
Reasoning with Logical BilatticesOfer Arieli Arnon AvronDepartment of Computer Science Department of Computer ScienceSchool of Mathematical Sciences School of Mathematical SciencesTel-Aviv University Tel-Aviv UniversityRamat-Aviv 69978, ISRAEL. Ramat-Aviv 69978, ISRAEL.Email: ofera@math.tau.ac.il Email: aa@math.tau.ac.ilAbstractThe notion of bilattice was introduced by Ginsberg, and furtherexamined by Fitting, as a general framework for many applications.In the present paper we develop proof systems, which correspond tobilattices in an essential way. For this goal we introduce the notionof logical bilattices. We also show how they can be used for e�cientinferences from possibly inconsistent data. For this we incorporatecertain ideas of Kifer and Lozinskii, which happen to suit well thecontext of our work. The outcome are paraconsistent logics with a lotof desirable properties 1.1 IntroductionWhen using multiple-valued logics, it is usual to order the truth values ina lattice structure. In most cases such a partial order intuitively reectsdi�erences in the \measure of truth" that the lattice elements are supposedto represent. There exist, however, other intuitive criteria of ordering thatmight be useful. Another reasonable ordering might reect, for example, dif-ferences in the amount of knowledge or in the amount of information thateach of these elements exhibits. Obviously, therefore, there might be casesin which two partial orders, each reecting a di�erent intuitive concept,might be useful. This, for example, has been the case with Belnap's famous1A preliminary version of this paper appears in [].1



four-valued logic [, ]. Belnap's logic was generalized in [], where Ginsbergintroduced the notion of bilattices , which are algebraic structures that con-tain two partial orders simultaneously (see de�nition 2.1). His motivationwas to present a general framework for many applications, like truth main-tenance systems and default inferences. The notion was further investigatedand applied for logic programming and other purposes by Fitting [, , , , , ].In all of their applications so far, the role of bilattices was algebraicin nature. In this paper we try to carry bilattices to a new stage in theirdevelopment by constructing logics (i.e.: consequence relations) which arebased on bilattices, as well as corresponding proof systems. For this purposewe have found it useful to introduce and investigate the notion of a logicalbilattice. (All the known bilattices which were actually proposed for appli-cations in the literature fall under this category). The general logic of thesebilattices turned out to have a very nice proof theory. We also show howto use logical bilattices in a more speci�c way for non-monotonic reasoningand for e�cient inferences from inconsistent data (these were, respectively,the original purposes of Belnap and Ginsberg). For this we incorporate cer-tain ideas from []. We show (so we believe) that bilattices provide a betterframework for applying these ideas than the one used in the original paper.The paper is organized as follows: In the next section we introduce andinvestigate the notion of logical bilattice. In section 3 we investigate (fromsemantical and proof-theoretical points of view) the general logic that isnaturally associated with them. This logic is monotonic and paraconsistent.In section 4 we consider a re�ned consequence relation which is shown tobe non-monotonic, and very useful for reasoning in the presence of incon-sistency.2 Logical Bilattices2.1 Bilattices - General BackgroundDe�nition 2.1 A bilattice is a structure B = (B;�t;�k;:) such that Bis a non empty set containing at least two elements; (B;�t), (B;�k) arecomplete2 lattices; and : is a unary operation on B that has the following2This is Ginsberg's original de�nition in []. Some authors have dropped this require-ment of completion. We have retained it since we need it in section 3.5, but apart of thatsection all our results are valid without this assumption.2



properties:1. if a�t b, then :a�t:b,2. if a�k b, then :a�k :b,3. ::a=a.Following Fitting, we shall use ^ and _ for the lattice operations whichcorrespond to �t, and 
, � for those that correspond to �k . While ^ and _can be associated with their usual intuitive meanings of \and" and \or", onemay understand 
 and � as the \consensus" and the \gullibility" (\acceptall") operators, respectively; p 
 q is the most that p and q can agree on,while p � q accepts the combined knowledge of p with that of q (see also[, ]). A practical application of 
 and � is provided, for example, in animplementation of a logic programming language designed for distributedknowledge-bases (see [] for more details).Note that negation is order preserving w.r.t �k . This reects the intu-ition that �k corrsponds to di�erences in our knowledge about formulae andnot to their degrees of truth. Hence, while one expects negation to invert thenotion of truth, the role of negation w.r.t. �k is somewhat less transparent:we know no more and no less about :p than we know about p (see [, p.269],and [, p.239], for further discussion).We will denote by f and by t the least element and the greatest element(respectively) of B w.r.t �t, while ? and > will denote the least elementand the greatest element of B w.r.t �k 3. f; t;?, and > are all di�erent bylemma 2.5(a) below, and by the fact that a bilattice contains at least twoelements.De�nition 2.2 A bilattice is called distributive [] if all the twelve possibledistributive laws concerning ^, _, 
, and � hold 4. It is called interlaced []if each one of ^, _, 
, and � is monotonic with respect to both �t and �k .Lemma 2.3 [] Every distributive bilattice is interlaced.3? and > could be thought of as representing no information and inconsistent knowl-edge, respectively.4In�nitary laws have also been considered in the literature (see, e.g., [, de�nition 3.3]).In this paper we do not use such laws. They might be more useful when we enter moredeeply to quanti�cation theory in the future.3
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-tu?udf u dtuf ud> u tuof u otu>������@@@@@@������@@@@@@������@@@@@@Figure 1: FOUR and NINEExample 2.4 Figures 1 and 2 contain double Hasse diagrams of some usefulbilattices. In these diagrams y is an immediate �t-successor of x i� y is onthe right side of x, and there is an edge between them; similarly, y is animmediate �k-successor of x i� y is above x, and there is an edge betweenthem.Belnap's FOUR [, ], drawn in �gure 1, is the smallest bilattice. It easyto check that FOUR is distributive. Ginsberg's DEFAULT (�gure 2) wasintroduced in [] as a tool for non-monotonic reasoning. The truth valuesthat have a pre�x \d" in their names are supposed to represent values ofdefault assumptions (dt = true by default; etc.). It easy to verify that:df = dt; :dt= df ; :d>= d>. The negations of >; t; f;? are identical tothat of FOUR (see lemma 2.5(a) below). This bilattice is not even interlaced5; NINE (�gure 1), on the other hand, is distributive, and it contains thedefault values of DEFAULT . In addition, NINE has two more truth values,ot and of , where :of=ot and :ot=of .Lemma 2.5 Let B = (B;�t;�k;:) be a bilattice, and let a; b2B.a) [] :(â b) = :a_:b; :(a_b) = :â :b; :(a
b) = :a
:b; :(a�b) = :a�:b.Also, :f = t; :t=f ; :?=?; :>=>.b) [] If B is interlaced, then: ?^>=f ; ?_>= t; f
t=?; f�t=>.5For example, f <t df , while f
d>=d>>t df=df
 d>.4



6k
-tu?udf u dtud>uf u tu>������HHHHHHAAAAAA���@@@HHHHHH������@@@���������Figure 2: DEFAULTDe�nition 2.6 [] Let (L,�) be a complete lattice. The structure L�L=(L�L,�t,�k,:) is de�ned as follows:(y1; y2) �t (x1; x2) i� y1�x1 and y2�x2,(y1; y2) �k (x1; x2) i� y1�x1 and y2�x2,:(x1; x2) = (x2; x1).Lemma 2.7 Let (L,�) be a complete lattice. Then:a) [] L�L is an interlaced bilattice.b) [] If L is distributive, then so is L�L.L�L was introduced in [], and later examined by Fitting as a generalmethod for constructing bilattices. A truth value (x; y) 2 L�L may in-tuitively be understood so that x represents the amount of belief for anassertion, and y is the degree of belief against it.Example 2.8 Denote the standard two valued structure f0,1g by TWO.Then FOUR is isomorphic to TWO�TWO. Similarly, NINE is isomorphicto f�1; 0; 1g�f�1; 0; 1g.We conclude this introductory part by considering another bilattice op-eration, and a corresponding family of bilattices:De�nition 2.9 [] A conation, �, is a unary operation on a bilattice Bthat has the following properties: 5



1. if a�k b then �a�k�b,2. if a�t b then �a�t�b,3. ��a=a,4. �:a=:� a 6.Lemma 2.10 [] Let B = (B;�t;�k;:) be a bilattice, and let a; b2B.�(a b̂) = �a^�b; �(a_b) = �a_�b; �(a
b) = �a��b; �(a�b) = �a
�b.Also, �f =f ; �t= t; �?=>; �>=?.De�nition 2.11 [] A bilattice with a conation is called classical , if forevery b2B, b_�:b= t 7.Example 2.12 FOUR is a classical bilattice (where \�" is de�ned accord-ing to lemma 2.10).Classical bilattices were presented is order to allow analogues of classicaltautologies. In particular, in classical bilattices it is really the combination�: that plays the role of classical negation.2.2 Bi�lters and LogicalityOne of the most important component in a many-valued logic is the subsetof the designated truth values. This subset is used for de�ning validity offormulae and a consequence relation. Frequently, in an algebraic treatmentof the subject, the set of the designated values forms a �lter, or even aprime (ultra-) �lter, relative to some natural ordering of the truth values.Natural analogues for bilattices of �lters, prime �lters, ultra�lters, and setof designated values in general, are the following:De�nition 2.13a) A bi�lter of a bilattice B = (B;�t;�k) is a nonempty subset F � B,F 6=B, such that:a^b2F i� a2F and b2Fa
b2F i� a2F and b2F6This requirement is not part of Fitting's original de�nition. Nevertheless, it is usuallyassumed when dealing with bilattices that have conation, and useful for our purposes.7In the original de�nition of classical bilattice, Fitting requires that the bilattice wouldbe distributive. This requirement is not essential for the present treatment of suchbilattices. 6
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Figure 3: FIVEb) A bi�lter F is called prime, if it satis�es also:a_b2F i� a2F or b2Fa�b2F i� a2F or b2Fc) Let B be a bilattice with a conation. F is an ultrabi�lter in B, if it is aprime bi�lter, and b2F i� �:b 62F .Example 2.14 FOUR and DEFAULT contain exactly one bi�lter: f>; tg,which is prime in both, and an ultrabi�lter in FOUR. f>; tg is also theonly bi�lter of FIVE (�gure 3), but it is not prime there: d>_?= t, whiled> 62 F , and ? 62 F . NINE contains two bi�lters: f>; ot; tg, as well asf>; ot; t; of; d>; dtg; both are prime, but neither is an ultrabi�lter.Proposition 2.15 (Basic properties of bi�lters) Let F be a bi�lter of B;Then:a) F is upward-closed w.r.t both �t and �k.b) t;> 2 F , while f;? 62 F .c) In classical bilattices every prime bi�lter is also an ultrabi�lter.Proof: Claim (a) follows immediately from the de�nition of F ; the �rstpart of (b) follows from (a), and from the maximality of t and >; the factthat the minimal elements are not in F follows also from (a), since F 6=B.Finally, part (c) obtains since on the one hand in every classical bilatticeb_�:b= t2F , and since F is prime, either b2F or �:b2F . On the otherhand, �:b^b=�:(b_�:b) =�:t= f 62 F , therefore �:b^b 62 F , and soeither b 62F or �:b 62F . 2 7



De�nition 2.16 A logical bilattice is a pair (B;F), in which B is a bilattice,and F is a prime bi�lter on B.In the next section we shall use logical bilattices for de�ning logics in away which is completely analogous to the way Boolean algebras and prime�lters are used in classical logic. The role which TWO has among Booleanalgebras is taken here by FOUR:Theorem 2.17 Let (B;F) be a logical bilattice. Then there exists a uniquehomomorphism h : B ! FOUR, such that h(b)2f>; tg i� b2F .Proof: It is immediate that the only function h : B ! FOUR that satis�esthe condition, and is also an homomorphism w.r.t negation, is the followingone: h(b) def= 8>>><>>>: > if b2F and :b2Ft if b2F and :b 62Ff if b 62F and :b2F? if b 62F and :b 62FThis entails uniqueness. For existence, note �rst that h is obviously an ho-momorphism w.r.t :. It remains to show that it is also a homomorphismw.r.t ^;_;
, and �.a) The case of ^:1. Suppose that a^b 2 F and :(a^b)2 F . Then a 2 F and b2 F . Inaddition, :(a^b) 2 F , hence :a_:b 2 F , and so :a 2 F or :b 2 F(since F is prime). It follows that fa;:ag�F or fb;:bg�F , henceeither h(a) => or h(b) =>. Since both h(a) and h(b) are in f>; tg,and >^>=>^t=>, it follows that h(a)^h(b)=>=h(a^b).2. If a^b2F but :(a^b) 62F , then a2F and b2F , but :a_:b 62F , andso neither :a nor :b are in F . It follows that h(a)=h(b)= t, so thistime h(a)^h(b)= t=h(a^b).3. Suppose that a^ b 62 F and :(a^ b) 2 F . Then either :a 2 F or:b 2 F . Assume, e.g., that :a 2 F . If a 62 F then h(a) = f and soh(a)^h(b)=f=h(a^b). If, on the other hand, a2F , then h(a)=>. Inaddition b 62F (otherwise we would have â b2F), and so h(b)2ff;?g.Since in FOUR >^f =>^?=f , in this case h(a)^h(b)=f=h(a^b).8



4. Suppose that a^b 62 F and :(a^b) 62 F . Then :a 62 F , :b 62 F andeither a 62 F or b 62 F . It follows that either h(a) = ? or h(b) = ?.Assume, e.g., the former. Since :b 62F , then h(b)2ft;?g. But since?^t=?^?=?, h(a)^h(b)=?=h(a^b) in this case.b) The case of _:Since a_b=:(:a^:b), this case follows from the previous one.c) The case of 
:1. If a
b2F and :(a
b)2F , then since :(a
b)=:a
:b, we have thata; b;:a;:b2F , hence h(a)=h(b)=>, and so h(a)
h(b)=>
>=>=h(a
b).2. If a
b2F and :(a
b) 62 F , then a2F , b2F , and either :a 62 F or:b 62F . It follows that both h(a) and h(b) are in f>; tg, and at leastone of them is t. hence, h(a)
h(b)= t=h(a
b).3. The case that a
b 62F and :(a
b)2F is similar to the previous one.4. If a
b 62 F and :(a
b) 62 F then either a 62 F or b 62 F , and alsoeither :a 62F or :b 62F . Assume, e.g., that a 62F . If also :a 62F , thenh(a)=?, and so h(a)
h(b)=?=h(a
b). If, on the other hand, :a2F ,then :b 62F , and so we get that h(a)= f , and h(b)2ft;?g. Since inFOUR f
t=f
?=?, we have again that h(a)
h(b)=?=h(a
b).d) The case of �:1. Assume that a�b2F and :(a�b)2F . Then a2F or b2F . Assume,e.g., that a 2 F ; then h(a) 2 f>; tg. If in addition :a 2 F , thenh(a)=>, and so h(a)�h(b)=>=h(a�b). Otherwise, :b2F , and soh(b)2f>; fg. Since in FOUR, >�>=>�t=>�f = t�f =>, we havethat h(a)�h(b)=>=h(a�b).2. If a�b2F and :(a�b) 62F , then a2F or b2F , and neither :a nor:b are in F . It follows that h(a), h(b) are both in ft;?g, and at leaston of then is t. Hence, h(a)�h(b)= t=h(a�b).3. The case that a�b 62F and :(a�b)2F is similar to the previous one.4. If a�b 62F and :(a�b) 62F , then a;:a; b;:b are all not in F , and soh(a)=h(b)=?. It follows that h(a)�h(b)=?=h(a�b). 29



Note: For Boolean algebras we have, in fact, a weaker theorem: givenx from a Boolean algebra B, and a �lter F � B s.t. x 62 F, we have anhomomorphism hx : B ! TWO w.r.t :;^;_ s.t. hx(x) 62 F(TWO), andhx(y)2F(TWO) for every y2F. In our case, the same h is good for all x.On the other hand, in Boolean algebras we have the property that if x; y2Band x 6= y, then there is an homomorphism h : B! TWO which separatesthem. This further implies that equalities which hold in TWO are valid inany Boolean algebra. Logical bilattices and FOUR, in contrast, do not enjoythis property. Thus, the distributive law a^(b_c)=(a^b)_(a^c) is valid inFOUR, but not in every logical bilattice in general (take, e.g., DEFAULT ).De�nition 2.18 An ultralogical bilattice is a pair (B;F), where B is a bi-lattice with a conation, and F is an ultrabi�lter on B.As it follows from proposition 2.15(c), ultralogical bilattices are naturalextensions of Fitting's notion of classical bilattices. Also, thay have severalsimilar properties to those of logical bilattices. The next proposition is onesuch an instance (cf. theorem 2.17):Proposition 2.19 Let (B;F) be an ultralogical bilattice. Then there existsa unique homomorphism h : B ! FOUR, such that h(b)2f>; tg i� b2F .Proof: Similar to that of theorem 2.17. The only extra thing that we needto check is the case of conation. Again, we shall examine the four possiblecases:1. h(b)=> ) b2F , :b2F ) �:b 62F , �::b 62F ) :�b 62F , �b 62F) h(�b)=?=�h(b).2. h(b)= t ) b2F , :b 62F ) �:b 62F , �::b2F ) :�b 62F , �b2F )h(�b)= t=�h(b).3. h(b)= f ) b 62F , :b2F ) �:b2F , �::b 62F ) :�b2F , �b 62F) h(�b)=f=�h(b).4. h(b)=? ) b 62F , :b 62F ) �:b2F , �::b2F ) :�b2F , �b2F) h(�b)=>=�h(b). 2Since ultralogical bilattices seems to be quite rare 8, we shall concentratein what follows on logical bilattices.8Even NINE with either one of its two prime bi�lters is not ultralogical bilattice.10



Next we discuss the existence of bi�lters and prime bi�lters, concentrat-ing on an important special case:De�nition 2.20 Let B be a bilattice. De�ne:� Dk(B) def= f x j x �k t g (designated values of B w.r.t �k)� Dt(B) def= f x j x �t > g (designated values of B w.r.t �t)Intuitively, each element of Dk(B) represents a truth value which isknown to be \at least true" ([, p.36]). Hence it seems that Dk(B) is aparticulary natural candidate to play the role of the set of the designatedvalues of B.Example 2.21a) Dk(FOUR) = Dt(FOUR) = f>; tg.b) Dk(FIVE) = Dt(FIVE) = f>; tg.c) Dk(DEFAULT ) = Dt(DEFAULT ) = f>; tg.d) Dk(NINE) = Dt(NINE) = f>; ot; tg.e) Dk(L�L) = Dt(L�L) = f (sup(L); x) j x 2 L g.Proposition 2.22 (Basic properties of Dk(B) and Dt(B))a) t;> 2 Dk(B), while f;? 62 Dk(B). The same is true for Dt(B).b) Dk(B) [ Dt(B) � F .Proof: The �rst part concerning Dk(B) of (a) is obvious. To see thatf 62Dk(B), assume the countrary. Then f �k t and so also :f �k :t, whichmeans that t�k f , hence f= t. This entails that B contains just one element,but this contradicts the de�nition of a bilattice. An even simpler argumenetholds for ?. Claim (b) follows immediately from proposition 2.15. 2Proposition 2.23 If Dk(B)=Dt(B), then Dk(B) is the smallest bi�lter (i.e:it is contained in any other bi�lter).Proof: For every a; b2B, a^b2Dt(B) i� a^b�t>, i� a�t> and b�t>, i�a2Dt(B) and b2Dt(B). Similarly, a
b2Dk(B) i� a2Dk(B) and b2Dk(B).Hence, if Dk(B) = Dt(B) then Dk(B) is a bi�lter of B. That Dk(B) is thesmallest bi�lter in this case follows from proposition 2.22(b). 2Notation 2.24a) We shall sometimes write D(B) instead of Dk(B) or Dt(B) when Dk(B) =Dt(B).b) The pair (B;D(B)), when de�ned, will be denoted by hBi.11



Proposition 2.25 Let B be an interlaced bilattice. Then:a) Dk(B)=Dt(B).b) fb;:bg�D(B) i� b = >.Proof: Suppose that B is interlaced. Then:a) b�t > ) b^> => ) b^> �k t ) b_(b^>)�k b_t ) b�k t:Similarly, b�k t ) b
t= t ) b
t�t> ) b�(b
t)�t b�> ) b�t>.Hence Dk(B) = Dt(B).b) If b=>, then b=:b=>�k t, hence fb;:bg2Dk(B). The other direction:if fb;:bg2Dk(B), then b�k t and :b�k t, hance b�k t and b=::b�k :t=f ,and so b�k t�f=> (see lemma 2.5(b)). But > is the greatest element w.r.t�k , hence b=>. 2Corollary 2.26 For every interlaced bilattice B, hBi is de�ned (In partic-ular, hL�Li is de�ned for every complete lattice L).Proof: Follows from section (a) of the last proposition, and from proposi-tion 2.23. 2From the last corollary it follows that if B is interlaced, then hBi is a logicalbilattice i� D(B) is prime. In fact, hBi is logical bilattice in all the exampleswhich were actually used in the literature for constructive purposes. Thisis true even for hDEFAULT i, although it is not interlaced. hFIVEi, in con-trast, is not a logical bilattice.We next provide a su�cient and necessary conditions for D(B) to beprime in a particularly important case. It will follow that logical bilatticesare very common, and easily constructed:Proposition 2.27 If L is a complete lattice, then hL�Li is a logical bilatticei� sup(L) is join irreducible (i.e.: if a_b = sup(L), then a = sup(L) orb=sup(L)).Proof: Denote the suprimum of L by rL. Then:(() Assume that rL is join irreducible. Since L�L is interlaced, then bycorollary 2.26, D(L�L) is a bi�lter. It remains to show that it is also aprime bi�lter. Indeed, (x1; x2)_(y1; y2)2 D(L�L) i� (x1_Ly1; x2^L y2)2D(L�L) i� (x1_Ly1) =rL (see example 2.21(e)), i� x1=rL or y1 =rL,i� (x1; x2)2D(L�L) or (y1; y2)2D(L�L). The proof in the case of � issimilar. 12



()) Assume that L�L is prime, and that x_y = rL for x; y 2 L. Takearbitrary z 2L. Then, (x; z)_(y; z)= (x_y; z)= (rL; z)2D(L�L), hence(x; z)2D(L�L) or (y; z)2D(L�L). It follows that x=rL or y=rL (byexample 2.21(e) again). 2Corollary 2.28a) hFOURi ( � hf0; 1g�f0; 1gi ) and hNINEi ( � hf�1; 0; 1g�f�1; 0; 1gi )are both logical bilattices.b) More generally, if L is a chain, or if sup(L) has a unique predecessor,then hL�Li is a logical bilattice.3 The Basic Logic of Logical Bilattices3.1 Syntax and SemanticsWe shall �rst treat the propositional case.De�nition 3.1a) The language BL (Bilattice-based Language) is the standard proposi-tional language over f^;_;:;
;�g.b) BL� is BL together with a unary connective, �, for conation.c) BL(4) (BL�(4)) is BL (BL�) enriched with the propositional constantsff; t;?;>g.d) Let (B;F) be a logical bilattice. BL(B) is BL enriched with a proposi-tional constant for each element in B. We shall usually employ the samesymbol and name for each b 2 B and its corresponding propositional con-stant.Given a bilattice B=(B;�t;�k;:), perhaps with conation, the seman-tic notion of a valuation in B for sentences in BL(B) is de�ned in the obviousway. The associated logics are also de�ned in the most natural way:De�nition 3.2a) Let (B;F) be a logical bilattice. � j=BL(B;F)� (where �;� are �nite setsof formulae in BL(B)) i� for every valuation � such that �( )2F for every 2�, there exists some �2� such that �(�)2F as well.b) Suppose that all the sentences in �[� are in the language BL (resp. inBL(4)). Then � j=BL� (resp. � j=BL(4)�), i� � j=BL(B;F)� for every (B;F).Two important properties of j=BL are given in the following proposition:13



Proposition 3.3a) j=BL has no tautologies.b) j=BL is paraconsistent: p;:p 6j=BLq.Proof:a) Let  be any sentence in BL, and suppose that � is a valuation (inFOUR, say) that assigns all the propositional variables in  the value ?.Then �( )=? as well, so  is not valid.b) Set, e.g., �(p)=> and �(q)=f . 2Note that the �rst part of the last proposition fails in BL(4), since botht and > are valid.Our next theorem is an easy consequence of theorem 2.17. It shows thatin order to check consequence in any logical bilattice, it is su�cient to checkit in hFOURi.Theorem 3.4 Let � and � be �nite sets of formulae in BL (in BL(4)).Then � j=BL� (� j=BL(4)�) i� � j=hFOURi�. 9Proof: One direction is trivial. For the other, suppose that for some logicalbilattice (B;F), � 6j=BL(B;F)�, where �;� in BL(4). Let � be an assignmentin B such that �( )2F if  2�, and �( ) 62F if  2�. Then h��, where h isthe homomorphism de�ned in theorem 2.17, is easily seen to be a valuationin FOUR with the same properties, hence � 6j=hFOURi�. 2The next proposition, which provides a semi-CNF for formulae, will beneeded later.Proposition 3.5 Let (B;F) be a logical bilattice. For every sentence  in BL(B) one can construct a sentence  0, so that  0 is a ^-conjunction of_-disjunction of literals, and for every � over B, �( )2F i� �( 0)2F . If  is in BL(4) then the same  0 is good for every logical bilattice (B;F).Proof: From the properties of negation it is obvious that for every sentence we can �nd a sentence  0 in a negation normal form (i.e. in  0 the negationprecedes only propositional variables), s.t. �( )=�( 0) for every valuation�. It su�ces, therefore, to prove the proposition for sentences in a negation9There is a related, weaker theorem (10.5) in [].14



normal form. This is done by an induction on the number of operations in (negation excluded): the case where  is literal is obvious. If  = 1^ 2or  = 1
 2, take  0= 01^ 02. Then for every �, �( )2F i� �( 1)2Fand �( 2)2F , i� �( 01)2F and �( 02)2F , i� �( 01^ 02)2F , i� �( 0)2F .Finally, suppose that  = 1_ 2 or  = 1� 2. Let  01= 011^ 021^:::^ 0n1and  02 =  012^ 022^ :::^ 0m2 (where  0ji are _-disjunction of literals). Let 0=V1�i�n;1�j�m( 0i1W 0j2). Assume that �( )2F . Then either �( 1)2For �( 2)2F . Assume, e.g., the former. Then �( 0i1)2F for every 1� i�n,hence �( 0i1_ 0j2)2F for every i; j, and so �( 0)2F . For the converse, as-sume that �( ) 62F . Then both �( 1) and �( 2) are not in F , hence �( 0i1)and �( 0j2) are not in F for some i; j, and so �( 0i1_ 0j2) 62F . It follows that�( 0) 62F . 2Notes:1.  and  0 above are not equivalent, i.e: there may be some valuation�, s.t. �( ) 6= �( 0). All the proposition claims is that  and  0 aretrue with respect to the same valuations. 102. We could, of course, use 
 and � (or 
 and _, etc.) instead of ^ and_, without any change in the proof.3.2 Proof TheorySince j=BL does not have valid formulae, it cannot have a Hilbert-type rep-resentation. However, there is a nice Gentzen-type formulation, which weshall call GBL (GBL(4)):The System GBL:Axioms: �;  )  ;�Ruls: Exchange, Contraction, and the following logical rules:[^)] �;  ; �) ��;  ^ �) � �) �;  �) �; ��) �;  ^ � [)^]10The situation is in some sense analogous to that of Skolemizing and satis�ability in�rst order classical logic; The Skolemized version of a sentence is satis�able i� the originalsentence is satis�able, but the two sentences are not equivalent.15
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 are identical. Both behave as classical con-junction. The di�erence is with respect to the negations of p^q and p
q.Unlike the conjunction of classical logic, the negation of p
q is equivalent to:p
:q. This follows from the fact that p�k q i� :p�k :q. The di�erencebetween _ and � is similar.De�nition 3.6 � follows from � in GBL (notation: �`GBL�) if � ) � isprovable in GBL. 16



Theorem 3.7a) (Soundness and Completeness) � j=BL� i� �`GBL�.b) (Cut Elimination) If �1`GBL�1;  and �2;  `GBL�2, then �1;�2`GBL�1;�2.Proof: The soundness part is easy, and is left to the reader. We provecompleteness and cut-elimination together by showing that if �)� has nocut-free proof then � 6j=BL�. The proof is by an induction on the complexityof the sequent �)�:� The base step: Suppose that �) � consists only of literals. If � and� have a literal in common then �)� is obviously valid (and is provablewithout cut), while if � and � have no literal in common, then consider thefollowing assignment � in FOUR:�(p) def= 8>>><>>>: > if both p and :p are in �? if both p and :p are in �t if (p2� and :p 62�) or (p 62� and :p2�)f if (p 62� and :p2�) or (p2� and :p 62�)Obviously, this is a well de�ned valuation, which gives all the literals in �values in f>; tg, and all the literals in � values in f?; fg. Hence � refutes�)� in hFOURi. Hence, � 6j=BL�.� The induction step: The crucial observation is that all the rules of thesystem GBL are reversible, both semantically and proof-theoretically (a di-rect demonstration in the proof-theoretical case requires cuts). There aremany cases to consider here. We shall treat in deltail only the case in whicha sentence of the form  ^� is in � [�. Before doing so we note that thecase in which a sentence of the form : belongs to � [ � should be splitinto the subcases  =:�,  =�1^�2, etc. (The case in which  =:p wherep is atomic was already taken care of in the base step).(i) Suppose that  �̂2�, i.e.: �=�0;  �̂. Consider the sequent �0;  ; �)�.By induction hypothesis, either �0;  ; �)� is provable without a cut (andthen �0;  ^�)� is provable without cut, using [^)]), or else there is avaluation that refutes �0;  ; �) �. In the latter case the same valuationrefutes �0;  ^�)� as well.(ii) Suppose that  ̂ �2�, i.e.: �=�0;  ̂ �. Consider the sequents �)�0;  and �)�0; �. Again, either both have cut-free proofs, and then �)�0;  �̂also has a proof without a cut (using [)^]), or there is an assignment thatrefutes either sequent, and the same assignment refutes �)�0;  ^� as well.17



2Notes:1. It is obvious from the proof that we can delete contraction from thelist of the rules, and restrict the axioms to the case that �;�;  ; and� contains only literals.2. The f^;_;:g fragment of GBL was called \the basic f^;_;:g sys-tem" in [], and was introduced there following a di�erent motivation.It had generally been known as the system of \�rst degree entailments"in relevance logic (see [, ]), since it is well known that  1; : : : ;  n )�1; : : : ; �m is provable in it, i�  1^ : : :^ n ! �1_ : : :_�m is provablein the system R (or E) of Anderson and Belnap, i� �( 1^ : : :^ n) �t�(�1_ : : :_�m) for every valuation � in FOUR. It is not di�cult toshow that this fragment of GBL is valid in any distributive lattice withan involution (\valid" { in the sense that  1; : : : ;  n ) �1; : : : ; �m isprovable in GBL if �( 1)̂ : : : �̂( n) �t �(�1)_: : :_�(�m) for every val-uation �). Hence we have an alternative soundness and completenesstheorem relative to these structures.3. In [] it is shown that if we add �;: ;  ) � as an axiom to thef^;_;:g (or f^;_;:; f; tg) fragment of GBL, we get a sound and com-plete system for Kleene 3-valued logic, while if we add � ) �;  ;: we get one of the basic three-valued paraconsistent logics (Also knownas basic J3 { see, e.g., chapter IX of [] as well as [, , , ]). By addingboth axioms, we get classical logic.4. In order to add a conation to GBS one needs to expand it with ad-ditional rules for the left and right combination of � with ^;_;
;�and � (10 new rules altogether). These rules are the duals of thecorresponding rules of negation. For example,[�^)] �;� ;��;)��;�( ^ �)) � [�
)] �;� ) � �;��) ��;�( 
 �)) �In addition, one should add four more rules for the combination ofnegation and conation:[�:)] �;) �;  �;�: ) � [)�:] �;  ) ��) �;�: 18



[:�)] �;) �;  �;:� ) � [)�:] �;  ) ��) �;:� Using theorem 2.19 it is straightforward to extend the proof of theorem3.7 to the case of ultralogical bilattices and the resulting systems. Notethat in the presence of conation we do have provable sequents of theform �) and )�.5. In order to get a sound and complete system for BL(B) for any logicalbilattice B, we have to add axioms to GBL for every b2B, accordingto the homomorphism h of theorem 2.17. For example, if for someb2B h(b)= t, then we add �)�; b and �;:b)�.For the single-conclusioned fragment of j=BL we have a stronger result:De�nition 3.8 GBLI (Intuitionistic GBL) is the system obtained fromGBLby allowing a sequent to have exactly one formula to the r.h.s of ), andby replacing the rules which have more than one formula on their r.h.s (orempty r.h.s) by the corresponding intuitionistic rules. GBLI(4) is de�nedsimilarly 11.For example, in GBLI , [)_] is replaced with the following two rules:�)  �)  _ � �) ��)  _ �In case of BL(4), all the axioms of the form b ) (where b2ff;:t;?;:?g)are replaced by b)  for arbitrary  .Theorem 3.9 � j=BL i� �`GBLI  . A similar result holds for BL(4).Proof: We start with two lemmas:Lemma 3.9a: Suppose that `GBL �) �, where � is not empty, and �consists only of literals. Then `GBLI �) for some  in � (note that if �is empty, then `GBLI �) for every  ).Proof of Lemma 3.9a: By an easy induction on the length of a cut-freeproof of �)� in GBL: It is trivial in the case where �)� is an axiom.11Note that :: ) obtains in both new systems, so the analogy with intuitionisticlogic is not perfect. 19



For the induction step we use the fact that since � consists of literals, allthe rules employed are r.h.s rules. We will prove the case of the rules for _as an example:� Suppose that �=�0; �_� and �)� was inferred from �)�0; �; � . Byinduction hypothesis either `GBLI �)�, or `GBLI �)� , or `GBLI �) , forsome  2�0. In the third case we are done, while in the �rst two we infer`GBLI �)�_� using the intuitionistic rules for introduction of _.� Suppose that �=�0;:(�_�) and �)� was inferred from �)�0;:� and�)�0;:� . By induction hypothesis either `GBLI �) , for some  2�0,in which case we are done, or both `GBLI �):� and `GBLI �):� . In thiscase, �):(� _ �) follows immediately by [):_].Lemma 3.9b: For every � there exist sets �i (i = 1 : : :n) s.t:1. For every i, �i consists of literals.2. For every �, `GBL�)� i� for every i, `GBL�i)�.3. For every � there is a cut-free proof of �)� from �i)� (i = 1 : : :n),where � is the r.h.s of all the sequents involved, and the only rules used arel.h.s rules.Proof of lemma 3.9b: By induction on the complexity of �, using thefact that all the l.h.s rules of GBL are reversible, and their active formulaebelong to the l.h.s of the premises.Proof of theorem 3.9: Assume that `GBL �) . Then `GBL �i) forthe �i's given in lemma 3.9b. Lemma 3.9a implies, then, that `GBLI �i) (i = 1 : : :n). The third property of �1; : : :�n in lemma 3.9b implies that`GBLI �) , since GBLI and GBL have the same l.h.s rules. 2Notice that the last theorem is still true if we add �;  ;: )� to the axiomsof GBL, and �;  ;: ) � to the axioms of GBLI . In contrast, the theoremfails if we add �)�;  ;: as an axiom, or the classical introduction rulesof :, or implication with the classical rules. That is why classical logic is nota conservative extension of intuitionistic logic. This is also the reason whythe theorem fails for the conservative extension of GBL with the implicationwe introduce in the forthcomming sections.We end this subsection with two other fundamental properties of j=BL:Theorem 3.10 (Monotonicity and Compactness) Let �;� be arbitrary sets20



of formulae in BL (possibly in�nite). De�ne � j=BL� exactly as in the �nitecase. Then � j=BL� i� there exist �nite sets �0;�0 such that �0��, �0��,and �0 j=BL�0 (i� `GBL �0)�0).Proof: Suppose that �;� are sets for which no such �0;�0 exist. Constructa refuting � in FOUR as follows: �rst, extend the pair (�;�) to a maximalpair (��;��) with the same property. Then, for any  , either  2 �� or 2�� (Otherwise, (��[f g;��) and (��;��[f g) do not have the property,and so there are �nite �0���, and �0��� such that �0;  j=BL�0 and thereare �nite �00 � ��, and �00 � �� such that �00 j=BL  ;�00. It follows that�0[�00 j=BL�0[�00, contradicting the de�nition of (��;��) ).De�ne � from the set of all sentences to FOUR as follows:�( ) def= 8>>><>>>: > if  2�� and : 2��t if  2�� and : 2��f if  2�� and : 2��? if  2�� and : 2��Obviously, �( )2 D(FOUR) for all  2 ��, while �( ) 62 D(FOUR) if  2��. It remains to show that � is indeed a valuation (i.e. it respects theoperations). We will prove the case of ^, leaving the other cases to thereader. For this, we �rst note the following facts:1. If  2�� or �2��, then  ^�2��(Since  ^� j=BL and  ^� j=BL�,  ^� cannot be in ��)2. If  2��, then  ^ �2�� (2��) i� �2�� (2��). Similarly, If �2��,then  ^ �2�� (2��) i�  2�� (2��).(Suppose that  2��. If also �2��, then  ^� cannot be in ��, since ; � j=BL ^�, So  ^�2�� as well. If, on the other hand, �2��, thenalso  ^�2��, by (1) ).3. If : 2�� or :�2��, then :( ^�)2�� (similar to (1)).4. If : 2�� then :( ^�)2�� i� :�2�� (similar to (2)).Using (1)-(4), it is straightforward to check that �( ^�) = �( )^�(�) forevery  ; �. For example, if �( )=f then  2�� and : 2��, thus, by (1)and (3),  ^�2�� and :( ^�)2��. Hence �( ^�)=f =�( )^�(�) in thiscase. The other cases are handled similarly. 221



Theorem 3.11 (Interpulation) Suppose that �1;�2 ) �1;�2 is provablein BL(4). Then there exists a sentence  such that both �1 ) �1;  and ;�2 ) �2 are provable in BL(4), and  contains only atomic formulaewhich are common to �1 ) �1 and to �2 ) �2. In particular,  ) � i�  and � have an interpolant.Proof: By Maehera's method (see [, chapter 1]). 23.3 The Symmetric Consequence RelationThe consequence relation, j=BL, as de�ned above, meets the symmetry con-ditions for :;^;_ as de�ned in []. It follows from the discussion there thatit is possible to de�ne an associated symmetric consequence relation, j=sBL,for which proposition 3.13 below will be valid:De�nition 3.12 The symmetric version, j=sBL, of j=BL, is de�ned as fol-lows:  1; : : : ;  n j=sBL�1; : : : ; �m if:a) for every 1�j�m,  1; : : : ;  n;:�1; : : : ;:�j�1;:�j+1; : : : ;:�m j=BL�j ,b) for every 1� i�n,  1; : : : ;  i�1;  i+1; : : : ;  n;:�1; : : : ;:�m j=BL: i.Proposition 3.13 j=sBL has the following properties:a) j=sBL is a consequence relation in the extended sense of [, ]. In otherwords:  j=sBL for every formula  , and if �1 j=sBL�1;  and �2;  j=sBL�2(where �1, �2, �1 and �2 aremultisets of formulae) then �1;�2 j=sBL�1;�2.b) If � j=sBL , then � j=BL .c) : is an internal negation with respect to j=sBL, i.e.: � j=sBL  ;� i��;: j=sBL�, and �;  j=sBL� i� � j=sBL: ;�.d) j=sBL is the maximal single-conclusioned consequence relation havingproperties (a)-(c).e) ^ and _ are, respectively, combining conjunction and disjunction forj=sBL: � j=sBL ^�;� i� � j=sBL ;� and � j=sBL�;�. Similarly, �;  _� j=sBL�i� �;  j=sBL� and �; � j=sBL�. 22



f) j=BL and j=sBL have the same logical theorems. In other words, for any , j=BL i� j=sBL 12.g) From  j=sBL� and � j=sBL it follows that �( ) j=sBL�(�) and �(�) j=sBL�( ) for every scheme � (The proof is by induction on the complexity of�).Notes:1. Similar symmetric versions, with similar properties, can be given, ofcourse, to the other consequence relations de�ned in the previous sec-tion.2. The converse of property (b) above does not hold (unless � is empty,as in property (f)). Thus, p; q j=BL p but p; q 6j=sBL p (which shows alsothat j=sBL is non-monotonic). Hence the single-conclusioned fragmentof j=sBL is strictly weaker then that of j=BL. Thus, j=sBL can be usedto express stronger connections than those allowed by j=BL.3. Both weakening and contraction fail for j=sBL. We have already seenan example for the failure of weakening. As for contraction, we notethat j=sBL: _ ;: _ , but 6j=sBL: _ 13. This demonstrates greatsimilarity with linear logic ([]). In fact, : behaves exactly as linearnegation, while ^ and _ corresponds to the \additives" of linear logic.In the next subsection we will introduce connectives which correspondto the \multiplicatives" of linear logic as well. On the other hand,there is nothing in linear logic which corresponds to either 
 or � 14.4. Property (g) above fails for j=BL. Thus, p_q j=BL p�q, and p�q j=BL p_q,but :(p�q) 6j=BL:(p_q). Moreover, for the implication � we introducein the next section, we have that p� p j=BL q� q and q� q j=BL p� p,while :(p � p) 6j=BL :(q � q). For the fragment of f:;^;_g we dohave (g) as an admissible rule. In other words, if  and � are in thisfragment, and it is actually the case that  j=BL � and � j=BL , then�( ) j=BL �(�). This follows (using induction on the complexity of�) from the fact that for such  and �, if  j=BL � then :� j=BL: .12For the case of j=BL, but not j=BL(4), this holds in fact vacuously. The situation isdi�erent, though, for the stronger language introduced below.13This can directly be seen from the de�nition of j=sBL. It can also be inferred from3.13(b), using only the fact that 6j=BL: _ .14Clearly not the connectives which have the same notations in []!23



However, this rule is not derivable: from  )� and �) one cannotinfer in GBL : ):�.3.4 Implication Connectives3.4.1 Weak ImplicationAs we have noted, j=BL and j=sBL correspond to di�erent degrees of entail-ment between premises and conclusions. Being consequence relations theycan be used, however, only as separated frameworks for making conclusions.It would be much more convenient to be able to treat them within one frame-work. For this we need appropriate implication connectives , which wouldcorrespond to those consequence relations. In general, the existence of anappropriate implication connective is a major requirement for a logic. Firstof all, it allows us to reduce questions of deducibility to questions of theo-remhood, and to express the various consequence relations among sentencesby other sentences of the language. Moreover, higher order rules (like: \if entails � then not-� entails that not- ") can be expressed only if we havea corresponding implication in our disposal. If more than one consequencerelation is relevant, the use of corresponding implication connectives allowus also to express higher-order connections among those relations.Unfortunately, the language BL, rich as it is, lacks an appropriate generalimplication connectives (this is clear from the fact that it has no tautologies).We can try to use : _� as expressing implication of � by  (henceforth weshall use ; for this connective), but this is not adequate, since both modusponens and the deduction theorem fail for this connective. The natural thingto do, therefore, is to enrich the language of BL so that this problem will beeliminated. Again, [] provides a clue how to get implication connectives thatcorrespond to both j=BL and j=sBL, by adding only one connective. Whatwe need is an internal implication, �, for j=BL, which satis�es the symmetryconditions for implication:� �;  j=BL�;� i� � j=BL � �;�.� If �;  ;:� j=BL� then �;:( � �) j=BL�.� If � j=BL ;� and � j=BL:�;�, then � j=BL:( � �);�.These conditions can easily be translated into rules of a sequential calcu-lus. Therefore, it is easier to start by extending the language and the proofsystem, then to look for an appropriate semantics.24



De�nition 3.14a) BL�; BL�(4); BL�(B) are the extensions of the various languages de�nedabove with the connective �.b) GBL� (GBL�(4)) is obtained from GBL (GBL(4)) by the additions of thefollowing rules:[�)] �)  ;� �; �) ��;  � �) � �;  ) �;��)  � �;� [)�][:�)] �;  ;:�) ��;:( � �)) � �)  ;� �) :�;��) :( � �);� [):�]c) �`GBL�� i� �) � is provable in GBL�.

25



We turn now to the semantics of �:De�nition 3.15a) Given a logical bilatice (B;F), the operation � is de�ned as follows: 15a � b def= ( b if a2Ft if a 62Fb) Using part (a), the consequence relation j=BL (j=BL(4)) is extended toj=BL� (j=BL�(4)) in the language BL� (BL�(4)) in the obvious way.Proposition 3.16 Both modus ponens and the deduction theorem are validfor � in j=BL� (j=BL�(4)).Proof: Easy, and is left to the reader. 2Proposition 3.17 Theorem 2.17 is still valid when � is allowed: if (B;F)is a logical bilattice, then there exists a unique homomorphizm (relative to:;^;_;
;�; and �) h : B ! FOUR, s.t. h(b)2f>; tg i� b2F .Proof: Almost identical to that of theorem 2.17. We only have to checkthat h as de�ned there is an homomorphism w.r.t � also. Well, if a 2 F ,then a�b=b, so h(a�b)=h(b)=h(a)�h(b), since h(a)2f>; tg when a2F .On the other hand, if a 62 F , then a� b= t and so h(a� b)= h(t) = t. Butsince in this case h(a)2 f?; fg, then h(a)� h(b) is also t, no matter whath(b) is. 2Proposition 3.18 Let � and � be �nite sets of formulae in BL (in BL(4)).Then � j=BL�� (� j=BL�(4)�) i� � j=hFOURi�.Proof: Identical to the proof of theorem 3.4, using the previous propositioninstead of theorem 2.17. 2Note: In contrast to theorem 3.4, proposition 3.5 fails for BL�. Thus,p� p is always valid (i.e.: always has a value in F), while the language off:;^;_;
;�g contains no such formula. The same argument shows alsothe following proposition:Proposition 3.19 BL� is a proper extension of BL.15Note that unlike the operations we delt with so far, � is de�ned only for logicalbilattices. 26



Theorem 3.20a) (Soundness, Completeness) � j=BL�� i� �`GBL�� (similarly forGBL�(4))16.b) The Cut Elimination Theorem is valid for GBL� and for GBL�(4).Proof: Soundness is easy, and is again left to the reader. The combinedproof of completeness and cut-elimination is identical to that in the case ofj=BL (theorem 3.7). We only have to check that all the rules of � are againreversible, both proof theoretically and semantically. We do this here for thecase of [:�)]: First, we observe that it is easy to show that  ;:�):( ��) is provable, and so it is valid (by soundness). Hence, if �;:( ��))�is valid (provable), then a cut (which is a valid rule) with  ;:�):( ��)gives that �;  ;:�)� is also valid (provable). 2Corollary 3.21a) GBL� is a conservative extension of GBL.b) GBL� is still paraconsistent.c) The f^;_;�g-part of j=BL� is identical of that of classical logic.Proof:a) This is direct implication of cut-elimination. It also a corollary of thesoundness and completeness results for both.b) We still have that p;:p 6j=GBL� q.c) The f^;_;�g-part of GBL� is identical to that of the usual Gentzen-type system of classical logic. By cut-elimination, this part of the system iscomplete for the corresponding fragment of j=BL� 17. 2Other properties of j=BL which can be generalized to j=BL� are compact-ness and interpolation:Theorem 3.22 j=BL� enjoys compactness, monotonicity, and interpola-tion.Proof: Identical to these of theorems 3.10 and 3.11. The only necessaryaddition to the proof of 3.10 is showing that � as de�ned there is a valuationalso with respect to � (i.e.: �( ��) = �( )� �(�)). We leave this to the16It is not di�cult to check that in FOUR our de�nition of � is the only possiblede�nition for which this is true.17From part (c) of the corollary it follows that the critical connective of GBL is negation.27



reader (compare to the proof of proposition 3.17). 2On the other hand, theorem 3.9 cannot be extended to j=BL� . This isobvious from the fact that the f^;_;�g-fragment of GBL� is identical tothe classical one, and so it is strictly stronger than its intuitionistic version(Thus, ( ��)� `GBL� , but ( ��)� 6`GBLI  ).We have already noted that unlike j=BL, j=BL� does have valid formu-lae. This fact, together with the existence of an internal implication, indicatethat for j=BL� it might be possible to provide a sound and complete Hilbert-type representation. This indeed is the case: 18The System HBLDe�ned Connective:  � � def= ( � �) ^ (� �  )Inference Rule:   � ��Axioms: [�1]  � � �  [�2] ( � � � �) � ( � �) � ( � �)[�3] (( � �) �  ) �  [^�]  ^ � �   ^ � � �[�^]  � � �  ^ �[
�]  
 � �   
 � � �[�
]  � � �  
 �[�_]  �  _ � � �  _ �18In the formulae below the association of nested implications should be taken to theright. 28



[_�] ( � �) � (� � �) � ( _ � � �)[��]  �  � � � �  � �[��] ( � �) � (� � �) � ( � � � �)[:^] :( ^ �) � : _ :�[:_] :( _ �) � : ^ :�[:
] :( 
 �) � : 
 :�[:�] :( � �) � : � :�[:�] :( � �) �  ^ :�[::] :: �  Note: Again we note the critical role of negation in this system.Theorem 3.23 GBL� and HBL are equivalent. In particular:a)  1; : : : ;  n `GBL� �1; : : : ; �m i� `HBL  1^; : : : ;^ n � �1_; : : : ;_�m (orjust �1_; : : : ;_�m in case that n=0).b) Let � be any set of sentences, and  { a sentence. Then � `HBL  i�every valuation � in FOUR, which gives all the sentences in � designatedvalues, does the same to  .Proof: It is possible to prove (a) purely proof theoretically. This is easybut tedious (the well-known fact that every f^;_;�g-classical tautology isprovable from the corresponding fragment of HBL can shorten things a lot,though). Part (b) follows then from the completeness and the compactnessof GBL�. Alternatively, one can prove (b) �rst (and then (a) is an immediatecorollary). For this, assume that � 6`HBL . Extend � to a maximal theory��, such that �� 6`HBL . By the deduction theorem for � (which obviouslyobtains here), and from the maximality of ��, �� 6`HBL � i� �� `HBL �� .Hence, if � is any sentence, then if �� 6`HBL � � , then ��`HBL ( � �)� and so �� `HBL by [�3]; a contradiction. It follows that ��`HBL �� forevery � , and so for every � and � :(*) if �� 6`HBL� then ��`HBL��� .De�ne now a valuation � as follows: 29



�(�) def= 8>>><>>>: > if �� `HBL � and �� `HBL :�? if �� 6`HBL � and �� 6`HBL :�t if �� `HBL � and �� 6`HBL :�f if �� 6`HBL � and �� `HBL :�Obviously, �(�) is designated whenever �� `HBL �, while �( ) is not. Itremains to show that � is actually a valuation. We shall show that �(���)= �(�)� �(�), and that �(�_�)= �(�)_�(�), leaving the other cases forthe reader.To show that �(�_�) = �(�)_�(�), we note �rst that axioms [� _] and[_�], together with the above characterization (*) of the non-theorems of��, imply that �� `HBL �_� i� either �� `HBL �, or �� `HBL � . Axiom[:_], on the other hand, entails that �� `HBL :(�_�) i� both �� `HBL :�,and �� `HBL :� . From these facts the desired equation easily follows.In showing that �(���)=�(�)��(�), we destinguish between two cases:case 1: �(�)2 ff;?g. This means, on the one hand, that �(�)� �(�) = t.On the other hand, it is equivalent to �� 6`HBL �. By (*) above, and byaxiom [: �] this entails that �� `HBL � � � but �� 6`HBL :(� � �). Hence�(���)= t=�(�)��(�).case 2: �(�)2 ft;>g. Then �(�)� �(�)= �(�). In addition, it means that�� `HBL �, and so (by axioms [� 1] and [:�]), �� `HBL �� � i� �� `HBL � ,and ��`HBL:(���) i� ��`HBL:� . It follows that �(���)=�(�) too. 2Corollary 3.24 HBL is well-axiomatized: a complete and sound axiomati-zation of every fragment of j=BL�, which includes �, is given by the axiomsof HBL which mention only the connectives of that fragment.Proof: The above proof shows, as it is, the completeness of the axiomswhich mention only f_;�;:g for the corresponding fragment. All the othercases in which : is included are similar. If : is not included, then the systemis identical to the system for positive classical logic, which is known to havethis property 19. 2Note: The f:;^;_;�g-fragment of GBL� and HBL were called in [] the\basic systems". Again, it is shown there that by adding � ) �;  ;: 19Note that without : there is no di�erence between ^ and 
, and no di�erence between_ and �. 30



to GBL�, and either : _ or ( � �) � (: � �) � � to HBL, we getcomplete proof systems for the full three-valued logic of ft; f;?g. This logicis an extension of Kleene three-valued logic, which is equivalent to the logicof LPF ([, ]). If, on the other hand, we add �;  ;: ) � to GBL� and: � ( � �) to HBL, we get complete proof systems for the three-valuedlogic of ft; f;>g (also known as J3 { see note (3) after theorem 3.7).3.4.2 Strong ImplicationThe implication connective � has two drawbacks: the main one is that evenin case  � � and ��  are both valid,  and � might not be equivalent(in the sense that one can be substituted for the other in any context). Forexample, if  = :(� � �) and � = �^:�, then both  � � and ��  arevalid, but : �:� is not. The second disadvantage is that  � � may betrue, its conclusion false, without this entailing that the premise is also false(for example: ?�f = t).This drawbacks of � are, in fact, drawbacks of j=BL� , the consequencerelation on which it is based. What we can do, however, using the generaltheory developed in [], is to de�ne in j=BL� an implication connective, whichcorresponds to j=sBL� and does not su�er from these disadvantages.De�nition 3.25 (strong implication) 20�  ! � def= ( � �) ^ (:� � : )�  $ � def= ( ! �) ^ (�!  )Proposition 3.26 j=sBL� has all the properties stated for j=sBL in proposi-tion 3.13. In addition, ! is an internal implication for it: �;  j=sBL� � i�� j=sBL�  !� (in particular,  ;  !� j=sBL��).Proof: These are all immediate consequences of the general theory in [],and the fact that :;^ and � satisfy in j=BL� their corresponding symmetryconditions as de�ned there (basically this means that the relevant rules ofGBL� are valid). 2Proposition 3.27 Let  ; �; � be formulae in BL�, and � { any evaluationin FOUR. Then:a) �( ! �) 2 D(FOUR), i� �( ) �t �(�).b) �( $ �) 2 D(FOUR), i� �( ) = �(�).20In this de�nition too, the role of negation is critical.31



Proof: Left to the reader. 2Corollary 3.28  $ � j=BL� �( ) $ �(�) for every scheme �. In otherwords, $ is a congruence connective.Proof: Immediate from part (b) of the last proposition, and from the factthat j=BL� is the same as j=hFOURi. 2Proposition 3.27 provides us with an easy method of checking validity orinvalidity of sentences containing!. Using this method it is straightforwardto check the next two propositions:Proposition 3.29 The following are valid in j=BL� (j=BL�(4)): !  ( ! �)! (�! �)! ( ! �)( ! �! �)! �!  ! �( ! �)!  !  ! � ^ �!  ;  ^ �! �( ! �)^ ( ! �)!  ! � ^ � 
 �!  ;  
 �! �( ! �)
 ( ! �)!  ! �
 � !  _ � ; �!  _ �( ! �)_ (�! �)!  _ �! � !  � � ; �!  � �( ! �)� (�! �)!  � �! � $ :: ( ! �)$ (:�! : ) ^ (�_ �)$ ( ^ �) _ ( ^ �) 
 (�� �)$ ( 
 �)� ( 
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:( ^ �)$ : _ :�:( _ �)$ : ^ :�:( 
 �)$ : 
 :�:( � �)$ : � :�Proposition 3.30 The following are not valid in j=BL� (j=BL�(4)): ! �!  ( !  ! �)!  ! �: !  ! � ! �!  ^ � ! �!  
 �Notes:1. If we compare the list above with the usual formal system for the rel-evance logic R ([, ]), we see that the only axiom of R which is notvalid for this interpretation of ! is the contraction axiom: ( ! !�)!  ! �. It is worth noting that the omission of this axiom isalso the main di�erence between the linear logic of Girard (see []) andthe usual relevance logics. In fact, the last two propositions are truefor linear logic as well (with the exception of the converse of contrac-tion, the distributive schemes, and the parts concerning 
 and �, ofcourse), if we interprate : and ! as linear negation and implication(respectively), and ^;_ as the \additives". Note, however, that the\mix" (or \mingle") axiom  ! ! is valid.2. On ft; f;?g, ! is exactly Lukasiewicz implication ([, ]), while onft; f;>g it is Sobocinski implication ([]), which is the implication ofRM3 - the strongest logic in the family of relevance logics.3. By using !, we can sometimes translate \annotated atomic formulae"from Subrahmanian's annotated logic (see [, , , , ]): The translationof  : b to BL(4) when b 2 FOUR, and when the partial order in the(semi)lattice is �t, is simply b! .33



Proposition 3.31 j=BL� ( ��)$ �_( !( !�))Proof: This can easily be checked in FOUR. 2The last proposition means that it is possible to choose! rather than �as the primitive implication of the language. We prefer the latter, though,since the intuitive meaning of both is then clearer. Also, the correspondingproof systems are much simpler if we follow this choice. Using !, on theother hand, is more convenient for relating our logic to other known logics,as we have just seen.Our next proposition brings us back to the relations between our logicand relevance logic:Proposition 3.32 Let  and � be in the language of f:;^;_g; then thefollowing assertions are equivalent:a)  j=BL�b)  j=sBL�c) j=BL  ��d) j=BL  !�e) j=R  !�Proof: That  j=BL � i� j=R  ! � was noted already after theorem 3.7.That j=BL  �� i�  j=BL� is an instance of the deduction theorem for �.Similarly, the equivalence of j=BL  ! � and  j=sBL � follows from the de-duction theorem for ! relative to j=sBL, and the fact that j=BL  i� j=sBL  .Finally, j=BL  !� i� �( )�t �(�) for every valuation � in FOUR, and itis well known (see [, ]) that if  and � are in the f:;^;_g-language, then`R !� under exactly the same circumstances. 2We end this subsection with a short demonstration of the potential useof j=BL� as well as of its various implication connectives. Recall that we areusing ; to denote the implication of the classical calculus (i.e:  ; � =: _ �).Example 3.33 Consider the following knowledge-base:bird(tweety); fly(tweety)penguin(tweety) � bird(tweety) 34



penguin(tweety)! :fly(tweety)bird(tweety)Note that we are using di�erent implication connectives according tothe strength we attach to each entailment: Penguins never y. This isa characteristic feature of penguins, and there are no exceptions to that,hence we use the strongest implication (!) in the third assertion in orderto express this fact. The second assertion states that every penguin is abird. Again, there are no exceptions to that fact. Still, penguins are nottypical birds, thus they shouldn't inherit all the properties we expect birdsto have. The use of a weaker implication (�) forces us, indeed, to inferthat something is a bird whenever we know that it is a penguin, but it doesnot forces us to infer that it has every property of a bird. Finally, the �rstassertion states only a default feature of birds, hence we attach the weakestimplication (;) to it. Indeed, since from  and  ; � we cannot infer� (by j=BL) without more information, the �rst assertion does not causeautomatic inference of ying abilities just from the fact that something is abird. It does give, however, strong connection between the two facts.The above knowledge-base does not allow us to infer whether tweety isa penguin or not (as it should be), and if it can y or not (which is lesssatisfactory; we shall return to it in the next section). However, if we addto the knowledge-base an extra assumption, penguin(tweety), we can infer:fly(tweety) but we still cannot infer fly(tweety), as should be expected.3.5 Adding Quanti�ersSo far we have concentrated on propositional languages and systems. Thejusti�cation for this is that the main ideas and innovations are all on thislevel. Extending our notions and results to �rst order languages can be donein a rather standard way. We can take 8, for example, as a generalizationof ^. Having then an appropriate structure D, and an assignment � ofvalues to variables and truth values to atomic formula, we let �(8x (x)) beinf�tf�( (d) j d2Dg. Here we are using, of course, the fact that we assumeB to be a complete lattice relative to �t. The corresponding Gentzen-typerules are then:[8)] �;  (s)) ��; 8x (x)) � �)  (y);��) 8x (x);� [)8]35



[:8)] �;: (y)) ��;:8x (x)) � �) : (s);��) :8x (x);� [):8]In these rules we assume, as usual, that the variable y does not appearfree in � or in �. Corresponding soundness and completeness as well ascut elimination theorems can be proved relative to FOUR with no greatdi�culties. We omit here the details. We just note that one can introducealso, in the obvious way, quanti�ers which correspond to 
 and �.4 A More Subtle Consequence Relationj=BL should be taken as a �rst approximation of what can be safely in-ferred when we have a classically inconsistent knowledge-base; this safetyis its main advantage. The disadvantage is that j=BL is somewhat \overcautious". Thus, in example 3.33 we would have liked to be able to inferfly(tweety) from the original knowledge-base, before the new information,penguin(tweety), is added to it. We cannot do this, of course, since j=BL ismonotonic.There is more than one way of introducing other consequence relations,which are less cautious, and enjoy non-monotonicity; we present here oneexample. The idea is taken from a paper of Kifer and Lozinskii (see []).Their idea, basically, is to order models of a given knowledge-base in a waythat somehow reects their degree of consistency, and then take into accountonly the models which are maximal w.r.t this order. The main di�erence isthat they were using just ordinary (semi)lattices, in which the partial orderrelation corresponds, intuitively, to our �k . Hence, no direct interpretationof the standard logical connectives (^;_) was available to them. They wereforced, therefore, to use an unnatural language, in which the atomic formulaeare of the form p : b (where p is an atomic formula of the basic language,and b { a value from the semilattice).  : b is meaningless, however, fornonatomic  . The use of bilattices allows us to give the standard logicallanguage a direct interpretation, and so gives a meaning to every annotatedformula. On the other hand, by using F we can dispense with annotatedformulae altogether, as we do below 21.De�nition 4.1 Let B = (B;�t;�k;:) be a logical bilattice. A subset I ofB is called an inconsistency set, if it has the following properties:21Despite the fact that this method of using \annotated" atomic formulae is quitecommon, it is still arti�cial from a logical point of view, since semantic notions interferewithin the syntax. 36



a) b 2 I i� :b 2 I.b) b 2 F \ I i� b 2 F and :b 2 F 22.Notes:1. From (b), always >2I. Also, from (b), t 62I, and so, from (a), f 62I.2. As for ?, both I [f?g and I nf?g are inconsistency sets in case I is.Now, on one hand, in every bilattice, :?=? (proposition 2.5), so ?has some features that may be associated with inconsistent elements.On the other hand, ? intuitively reects no knowledge at all aboutthe assertions it represents; in particular, one might not take suchassertions to be inconsistent. We shall usually prefer, therefore, totake ? as consistent (see also the note after proposition 4.13).Example 4.2 The following are all inconsistency sets:a) I1=fb j b 2 F and :b 2 Fg.b) I2=fb j b = :bg.c) I3=fb j b = :b ; b 6= ?g.I1 is the minimal possible inconsistency set in every in every (B;F). In casethat B in interlaced, and F=D(B), I1 is just f>g (see proposition 2.25). I2and I3 are always inconsistency sets in case B is interlaced, and F =D(B).There are, however, other cases in which they are inconsistency sets, forexample in DEFAULT .We �x henceforth some logical bilattice (B;F), and an inconsistencysubset I of it. Unless otherwise stated, all the de�nitions below will berelative to (B;F) and I. We will refer to the members of I (the membersof B n I) as the inconsistent (consistent) truth values of B.Notation 4.3a) A(�) denotes the set of the atomic formulae that appear in some formulaof �.b) For a valuation M of �, denote: IM(�)=fp2A(�) j M(p)2Ig.De�nition 4.4 Let � and � be two sets of formulae, and M;N { modelsof �.a)M is more consistent model of � thanN , if the set of the atomic formulaein A(�) that are assigned under M values from I, is properly contained in22In [] the inconsistent values are de�ned quite di�erently; see there for the details.37



the corresponding set of N (i.e: IM(�)�IN (�)).b) M is a most consistent model of � (mcm, in short), if there is no othermodel of � which is more consistent than M .c) � j=con � if every mcm of � is a model of some formula of �.Example 4.5 Let's return to the knowledge-base KB of example 3.33.Take F = ft;>g and B { any bilattice in which this F is a prime bi�lter(e.g: FOUR, DEFAULT ). Let I be any inconsistency set in B (obviously,F \I=f>g). Relative to (B;F) and I, this knowledge-base has exactly onemcm, and it takes values in ft; fg. Hence, if  is in the language f:;^;_;�g,then KB j=con  i�  follows classically from KB. Thus (unlike the in caseof j=BL!):KB j=con bird(tweety); KB j=con:penguin(tweety); KB j=con fly(tweety);KB 6j=con :bird(tweety); KB 6j=con penguin(tweety); KB 6j=con :fly(tweety):Now, consider again what happens when we add penguin(tweety) toKB: The new knowledge-base, KB0, has two mcms, M1 and M2, where:M1(bird(tweety)) = t; M1(penguin(tweety)) = >; M1(fly(tweety)) = >;M2(bird(tweety)) = >; M2(penguin(tweety)) = t; M2(fly(tweety)) = f:This time, therefore,KB0 j=con bird(tweety); KB0 j=con penguin(tweety); KB0 j=con :fly(tweety);KB0 6j=con :bird(tweety); KB0 6j=con :penguin(tweety); KB0 6j=con fly(tweety):It follows that j=con is a non-monotonic consequence relation, whichseems to behave according to our expectations. 2Some important properties of j=con are summarized below:Proposition 4.6 If � j=BL� then � j=con�.Proof: If every model of � satis�es some formula of �, then obviously everymcm of � does so. 2Proposition 4.7 j=con is non-monotonic.38



Proof: Consider, e.g., �=fp;:p_qg. In every mcm, M , p and q must haveconsistent values (since the valuation that assigns t to each one of them, isan mcm of �). Also, M(p)2F , since M is a model of �. If M(:p)2F also,then M(p)2F \ I (from de�nition 4.1(b)), so M(p) is inconsistent. HenceM(:p) 62 F . But M(:p _ q) 2 F , hence M(q) 2 F . So, � j=con q in every(B;F) and I. Obviously, however, �;:p 6j=con q (take, e.g.,M s.t. M(p)=>,and M(q)=f). 2Proposition 4.8 j=con is paraconsistent:p;:p 6j=con q, and even p_q;:(p_q) 6j=con q.Proof: Consider any valuation that assigns p the value >, and assigns q thevalue f . 2Proposition 4.9 If � and  are in the language of f:;^;_;�; f; tg, and� j=con  , then  classically follows from �.Proof: The crucial property of the language here is that if all the atomicformulae get values in ff; tg, then so does any formula in the language.Now, if � is classically consistent, then it has a model in ft; fg, and so allits mcms assign the members of A(�) consistent values. Hence, if � j=con ,then every model of � that assigns the members of A(�) consistent values,is a model of  . In particular, every model of � that assigns the membersof A(f�;  g) classical values (i.e.: ft; fg), is a model of  , and so  followsclassically from �. If � is classically inconsistent, then any � follows from itclassically (in particular  ). 2.A partial converse for consistent theories is given in the next proposition:Proposition 4.10 Let � be a classically consistent set in the language off:;^;_; f; tg, and let  be a sentence in the same language, which classicallyfollows from �. Then there exist sentences � and � , such that:1)  is classically equivalent to �,2) � is a tautology,3)  j=BL(4)�^� and �^� j=BL(4) ,4) � j=con�:Proof: Let  0 be a sentence like in proposition 3.5.  0 can be writtenin the form �^ � , where � is the conjunction of all the conjuncts in  0which are tautologies (i.e.: contains some atomic formula and its negation39



as disjuncts), and � is the conjunction of the other conjuncts of  0 (if eitherset of conjuncts is empty, we take it to be t). � and � obviously satisfyproperties (2) and (3). Since classical logic is an extension of j=BL(4) w.r.t.the language under consideration,  is classically equivalent to �^� , and soto � (since � is a tautology). It remains to prove (4). It is easy to see that� j=con �1^: : :^�n i� � j=con �i for every i=1: : :n. Hence, (4) follows fromthe following lemma:Lemma 4.11 Let � be a classically consistent set in the language off:;^;_; f; tg, and  { a clause that does not contain any pair of an atomicformula and its negation. If  follows classically from �, then � j=con  .Proof: We will show that if � 6j=con  , then there is a classical model of �,which is not a model of  . Indeed, let M be an mcm of � s.t. M( ) 62 F .Consider the valuation M 0, de�ned as follows:M 0(p) def= 8>>>>><>>>>>: t if M(p)2F , and p2A(�;  ).f if M(:p)2F , and p2A(�;  ).t if M(p) 62F ,M(:p) 62F , and :p appears as a literal in  .f if M(p) 62F ,M(:p) 62F , and p appears as a literal in  .t otherwiseExactly as in the proof of proposition 4.9, the fact that � is classicallyconsistent entails that M(p) is consistent for every p in A(�). Hence therecannot be any p in A(�) s.t. both M(p) and M(:p) are in F (otherwise,from (b) in de�nition 4.1, M(p)2I). On the other hand, if p2A( ) theneither p or :p is a disjunct of  . Since M( ) 62 F , this implies that eitherM(p) 62F , orM(:p) 62F . These two facts and our explicit assumption on  imply that M 0 above is well de�ned. Obviously, M 0 is a classical valuation.Now, by proposition 3.5, there is a set of clauses �0, s.t. A(�)=A(�0), everymodel of � is also a model of �0, and vice-versa. SinceM is a model of �, it isalso a model of �0. Hence, for every clause �2�0 with literals li (i=1 : : :n),there is at least one literal, li, s.t. M(li) 2 F . From the de�nition of M 0,M 0(li)2F as well, thus M 0 is a model of �0. Hence M 0 is a model of � aswell. On the other hand, M 0( )= f , since for every literal li that appearsin  , M 0(li)= f . Indeed, without a loss of generality, suppose that li=:p.Since M( ) 62 F , also M(:p) 62 F . If M(p) 2 F , then M 0(p) = t, and soM 0(li)=M 0(:p)=:M 0(p)=:t= f . If M(p) 62F , then since :p appears asa literal in  , M 0(p) = t in this case as well, and again M 0(li) = f . M 0 is,therefore, a classical model of �, which is not a model of  . Hence  does40



not follow classically from �. 2Note: The crucial lemma 4.11 does not hold under stronger assumptions:a) If we allow the appearance of � in �, then consider hFOURi with I=f>g,and �= fp� q; p�:qg,  =:p.  follows classically from �, but the val-uation M , where M(p) =?, and M(q)= t, is an example of an mcm of �,which is not a model of  .b) If  contains a literal and its negation, then consider again hFOURiwith I=f>g. This time, p_:p follows classically from q, but q 6j=con p_:p(consider, e.g., M(q)= t;M(p)=?) 23.As we have already shown, j=con is non-monotonic. We next show thatin addition it satis�es some properties that one might like a non-monotoniclogic to have:De�nition 4.12 [] : A plausibility logic is a logic that satis�es the followingconditions (for �nite �;�):Inclusion: �;  ) .Right Monotonicity: If �)�, then �) ;�.Cautious Left Monotonicity: If �) and �)�, then �;  )� 24.Cautious Cut: If �;  1; : : : ;  n)� and �) i;� for i= 1 : : :n, then�)�.Proposition 4.13 j=con satis�es Inclusion, Right Monotonicity, and Cau-tious Left Monotonicity. j=con also satis�es Cautious Cut i� there exists�2B s.t. � 62I[F[fb j :b2Fg, and the language is BL(4) (Hence j=con isa plausibility logic under these conditions) 25.Proof: Inclusion and Right Monotonicity follow immediately from the def-inition of j=con.Proof of Cautious Left Monotonicity:23One can replace here fqg by fq; q_pg, if one wishes A( ) to be a subset of A(�).24This rule was �rst proposed in [].25In proposition 4.10 of [] the bilattice under consideration should have been interlaced,and �=? (these assumptions were used there for the proof of the Cautious Cut). Herewe prove the proposition for any logical bilattice, and for � as de�ned above, which maybe di�erent from ?. 41



Assume that � j=con  , � j=con �, and let M be any mcm of f�;  g. Wewill show that M is also a mcm of �. Since � j=con�, this will imply thatM satis�es some formula in �, and so �;  j=con�. Now, M is certainly amodel of �. Assume that it is not an mcm of �. Then there is a model of �that is strictly more consistent than M . Since � is �nite, there is an mcmN of �, which is strictly more consistent than M ; and so IN (�)� IM(�).Consider the valuation N 0 that is de�ned as follows: N 0(p)=N(p) for everyp 2 A(�) and N 0(p) = b otherwise, where b is any consistent truth value.Obviously, N 0 is an mcm of �. Since � j=con  , N 0 is a model of f�;  g.Now, IN 0(�;  )= IN 0(�)= IN(�)� IM(�)� IM (�;  ). Hence N 0 is a modelof f�;  g, which is more consistent than M . This contradicts the fact thatM is an mcm of f�;  g.Proof of Cautious Cut under the speci�ed conditions:Assume that �;  1; : : : ;  n j=con� and � j=con  i;� for i=1 : : :n. Let M bean mcm of �. We will show that M is a model of some formula of �. Forthis, de�ne another valuation, M 0, by:M 0(p) def= ( M(p) if p2A(�)� otherwiseObviously, M 0(�)=M(�) for every � s.t. A(�)�A(�). Hence M 0 is also anmcm of �. Thus, M 0 is either a model of some �2�, or M 0 is a model of 1; : : : ;  n. Since M 0(p)2I implies that p2A(�), and since M 0 is an mcmof �,M 0 is necessarily an mcm of f�;  1; : : : ;  ng in the second case. Hence,again,M 0 is a model of some �2�. It follows that in either casesM 0(�)2Ffor some � 2�. It remains to show that M(�) 2 F whenever M 0(�) 2 F .Indeed, by proposition 3.5 there exists a formula �0, which is a conjunctionof disjunctions of literals, s.t. for every valuation �, �(�)2F i� �(�0)2F .If M 0(�)2F , then M 0(�0)2F also, so M 0(D)2F for every conjunct D of�0. Now, M 0(D)2F i� there is a literal l2D s.t. M 0(l)2F . But since l isa literal, it is obvious that M 0(l)2F only if M 0(l) 6= � and M 0(:l) 6= �, soM(l)=M 0(l). Hence M(l)2F as well. It follows that M(D)2F also, andso M(�0)2F , implying that M(�)2F .To show the necessity of the conditions we note that:1) If � is in the language, then for every B, F , and I: q j=con q _ p,q; q_p j=con (p � :q)_(:p � :q), but q 6j=con (p � :q)_(:p � :q) (take avaluation M , s.t. M(q)= t and M(p)=>).2) If B= I[F[fb j :b2Fg, then q j=con q_p and q; q_p j=con p_:p, butq 6j=con p_:p (consider M , s.t.M(q)= t and M(p)=?). 242



Note: If ? 62I (see note 2 after de�nition 4.1) then the condition for Cau-tious Cut is satis�ed for �=?.The crucial point in the counterexamples given in the last proof, is thatthe cut formula contain atomic formula that does not appear in A(�). Infact, it is easy to show that otherwise the rule is valid with no extra assump-tion:De�nition 4.14 (Analytic Cautious Cut)If �;  1; : : : ;  n j=con� and � j=con  i;� for i=1 : : :n, and ifA(f 1; : : : ;  ng) �A(�), then � j=con�.Proposition 4.15 Analytic Cautious Cut is valid rule for j=con.Proof: Let M be any mcm of �. We will show that M is a model ofsome formula in �. If not, then M is a model of  i (i = 1 : : :n), since� j=con  i;�. Hence M is a model of f�;  1; : : : ng. It is obviously anmcm of this set, since any model which is more consistent than M w.r.tf�;  1; : : : ng, is also a more consistent model than M w.r.t � (using thefact that A(f 1; : : : ;  ng)�A(�)). Since �;  1; : : : ;  n j=con�,M is a modelof some formula of � after all. 2Proposition 4.16 All the rules of GBL are valid for j=con.Proof: The validity of Exchange and Contraction is immediate from thede�nition of j=con . The introduction rules on the right, as well as their in-verses, are valid for exactly the same reasons that they are valid in j=BL.The rules [^)] and [
)] are valid, since the models of f�;  ; �g, f�;  ^�g,and f�;  
�g, are the same, hence the mcms of these sets are also the same.Similar argument works for [::)]. The rules [_)] and [�)] are provedin [] to be valid in every plausibility logic, which satis�es [) _], [) �],and their converses. The proof there does not use in fact the full power ofCautious Cut, but only that of Analytic Cautious Cut. For the reader conve-nience, we repeat the arguments, adjusted to our logic, for the case of [�)]:43



(1) �;  )  ; � Inclusion and Right Monotonicity.(2) �;  )  � � (1), [)�].(3) �;  ) � Hypothesis.(4) �;  ;  � �) � (2), (3), Left Cautious Monotonicity.(5) �;  ;  � �) �;� (4), Right Monotonicity.(6) �;  � �)  � � Inclusion.(7) �;  � �)  ; � (6), Inverse rule of [)�].(8) �;  � �)  ; �;� (7), Right Monotonicity.(9) �;  � �) �;� (5), (8), Analytic Cautious Cut.(10) �; �;  � �) � Proved like (4), exchanging the roles of  and �.(11) �;  � �) � (9), (10), Analytic Cautious Cut.Finally, [:^)], [:_)], [:
)], and [:�)] all follow from lemma 2.5(a),together with the previous observations. 2Some other nice properties that are true in every plausibility logic whichsatis�es [)_], [)�], and their converses, are listed in the next proposition(see []):Proposition 4.17 Let �;� be sets of formulae, and  ; �; � { formulae inBL. Then:Left Equivalence: �;  j=con � �; � j=con  �;  j=con ��; � j=con �Right equivalence: �;  j=con � �; � j=con  � j=con  ;�� j=con �;�Loop:  j=con � � j=con � � j=con   j=con � j=con �  _ � j=con   _ � j=con �  j=con �  � � j=con   � � j=con �� _ � j=con �  _ � j=con   _ � j=con  �� � j=con �  � � j=con   � � j=con  As we have shown, j=con has a lot of desirable properties. We shouldmention, however, that j=con is not closed under substitutions. In otherwords: it is sensitive to the choice of the atomic formulae. Thus, although:p; p_q j=con q, when p and q are atomic, it is not true in general that: ;  _� j=con � (take, e.g., B = FOUR,  = :(:p^p), and � = q). This,however, is unavoidable when one wants to achieve both lemma 4.11 andproposition 4.8 above. 44



5 Conclusion and Further WorkBilattices have had an extensive use in several areas, most notably in logicprogramming, but their role so far was mainly semantic in nature. We de-velop a real notion of logic based on bilattices, giving associated consequencerelations and corresponding proof systems. These consequence relations arestrongly related to non-monotonic reasoning, and especially to reasoning inthe presence of inconsistent data.This, however, is not the end of the work. The basic languages men-tioned here are, as their name suggests, only basic. It seems that additionalconnectives are required in order to get more expressive languages. Such lan-guages should be able to describe more precisely the speci�c bilattice underconsideration. One would like, for example, to express in a knowledge-baseover DEFAULT that a certain formula is considered to be true by default, orthat the result of f
t should be considered as d> rather than ?. This can beachieved, e.g., by de�ning a connective that reects equivalences in formulaassignments, or by de�ning some kind of analogue to the \:"-connective ofannotated logic. The guard connective, investigated in [], might also be con-sidered.The consequence relations are also a matter for further examination. Aswe have shown (theorem 3.4), the basic consequence relation, j=BL, is nomore than the logic of FOUR. Nevertheless, it is obviously desirable to takeadvantage of the availability of other values in the bilattice under consid-eration, for example the default values fdf; dtg of DEFAULT . Consideringj=con was a �rst step, since we take into account not just the designatedelements of the bilattice, but also those that were considered as inconsis-tent. For j=con FOUR is no longer a single representative of all the logicalbilattices. For example, by taking B to be FOUR with the inconsistency setI=fb2B j b=:bg, we have that q; p�:q j=con :p, and p_q j=con :p_p, whileif we take B to be DEFAULT with the same de�nition of inconsistency set,these consequences are no longer valid. j=con seems to be, however, some-what too crude, since it treats uniformly the whole set of atoms that areassigned inconsistent values under a given valuation. As a result, the pref-erences among the valuations are due to \global" considerations rather thanpointwise ones. A future work should seek for a re�nment of this relation,which might as well reect the speci�c structure of the bilattice (especiallyits partial orders). 45
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