an instance of the deduction theorem for D.
Similarly, the equivalence of =gy, ¥ — ¢ and ¢ |=%; ¢ follows from the de-
duction theorem for — relative to =%, and the fact that =g, ¢ iff =5 1.
Finally, =1, ¥ — ¢ iff v(¢) <,v(¢) for every valuation v in FOUR, and it
is well known (see [, ]) that if ¢ and ¢ are in the {—, A, V}-language, then
Fr1 — ¢ under exactly the same circumstances. O

We end this subsection with a short demonstration of the potential use
of =pr5 as well as of its various implication connectives. Recall that we are
using ~+ to denote the implication of the classical calculus (i.e: ¥ ~ ¢ =

PV @)
Example 3.33 Consider the following knowledge-base:
bird(tweety) ~ fly(tweety)

penguin(tweety) D bird(tweety)

34



penguin(tweety) — - fly(tweety)

bird(tweety)

Note that we are using different implication connectives according to
the strength we attach to each entailment: Penguins never fly. This is
a characteristic feature of penguins, and there are no exceptions to that,
hence we use the strongest implication (—) in the third assertion in order
to express this fact. The second assertion states that every penguin is a
bird. Again, there are no exceptions to that fact. Still, penguins are not
typical birds, thus they shouldn’t inherit all the properties we expect birds
to have. The use of a weaker implication (D) forces us, indeed, to infer
that something is a bird whenever we know that it is a penguin, but it does
not forces us to infer that it has every property of a bird. Finally, the first
assertion states only a default feature of birds, hence we attach the weakest
implication (~) to it. Indeed, since from 1 and ¥ ~ ¢ we cannot infer
¢ (by |=pr,) without more information, the first assertion does not cause
automatic inference of flying abilities just from the fact that something is a
bird. It does give, however, strong connection between the two facts.

The above knowledge-base does not allow us to infer whether tweety is
a penguin or not (as it should be), and if it can fly or not (which is less
satisfactory; we shall return to it in the next section). However, if we add
to the knowledge-base an extra assumption, penguin(tweety), we can infer
= fly(tweety) but we still cannot infer fly(tweety), as should be expected.

3.5 Adding Quantifiers

So far we have concentrated on propositional languages and systems. The
justification for this is that the main ideas and innovations are all on this
level. Extending our notions and results to first order languages can be done
in a rather standard way. We can take V, for example, as a generalization
of A. Having then an appropriate structure D, and an assignment v of
values to variables and truth values to atomic formula, we let v(Vai(z)) be
inf< {v(¥(d)| de D}. Here we are using, of course, the fact that we assume
B to be a complete lattice relative to <;. The corresponding Gentzen-type
rules are then:

U o(s) = A I'= ¢(y),A
I Vayp(z) = A I' = Vay(z), A

V=] [= V]
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I=(y) = A I' = —(s), A
I',=Vay(z) = A I' = =Vay(z), A
In these rules we assume, as usual, that the variable y does not appear
free in " or in A. Corresponding soundness and completeness as well as
cut elimination theorems can be proved relative to FOUR with no great
difficulties. We omit here the details. We just note that one can introduce
also, in the obvious way, quantifiers which correspond to ® and .

[+V=] (=)

4 A More Subtle Consequence Relation

Epr, should be taken as a first approximation of what can be safely in-
ferred when we have a classically inconsistent knowledge-base; this safety
is its main advantage. The disadvantage is that |=p is somewhat “over
cautious”. Thus, in example 3.33 we would have liked to be able to infer
fly(tweety) from the original knowledge-base, before the new information,
penguin(tweety), is added to it. We cannot do this, of course, since =gy, is
monotonic.

There is more than one way of introducing other consequence relations,
which are less cautious, and enjoy non-monotonicity; we present here one
example. The idea is taken from a paper of Kifer and Lozinskii (see []).
Their idea, basically, is to order models of a given knowledge-base in a way
that somehow reflects their degree of consistency, and then take into account
only the models which are maximal w.r.t this order. The main difference is
that they were using just ordinary (semi)lattices, in which the partial order
relation corresponds, intuitively, to our <. Hence, no direct interpretation
of the standard logical connectives (A, V) was available to them. They were
forced, therefore, to use an unnatural language, in which the atomic formulae
are of the form p : b (where p is an atomic formula of the basic language,
and b — a value from the semilattice). 1 : b is meaningless, however, for
nonatomic 1. The use of bilattices allows us to give the standard logical
language a direct interpretation, and so gives a meaning to every annotated
formula. On the other hand, by using F we can dispense with annotated
formulae altogether, as we do below 2!,

Definition 4.1 Let B = (B, <, <j, ) be a logical bilattice. A subset 7 of
B is called an inconsistency set, if it has the following properties:

' Despite the fact that this method of using “annotated” atomic formulae is quite
common, it is still artificial from a logical point of view, since semantic notions interfere
within the syntax.
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a) beTiff -bel.
b)be FNIiffbe Fand -be F 22

Notes:
1. From (b), always T €Z. Also, from (b), t¢Z, and so, from (a), f¢Z.

2. Asfor L, both ZU{L} and Z\ {L} are inconsistency sets in case Z is.
Now, on one hand, in every bilattice, =L = L (proposition 2.5), so L
has some features that may be associated with inconsistent elements.
On the other hand, L intuitively reflects no knowledge at all about
the assertions it represents; in particular, one might not take such
assertions to be inconsistent. We shall usually prefer, therefore, to
take L as consistent (see also the note after proposition 4.13).

Example 4.2 The following are all inconsistency sets:

a) Zy={b|be F and -b e F}.

b) Iy={b| b = —b}.

c) Is={b|b=-b,b# L}

7, is the minimal possible inconsistency set in every in every (B, F). In case
that B in interlaced, and F=D(B), Z; is just { T} (see proposition 2.25). 7,
and 73 are always inconsistency sets in case B is interlaced, and F =D(B5).
There are, however, other cases in which they are inconsistency sets, for
example in DEFAULT.

We fix henceforth some logical bilattice (B,F), and an inconsistency
subset Z of it. Unless otherwise stated, all the definitions below will be
relative to (B, F) and Z. We will refer to the members of 7 (the members
of B\ 7) as the inconsistent (consistent) truth values of B.

Notation 4.3

a) A(l') denotes the set of the atomic formulae that appear in some formula
of I.

b) For a valuation M of T', denote: Ip(T')={pc A(T') | M(p)eZ}.

Definition 4.4 Let I' and A be two sets of formulae, and M, N — models
of I'.

a) M is more consistent model of ' than N, if the set of the atomic formulae
in A(I') that are assigned under M values from 7, is properly contained in

%In [] the inconsistent values are defined quite differently; see there for the details.
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the corresponding set of N (i.e: Ipf(T') C In(T)).

b) M is a most consistent model of I' (mcm, in short), if there is no other
model of I' which is more consistent than M.

c) I' =eon A if every mem of I' is a model of some formula of A.

Example 4.5 Let’s return to the knowledge-base KB of example 3.33.
Take F = {t, T} and B — any bilattice in which this F is a prime bifilter
(e.g: FOUR, DEFAULT). Let T be any inconsistency set in B (obviously,
FNI={T}). Relative to (B, F) and Z, this knowledge-base has exactly one
mem, and it takes values in {t¢, f}. Hence, if ¢ is in the language {—=, A, V, D},
then KB = o, ¢ iff ¢ follows classically from KB. Thus (unlike the in case
of Egr!):

KB =con bird(tweety), KB = ., “penguin(tweety), KB o, fly(tweety),
KB con ~bird(tweety), KB o, penguin(tweety), KBIE o, - fly(tweety).

Now, consider again what happens when we add penguin(tweety) to
KB: The new knowledge-base, KB’, has two mcms, My and M, where:

My (bird(tweety)) = t, Myi(penguin(tweety)) = T, Mi(fly(tweety)) =T,
My (bird(tweety)) = T, My(penguin(tweety)) =t, Ma( fly(tweety)) = f.

This time, therefore,

KB [Eion bird(tweety), KB' =con, penguin(tweety), KB' |=.., = fly(tweety),
KB' fcon —bird(tweety), KB' [Econ —penguin(tweety), KB’ [Eeon fly(tweety).

It follows that |=.., is a non-monotonic consequence relation, which
seems to behave according to our expectations. O

Some important properties of |=.,, are summarized below:
Proposition 4.6 If I'|=p; A then I'|=.,, A.

Proof: If every model of I' satisfies some formula of A, then obviously every
mcm of ' does so. O

Proposition 4.7 |=.,, is non-monotonic.
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Proof: Consider, e.g., I'={p, -pVq}. In every mem, M, p and ¢ must have
consistent values (since the valuation that assigns ¢ to each one of them, is
an mem of I'). Also, M(p)€ F, since M is a model of I'. If M(—p)€ F also,
then M(p)€eF NZ (from definition 4.1(b)), so M(p) is inconsistent. Hence
M(-p)¢ F. But M(—-pV q)€ F, hence M(q) € F. So, I' Econ q in every
(B,F)and Z. Obviously, however, I', =p £, q (take, e.g., M s.t. M(p)=T,
and M(¢)=f). O

Proposition 4.8 |=.,, is paraconsistent:
p,—p |/J:con q, and even vy, _'(p\/(Z) |/J:con q.

Proof: Consider any valuation that assigns p the value T, and assigns ¢ the
value f. O

Proposition 4.9 If T and ¢ are in the language of {-,A,V,D, f,t}, and
I'l=con t, then ¥ classically follows from T

Proof: The crucial property of the language here is that if all the atomic
formulae get values in {f,t}, then so does any formula in the language.
Now, if T' is classically consistent, then it has a model in {¢, f}, and so all
its mems assign the members of A(I') consistent values. Hence, if I' =, 9,
then every model of I' that assigns the members of A(I') consistent values,
is a model of . In particular, every model of I' that assigns the members
of A({I',%¥}) classical values (i.e.: {t, f}), is a model of ¢, and so 1 follows
classically from I'. If I' is classically inconsistent, then any ¢ follows from it
classically (in particular ¢). O.

A partial converse for consistent theories is given in the next proposition:

Proposition 4.10 Let I' be a classically consistent set in the language of
{=,A,V, f,t},and let ¢ be a sentence in the same language, which classically
follows from I'. Then there exist sentences ¢ and 7, such that:

1) 4 is classically equivalent to ¢,

2) 7 is a tautology,

3) Y EBLaydNT and OAT =R P,

4) r |:con (b

Proof: Let ¢’ be a sentence like in proposition 3.5. %’ can be written
in the form ¢ A7, where 7 is the conjunction of all the conjuncts in ¢’
which are tautologies (i.e.: contains some atomic formula and its negation
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as disjuncts), and ¢ is the conjunction of the other conjuncts of ¢ (if either
set of conjuncts is empty, we take it to be ¢). ¢ and 7 obviously satisfy
properties (2) and (3). Since classical logic is an extension of |=pr4) w.r.t.
the language under consideration, 1 is classically equivalent to ¢AT, and so
to ¢ (since T is a tautology). It remains to prove (4). It is easy to see that
I'Eeon @1A. . APy, iff T'[Econ @i for every i=1...n. Hence, (4) follows from
the following lemmas:

Lemma 4.11 Let I’ be a classically consistent set in the language of
{=,A,V, f,t}, and ?) — a clause that does not contain any pair of an atomic
formula and its negation. If ¢ follows classically from T', then I'|=.,, ¥.

Proof: We will show that if ' [£.,, %, then there is a classical model of T,
which is not a model of 7. Indeed, let M be an mcm of I s.t. M(¢) &€ F.

Consider the valuation M’, defined as follows:

t if M(p)eF,and pe A(T, ).

f if M(—p)eF,and pe A(T, ).

M(p)=< t if M(p)¢F, M(—-p)¢F, and —p appears as a literal in .
f if M(p)¢F, M(—-p)¢F, and p appears as a literal in .
t otherwise

Exactly as in the proof of proposition 4.9, the fact that I' is classically
consistent entails that M(p) is consistent for every p in A(I'). Hence there
cannot be any p in A(T') s.t. both M(p) and M(-p) are in F (otherwise,
from (b) in definition 4.1, M(p)€Z). On the other hand, if p € A(+) then
either p or =p is a disjunct of 1. Since M (v)¢ F, this implies that either
M(p)g¢F,or M(—p)¢F. These two facts and our explicit assumption on
imply that M’ above is well defined. Obviously, M’ is a classical valuation.
Now, by proposition 3.5, there is a set of clauses I, s.t. A(T')=A(T"), every
model of ' is also a model of I”, and vice-versa. Since M is a model of T', it is
also a model of I'. Hence, for every clause ¢ €T” with literals I; (i=1...n),
there is at least one literal, I;, s.t. M(l;) € F. From the definition of M’,
M'(l;) € F as well, thus M’ is a model of I'. Hence M’ is a model of I as
well. On the other hand, M'(1)) = f, since for every literal [; that appears
in ¢, M'(l;) = f. Indeed, without a loss of generality, suppose that {; = —p.
Since M(w) ¢ F, also M(-p) ¢ F. If M(p)€ F, then M'(p) =t, and so
M'(l;)=M'(-p)=-M'(p)=-t=f. If M(p)¢F, then since —p appears as
a literal in 1, M'(p) =1 in this case as well, and again M'(l;)=f. M’ is,
therefore, a classical model of I', which is not a model of . Hence % does
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not follow classically from I'. O

Note: The crucial lemma 4.11 does not hold under stronger assumptions:

a) If we allow the appearance of D in I', then consider (FOUR) with Z={T},
and I'={pDq,pD —q}, ¥ =-p. ¢ follows classically from I', but the val-
uation M, where M(p)= L, and M(q)=t, is an example of an mcm of T',
which is not a model of .

b) If ¢ contains a literal and its negation, then consider again (FOUR)
with Z={T}. This time, pV —p follows classically from ¢, but ¢~.., pV-p
(consider, e.g., M(q)=t, M(p)=1) .

As we have already shown, |=.,, is non-monotonic. We next show that
in addition it satisfies some properties that one might like a non-monotonic
logic to have:

Definition 4.12 []: A plausibility logic is a logic that satisfies the following
conditions (for finite I', A):

Inclusion: T',1p=1p.
Right Monotonicity: If I'= A, then I'= 1, A.
Cautious Left Monotonicity: If T = and I'= A, then T', = A 24,

Cautious Cut: If U)oy, ..., 0, = A and I' = ¢p;, A for e=1...n, then
I'=A.

Proposition 4.13 |=.,, satisfies Inclusion, Right Monotonicity, and Cau-
tious Left Monotonicity. |=.., also satisfies Cautious Cut iff there exists
geB s.t. BEITUFUL{b | ~beF}, and the language is BL(4) (Hence |=c0, is

a plausibility logic under these conditions) 25.

Proof: Inclusion and Right Monotonicity follow immediately from the def-
inition of |=cop.

Proof of Cautious Left Monotonicity:

220ne can replace here {¢} by {g, ¢Vp}, if one wishes A(4) to be a subset of A(T).

**This rule was first proposed in [].

2*In proposition 4.10 of [] the bilattice under consideration should have been interlaced,
and f=_1 (these assumptions were used there for the proof of the Cautious Cut). Here
we prove the proposition for any logical bilattice, and for § as defined above, which may

be different from 1.
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Assume that T |=c0, ¢, T |=eon A, and let M be any mem of {I',¢}. We
will show that M is also a mem of I'. Since I'|=,,, A, this will imply that
M satisfies some formula in A, and so I', ¢ |=con, A. Now, M is certainly a
model of I'. Assume that it is not an mcm of I'. Then there is a model of T
that is strictly more consistent than M. Since I is finite, there is an mcm
N of T', which is strictly more consistent than M; and so In(T") C In(T).
Counsider the valuation N’ that is defined as follows: N'(p)=N(p) for every
p € A(l') and N'(p) = b otherwise, where b is any consistent truth value.
Obviously, N’ is an mem of T'. Since T |=eon ¢, N’ is a model of {T',¢}.
Now, In(LI', %)= In/(T)=InN(T) CIp(1) CIng(L,40). Hence N’ is a model
of {I',%}, which is more consistent than M. This contradicts the fact that
M is an mem of {I',}.

Proof of Cautious Cut under the specified conditions:

Assume that T', ¥y, ..., ¥, Feon A and I'l=go, 0, A for i=1...n. Let M be
an mcm of I'. We will show that M is a model of some formula of A. For
this, define another valuation, M’, by:

M(p) { M(p) if pe A(T)

08 otherwise

Obviously, M'(¢)=M (o) for every ¢ s.t. A(¢) CA(T'). Hence M’ is also an
mcm of I'. Thus, M’ is either a model of some ¢€ A, or M’ is a model of
1, .., . Since M'(p) €Z implies that pe A(T'), and since M’ is an mcm
of T', M’ is necessarily an mem of {T', ¢, ...,%,} in the second case. Hence,
again, M’ is a model of some ¢ € A. It follows that in either cases M'(¢)eF
for some ¢ € A. It remains to show that M(¢) € F whenever M'(¢) € F.
Indeed, by proposition 3.5 there exists a formula ¢, which is a conjunction
of disjunctions of literals, s.t. for every valuation v, v(¢)€ F iff v(¢') € F.
If M'(¢)€ F, then M'(¢')€ F also, so M'(D) € F for every conjunct D of
¢'. Now, M'(D) e F iff there is a literal [ € D s.t. M'(I)€ F. But since [ is
a literal, it is obvious that M’'({)€ F only if M'(l)# 3 and M'(-l)# 3, so
M(l)=M'(l). Hence M(l)€ F as well. It follows that M (D)€ F also, and
so M(¢')€F, implying that M(¢)€ F.

To show the necessity of the conditions we note that:
1) If D is in the language, then for every B, F, and Z: ¢ Feon ¢V p,
09V P Feon (p D =)V (=p D =q), but q Feon (p D =)V (=p D ~q) (take a
valuation M, s.t. M(q)=t and M(p)=T).
2) If B=ZUFU{b | -be F}, then ¢ =con qVp and ¢,qVpEcon pV-p, but
qFconpVp (consider M, s.t.M(q)=t and M(p)=1). O
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Note: If L €7 (see note 2 after definition 4.1) then the condition for Cau-
tious Cut is satisfied for 5= 1.

The crucial point in the counterexamples given in the last proof, is that
the cut formula contain atomic formula that does not appear in A(I'). In
fact, it is easy to show that otherwise the rule is valid with no extra assump-
tion:

Definition 4.14 (Analytic Cautious Cut)
T, 1, .. 0 Eeon A and T'leeon i, Afori=1...n, and if A({¢1,...,¢,}) C
A(T), then I'l=pon A.

Proposition 4.15 Analytic Cautious Cut is valid rule for |=,,,,.

Proof: Let M be any mcm of I'. We will show that M is a model of
some formula in A. If not, then M is a model of ¢; (i = 1...n), since
I' Eeon Vi, A. Hence M is a model of {I',4¢,...1,}. It is obviously an
mcm of this set, since any model which is more consistent than M w.r.t
{I';%1,...9,}, is also a more consistent model than M w.r.t I' (using the
fact that A({t1,...,¥.}) CA(L)). Since I', 1, ..., ¥ Feon A, M is a model

of some formula of A after all. O
Proposition 4.16 All the rules of GBL are valid for |=.,,.

Proof: The validity of Exchange and Contraction is immediate from the
definition of |=c,,. The introduction rules on the right, as well as their in-
verses, are valid for exactly the same reasons that they are valid in =p.
The rules [A =] and [® =] are valid, since the models of {T', ¢, ¢}, {T', YvAd},
and {I',¥®¢}, are the same, hence the mems of these sets are also the same.
Similar argument works for [-—=-]. The rules [V =] and [ =] are proved
in [] to be valid in every plausibility logic, which satisfies [= V], [= 8],
and their converses. The proof there does not use in fact the full power of
Cautious Cut, but only that of Analytic Cautious Cut. For the reader conve-
nience, we repeat the arguments, adjusted to our logic, for the case of [ =]:
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1) Typ= 1,0 Inclusion and Right Monotonicity.

2) Liy=9a4é (1), [=a].

3) Iv=A Hypothesis.

4) T, vd 0= A (2), (3), Left Cautious Monotonicity.
Lo, ¢ = ¢,A (4), Right Monotonicity.
Ivdo=vPd¢  Inclusion.

Lyvdod=1y,90 (6), Inverse rule of [= ).

I'yado=1v,¢,A (7), Right Monotonicity.

Iyoo=o,A (5), (8), Analytic Cautious Cut.
Io,vdo=A Proved like (4), exchanging the roles of ¢ and ¢.
Iovdoo=A (9), (10), Analytic Cautious Cut.

Finally, [-A =], [7V =], ["® =], and [~@® =] all follow from lemma 2.5(a),
together with the previous observations. O

~~
| el N N e N e N i N

~~

Some other nice properties that are true in every plausibility logic which
satisfies [= V], [= @], and their converses, are listed in the next proposition

(see []):

Proposition 4.17 Let I', A be sets of formulae, and ¢, ¢, 7 — formulae in
BL. Then:

Left Equivalence: LY Eeond TéoFwnt T¢ o A

Fv ¢ |:con A
T =con F, = con r —con 7A
Right equivalence: Y| ¢ T |f| 5 QZ | v
L . ¢ |:con (b (b |:con T T |:con ¢
Ooop: ¢ |: -
¢ |:con T ¢ \Y ¢ |:con ¢ ¢ |:con T ¢ D ¢ |:con ¢
¢v¢|:con7— ¢@¢|:con7—
¢VT|:con¢ ¢v¢|:con¢ ¢@T|:con¢ ¢@¢|:con¢
¢VT|:COTL¢ ¢@T|:con¢

As we have shown, |=.,, has a lot of desirable properties. We should
mention, however, that |=.,, is not closed under substitutions. In other
words: it is sensitive to the choice of the atomic formulae. Thus, although
P, pVq FEeon ¢, when p and ¢ are atomic, it is not true in general that
=, YV @ Eeon ¢ (take, e.g., B=FOUR, 1p = =(-pAp), and ¢ = ¢). This,
however, is unavoidable when one wants to achieve both lemma 4.11 and
proposition 4.8 above.
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5 Conclusion and Further Work

Bilattices have had an extensive use in several areas, most notably in logic
programming, but their role so far was mainly semantic in nature. We de-
velop a real notion of logic based on bilattices, giving associated consequence
relations and corresponding proof systems. These consequence relations are
strongly related to non-monotonic reasoning, and especially to reasoning in
the presence of inconsistent data.

This, however, is not the end of the work. The basic languages men-
tioned here are, as their name suggests, only basic. It seems that additional
connectives are required in order to get more expressive languages. Such lan-
guages should be able to describe more precisely the specific bilattice under
consideration. One would like, for example, to express in a knowledge-base
over DEFAULT that a certain formula is considered to be true by default, or
that the result of f®t should be considered as dT rather than 1. This can be
achieved, e.g., by defining a connective that reflects equivalences in formula
assignments, or by defining some kind of analogue to the “:”-connective of
annotated logic. The guard connective, investigated in [], might also be con-
sidered.

The consequence relations are also a matter for further examination. As
we have shown (theorem 3.4), the basic consequence relation, |=pgz,, is no
more than the logic of FOUR. Nevertheless, it is obviously desirable to take
advantage of the availability of other values in the bilattice under consid-
eration, for example the default values {df,dt} of DEFAULT. Considering
Fcon Was a first step, since we take into account not just the designated
elements of the bilattice, but also those that were considered as inconsis-
tent. For |=.,, FOUR is no longer a single representative of all the logical
bilattices. For example, by taking B to be FOUR with the inconsistency set
I={beB|b=-b}, we have that ¢, pD ~ql=con —p, and pVq|= o, 7pVp, while
if we take B to be DEFAULT with the same definition of inconsistency set,
these consequences are no longer valid. |=.,, seems to be, however, some-
what too crude, since it treats uniformly the whole set of atoms that are
assigned inconsistent values under a given valuation. As a result, the pref-
erences among the valuations are due to “global” considerations rather than
pointwise ones. A future work should seek for a refinment of this relation,
which might as well reflect the specific structure of the bilattice (especially
its partial orders).
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Another natural issue for a further research is to investigate how the
resulting logics are affected by the choice of the bilattice under consideration,
the truth values that are taken to be designated, and the choice of the
inconsistency subsets.
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