
Energy-Efficient Online Scheduling with Deadlines

Aaron Coté, Adam Meyerson, Alan Roytman, Michael Shindler, Brian Tagiku
{acote,awm,alanr,shindler,btagiku}@cs.ucla.edu

Department of Computer Science, University of California, Los Angeles
Technical Report UCLA-CSD-100029

September 24, 2010

Abstract

Whether viewed as an environmental, financial, or convenience concern, efficient management
of power resources is an important problem. In this paper, we explore the problem of scheduling
tasks on a single variable-speed processor. Our work differs from previous results in two major
ways. First, we consider a model where not all tasks need to be completed, and where the goal
is to maximize the difference between the benefit of completed tasks and the cost of energy
(previous work assumed that all tasks must be completed). Second, we permit a wide range
of functions relating task completion time to energy (previous work assumed a polynomial
relationship).

We begin by exploring multiple speed packet scheduling, and we develop 2-competitive al-
gorithm where tasks are unit-sized and indivisible. This extends to a fractional version where
benefit can be obtained for partially-completed tasks, and also extends to permit arbitrary non-
negative relationships between task value and completion time. The proof introduces a novel
version of online maximum-weight matching which may be of independent interest.

We then consider the problem of processor scheduling with preemption. We develop a
randomized poly-logarithmic competitive algorithm by showing how to effectively “guess” a
speed close to that which the optimal solution will use. We also prove a number of lower
bounds, indicating that our result cannot be significantly improved and that no deterministic
algorithm can be better than polynomially-competitive.

We also consider the case where all tasks must be completed by their deadlines and the goal
is to minimize energy, improving upon the best previous competitive result (as well as extending
to arbitrary convex functions). Finally, we consider a problem variant where speedup affects
distinct tasks differently, and provide a logarithmic-speedup competitive result and matching
lower bounds.

1 Introduction

Energy-efficiency has become an increasingly important issue in computer science research [1]. This
is certainly motivated in part by the alarming link between energy usage and climate change [29]
and the fact that large data centers require billions of dollars worth of energy to maintain [31]. As a
result, energy-saving techniques offer significant environmental and monetary incentives. Yet, such
methods also offer practical benefits in the much smaller embedded platform scale where battery
life is a critical factor to the viability of the system [32].

In this paper, we describe online competitive algorithms and lower bounds for a variety of
scheduling problems motivated by energy conservation. Each problem concerns scheduling tasks
on a single variable-speed processor. Faster processor speeds require greater amounts of energy per
unit time, so we wish to throttle the processor speed so as to minimize our total energy usage. It is
easy to show difficulties in completing all tasks by deadlines in an energy-efficient manner, thus we
consider instead optimizing throughput, maximizing the total number or value of tasks completed.
In conjunction with task deadlines, this allows a system to be responsive (in particular, it finishes a
task or reports that it cannot perform a task quickly) while maintaining energy-efficiency. However,
if all tasks must be finished by their deadlines, we also show how resource augmentation can help
us be competitive.

The major differences between our work and prior results (e.g. [2, 4, 5, 6, 9, 23, 33]) are
two-fold: First, our model assumes that tasks have hard deadlines, whereas most of the previous
papers (all but [33]) use a weighted flow time model for quality of service. In addition to being
able to accomodate time-sensitive tasks, the deadline model has the advantage of prioritizing the
completion of tasks which have been in the system for a long time, inducing a measure of fairness;
in comparison, weighted flow time may starve some tasks indefinitely while completing other tasks
of comparable weight. Our results are the first to consider variable-speed scheduling of tasks with
deadlines to maximize throughput ([33] requires all tasks be completed by their deadlines). Second,
our model permits arbitrary relationships between speed and energy whereas previous work assumes
a smooth polynomial relationship (except [5] which needed additional assumptions, either that all
tasks had the same weight, or that rewards could be obtained for completing fractions of tasks).
Real processors typically run only at a discrete set of possible speeds [10] and even then, task
completion rate need not depend linearly on processor speed; for example the running time for a
very memory intensive task will not change much when the processor speed is doubled, whereas a
purely computational task will take half the time at twice the processor speed. Our work is the
first to allow arbitrary relationships between speed and energy in a general task model and also the
first to combine arbitrary relationships between speed and energy with the deadline model ([5] uses
weighted flow time rather than deadlines; [33] assumes a smooth polynomial relationship between
speed and energy).

Our first problem is a packet scheduling variant with multiple speeds (packet scheduling is a
particularly well-used model in wireless networks). Packets arrive online and each have a deadline
and a value. Time passes in discrete timesteps and we can send greater numbers of packets each
timestep for increasingly larger energy costs. Our goal is to maximize our total profit, i.e. total value
of packets we send on time minus the total energy cost. We design a 2-competitive deterministic
online algorithm for this problem via a simple greedy technique. This can be viewed as a task
scheduling result; however, there are a number of inherent assumptions (packets are atomic, have
identical “workload,” and complete quickly relative to the rate of arrivals even at a slow speed);
these assumptions are equivalent to a fractional model where we can obtain benefit from completing
part of a task (such a model is considered, for example, in [5], albeit under a different quality of
service measure). Interestingly, our algorithm works for a novel version of online maximum weighted

1

bipartite matching, where nodes on one side of the matching arrive online along with their incident
edges. While there are strong lower bounds for this problem if matches made are permanent
[27, 3, 13, 16, 20, 28], we instead assume that the nodes on the other side of the matching (not
the online-arriving nodes) lock in an online manner. Only when a node locks is its match fixed
permanently. In fact, this allows us to assume the value of a packet depends upon the completion
time in an arbitrary way (for example packets which decay exponentially in value over time).

We then move on to scheduling tasks with preemption. Here, tasks have arrival times, deadlines,
workloads, and values. We can run at faster speeds for larger energy costs, and our goal is to
maximize the total value of tasks completed by their deadlines minus the cost of energy. Note that
the matching approach will not directly work since we might try to match only part of a task. For
this problem, we provide a randomized poly-logarithmic competitive algorithm for this problem.
We do this by showing how to “guess” a speed to run each task in a manner that is not much
worse than optimum. This reduces the problem to the single-speed case, where we can divide the
tasks into a poly-logarithmic number of buckets, randomly select one of these buckets and run the
algorithm of [8]. We also present some new logarithmic lower bounds which suggest that, even
allowing preemption, we cannot do much better than our result in the variable-speed case. We also
show that any deterministic algorithm must have a polynomial competitive ratio.

Our third problem does not directly involve energy management, but will be useful later. We
consider the version of packet scheduling (at a single speed) where the goal is to minimize the total
value of packets which are dropped. We prove that unlike the maximization version, no deterministic
competitive algorithm is possible for this problem unless the online algorithm is allowed to transmit
more packets per time step than the offline. Further, this “speedup factor” must be super-constant.
We show that speedup factors logarithmic in various natural parameters are sufficient. Perhaps
surprisingly, if the packets have agreeable deadlines (earlier arrival implies no later deadline) then
constant speedup suffices. This is the first provable gap in competitive ratio between agreeable
deadlines and the general case.

Finally, we consider preemptive scheduling of tasks where all tasks must be completed by their
deadlines. We show that provided our algorithm can run a constant times faster than optimum
for the same cost in energy, we can obtain optimality; it is also easy to prove that such speedup
is necessary. We show that in the special case where energy is a polynomial function of speed, our
approach improves upon the previous result of [33] (in addition our result permits arbitrary convex
relationships between speed and energy, and has a much simpler proof). Finally, we consider a model
where the effect of increasing processor speed is different for distinct tasks. We give a competitive-
ratio-preserving reduction from this problem to packet scheduling where we must minimize the
value of dropped packets. It follows that super-constant speedup factors will be necessary (barring
agreeable deadlines), and that speedup logarithmic in natural parameters is sufficient.

1.1 Related Work

In standard packet scheduling, packets arrive in an online fashion. Each packet p is specified by
its arrival time ap, deadline dp and value vp. At each time step t, we are to choose at most one
packet p to send such that ap ≤ t ≤ dp. Our goal is to maximize the total value of packets
sent. The online packet scheduling problem first appeared in 2001 in [19] and a deterministic lower

bound of the golden ratio φ = 1+
√

5
2 was shown in [15] shortly after. The simple greedy algorithm

(sending highest value packet first) is known to be 2-competitive [19]. Since then, a number of
slight improvements have been made in [12, 26, 14] with the current best being a 2

√
2− 1 ≈ 1.828-

competitive algorithm. Interestingly, a φ-competitive algorithm is known when packet deadlines
are agreeable (ap < aq implies dp ≤ dq) [25]. For randomized algorithms, a lower bound of 1.25

2

and an algorithm achieving competitive ratio e
e−1 , where e is the base of the natural log, are given

in [7]. However, to the best of our knowledge we are the first to consider a variable-speed variant
of packet scheduling.

For brevity, we will not discuss in great detail the vast history of task scheduling and instead
point the reader to excellent surveys in [30]. Much previous work exists in the single-speed, single-
processor case such as in [8, 11, 17, 18, 21, 24], and also multi-processor variants [8, 22]. Even
with only a single speed available, no algorithm can obtain better than a logarithmic competitive
ratio on the total value obtained [22], although constant is possible if tasks are unweighted [8] (in
expectation) or with resource augmentation [11, 17, 21, 24]. Again, our model differs from these by
allowing the processor to run at various speeds. One approach is to divide tasks into tiny packets
and use matching; however, this might try to complete only part of a task (thus spending large
amounts in energy for no benefit). Instead, we observe that the optimum can be assumed to run
each task at only a single speed (otherwise we can obtain better energy with the same completion
times by averaging out the speed, using convexity).

2 Multi-Speed Packet Scheduling to Optimize Benefit

We are given a single processor with multiple speed settings and a set of packets to process. A
function c : Z+ → R is our energy cost to send s packets per timestep. We assume throughout this
work that c is a convex, increasing function. Packets arrive in an online fashion, and each packet p is
described by the tuple (ap, dp, vp): the arrival time, deadline, and value of the packet (respectively).
Our job is to schedule packets in order to maximize the total value of packets transmitted by their
deadlines, minus the total energy cost. We observe that this can be viewed as matching packets to
“slots” where slot (t, i) represents the ith packet transmitted at time t. The goal is then to produce
a maximum-weight matching, where a matching edge from p to (t, i) exists if ap ≤ t ≤ dp and has
weight wp,(t,i) = vp − [c(i) − c(i − 1)]. The convexity of c(s) implies that slots with higher i-value
have lower weight edges and thus a maximum-weight matching will use the first i slots at time t
(for some i), obtaining a total value equal to the sum of values of transmitted packets minus c(i).
We can thus model our problem as a variant of online maximum-weight bipartite matching, the
formal description of which follows.

Problem 1 (Online Maximum-Weight Matching with Vertex Locking). A set of nodes B is given.
Nodes A arrive online, each node a ∈ A arriving along with its weighted incident edges to B. We
must construct a matching of A to B of (approximately) maximum weight. However, when we
decide to match a ∈ A to b ∈ B, this decision is not necessarily fixed for all time. Instead, the
nodes of B lock one by one in an online manner. When a node b ∈ B locks, it must keep its current
match (or unmatched status) from A forever. Note that we are not required to match all nodes of
A or B, although unmatched nodes contribute zero to the objective.

For our packet scheduling problem, B corresponds to the slots and A to the packets. A particular
slot (t, i) locks when time t passes and we actually transmit packets. Any competitive algorithm for
the matching problem will give the same competitive ratio for packet scheduling. In addition, we
can permit more complicated weights on the matching edges, allowing us to consider cases where
the (non-negative) value of a packet diminishes over time. Also note that we can approach problems
where the tasks are not unit length by dividing the tasks into small pieces (packets), provided that
completing a fraction µ of the work of task i results in µvi value. A similar model is used in [5].

The main result of this section is a 2-competitive deterministic algorithm for this problem. To
simplify the analysis, we assume that at each time step either one new node of A arrives or one
new node of B locks. We designate At as the set of nodes from A which have arrived by time t.

3

Our algorithm proceeds as follows. Let Ft be the set of matching edges selected for locked
nodes. At each time, we compute µ(At, B, Ft), the maximum-weight matching of At with B with
the requirement that the edges Ft be included in the matching (Ft can include null edges for
unmatched locked nodes). Whenever a node locks, we add the appropriate edge from our current
matching to Ft. Let f(At, B, Ft) be the value of matching µ(At, B, Ft).

Suppose that node a ∈ A arrives at time t. Define ∆a = f(At, B, Ft) − f(At−1, B, Ft−1),
the change in the value of the optimum matching due to this arrival. For any b ∈ B, define
ρt(b) = f(At, B, Ft)− f(At, B − {b}, Ft). For any b ∈ B, let νb be the weight of the matching edge
for b in the algorithm’s final solution (or νb = 0 if b is unmatched). We observe that the algorithm’s
total weight is given by ALG =

∑
b∈B νb =

∑
a∈A ∆a

Lemma 1. The value of ρt(b) is non-decreasing with time.

Proof. If at time t a new vertex becomes locked then Ft−1 ⊂ Ft and At−1 = At. Since we pick
the appropriate edge from µ(At, B, Ft−1) we have f(At, B, Ft) = f(At, B, Ft−1). This new locked
edge can only reduce the weight of the best matching to B−{b} so f(At, B−{b}, Ft) ≤ f(At, B−
{b}, Ft−1). Thus, ρt(b) ≥ ρt−1(b).

If at time t a new vertex a arrives, then At−1 ⊂ At. One way to calculate f(At, B − {b}, Ft) is
by network flow. Add a source vertex incident to each vertex in At and a sink vertex adjacent to
all vertices in B − {b}, each with weight 0 and capacity one. All edges between At and B − {b}
will remain unchanged and have capacity one. We can find a maximum-weight, maximum flow to
identify our maximum-weight matching (since all capacities are integral, we know our flow precisely
defines a matching). We augment B with “dummy” vertices and connect them to the vertices of
A with edges of capacity one and weight zero, so as to guarantee that the max-weight flow will
saturate all edges from source to At. We can also do this to calculate f(At−1, B, Ft).

Consider taking the two graphs from these two instances and superimposing them (by merging
identical vertices). Capacities of any identical edges will add, but we keep their weights constant.
Now, all edges are capacity 2 except for those edges incident on a or b. Notice that the individual
flows for these two graphs simply add and still form a valid flow. If we consider a maximum-weight
flow f∗ over this new graph, then clearly weight(f∗) ≥ f(At, B − {b}, Ft) + f(At−1, B, Ft).

We now show that f∗ can be decomposed into flows for f(At, B, Ft) and f(At−1, B − {b}, Ft)
which proves our claim. It is clear that in f∗ the unweighted flow value is 2|At| − 1. Thus, each
At vertex except a has two units of flow passing through it. So starting from a, we can follow
the flow, alternating between B and A vertices. This process must stop at a B vertex and so the
path has an odd number of edges. We can then add the flow along each odd edge to f(At, B, Ft)
and the flow along each even edge to f(At−1, B − {b}, Ft). Once this is done, we remove this flow.
Note that A vertices now either have 0 units of flow, or 2 units of flow. If b was not involved in
this path, then we can start from b and do the same process (being sure to add the flow involving
b to f(At, B, Ft)). Again, the A vertices still have either 0 or 2 units of flow. Once a and b are
handled, then the remainder of the flow can similarly be decomposed. This constructs valid flows
for f(At, B, Ft) and f(At−1, B − {b}, Ft) . Thus weight(f∗) ≤ f(At, B, Ft) + f(At−1, B − {b}, Ft).
This gives us:

f(At, B − {b}, Ft) + f(At−1, B, Ft) ≤ f(At, B, Ft) + f(At−1, B − {b}, Ft)

f(At−1, B, Ft)− f(At−1, B − {b}, Ft) ≤ f(At, B, Ft)− f(At, B − {b}, Ft)

ρt−1(b) ≤ ρt(b)

4

Theorem 1. The algorithm is 2-competitive.

Proof. Consider any nodes a ∈ A and b ∈ B. Suppose that a arrives at time t, and that ab is a
possible match (this requires that b is not yet locked at time t). We can write the following:

∆a + ρt−1(b) = [f(At, B, Ft)− f(At−1, B, Ft)] + [f(At−1, B, Ft)− f(At−1, B − {b}, Ft)]
= f(At, B, Ft)− f(At−1, B − {b}, Ft).

The last expression must be at least wab since one way to form the matching µ(At, B, Ft) involves
taking the matching µ(At−1, B − {b}, Ft) and augmenting by the edge (a, b). If we let τ be the
final time for the algorithm (at which we can assume all of B is locked) then by lemma 1 we have
∆a + ρτ (b) ≥ wab. By definition, we have νb = ρτ (b). Summing both sides over pairs (a, b) which
are matched in the optimum offline solution completes the proof.

3 Multi-Speed Task Scheduling to Optimize Benefit

Problem 2 (Benefit-Optimized Scheduling). A set of n tasks (`i, ai, di, vi) arrives in an online
fashion. Here `i is the workload, ai is the arrival time, di is the deadline, and vi is the value of
the task. We are given a single processor which can run at variable speeds s, along with a convex
function ĉ(s) relating speed to energy per unit work. We must find a task and speed schedule to
maximize the total value of tasks performed by their deadlines minus the total energy.

This extends our packet scheduling model from section 2 to variable length tasks. Note that
ĉ measures cost per unit work; requiring this to be convex is a stronger condition than requiring
cost per unit time to be convex. Prior work restricts to ĉ(s) = sp−1 for some p ≥ 2, which satisfies
the condition. The examples justifying arbitrary relationships between speed and energy normally
imply a faster-growing function. Our algorithm will work even if ĉ(s) differs for distinct tasks. We
also note that if we are restricted to a discrete set of speeds, we can interpolate between them
(allowing the processor to switch rapidly between two consecutive discrete speeds) to produce a
continuous result.

A direct matching approach will not work, as we might attempt to complete only a fraction of
a task. In fact, even when there is only a single speed there are logarithmic lower bounds on the
online competitive ratio [18]; we provide additional lower bounds in Appendix A. We will obtain a
poly-logarithmic result by assigning a speed to each task, randomly selecting a set of similar tasks,
and then executing the algorithm of [8]. We first explore some properties of optimum.

Lemma 2. There exists an optimum offline schedule using a single speed s∗i for each task i.

Proof. The optimum designates a single task to work on at each time. Consider all times at
which the optimum works on task i. If optimum runs at different speeds at these times, then an
appropriate weighted average of the speeds will perform the same amount work in the same total
time while reducing the cost.

Given the optimum speed s∗i for each task, we can reduce this to the single-speed problem where
each task now has new length `′i = `i/s

∗
i and value v′i = vi − `iĉ(s∗i). Unfortunately, these speeds

are not provided to us a priori, so we must choose appropriate speeds ourselves.
If we wish to do task i, the slowest speed we can run at is smin

i = `i/(di−ai). We would never run
i at a speed that is not profitable, so the fastest speed we would use is smax

i where vi−`iĉ(smax
i) = 0.

Thus, we wish to select a speed si that satisfies smin
i ≤ si ≤ smax

i . Consider running at speed si

5

where vi − `iĉ(si) = 1
2

(
vi − `iĉ(smin

i)
)
. That is, our profit from performing at speed si is half

the profit we get by performing i at smin
i . By convexity, `iĉ(2si) ≥ 2`iĉ(si) ≥ vi + `iĉ(s

min
i). We

conclude that vi− `iĉ(2si) ≤ 0 and that smax
i ≤ 2si. If it happens that there is a maximum possible

speed which is slower than si, we let si equal this maximum speed instead.
It is immediate from the definition of si that if the optimum runs some task at speed slower

than si, it will lose at most half its benefit by accelerating that task to si. Thus there exists a
schedule OPT ′ which runs each task i at speed at least si and obtains at least half the optimum
profit. It remains to deal with the possibility that OPT ′ runs tasks at speeds faster than si.

Lemma 3. Suppose for some D all tasks i satisfy D/2 ≤ `i/si ≤ D. Let OPT ′′ be the optimum
schedule subject to the restriction that whenever i is run it must be run at precisely speed si. Then
profit(OPT ′′) ≥ 1

13 · profit(OPT ′).

Proof. Let S∗ be the set of tasks that are completed by OPT ′. For each task i, let Wi denote the
time interval beginning at the time i was started by OPT ′ up to the time i was finished. If two
tasks j, k ∈ S∗ have Wj −Wk 6= ∅ and Wk −Wj 6= ∅, then we can swap the times OPT ′ works on j
and k so that Wj and Wk are disjoint. In particular, we can assume without loss of generality that
for every j, k ∈ S∗, either Wj and Wk are disjoint, or one is strictly contained in the other.

Define a digraph G with vertex set S∗. We add a directed edge (j, k) when Wk ⊂ Wj , and
there is no i where Wk ⊂ Wi ⊂ Wj . G is an arborescence forest. Let h be the height of G and let
Si be the vertices at height i. Thus, S0 contains all the tasks j where Wj contains no other Wk.
Moreover, for i > 0 task j ∈ Si if the largest height amongst its children is i− 1. Note that the Si
sets partition S∗ and that for any j, k ∈ Si we have Wj and Wk disjoint.

Consider Si for i ≥ 2. Each task j ∈ Si has at least two descendants k1 ∈ Si−1 and k2 ∈ Si−2 in
G. OPT ′ runs each of k1, k2 at speed at most 2sk1 and 2sk2 (respectively) so each has an execution
time of at least D/4. If we slow j’s speed to sj , then this can increase the execution time of j by
at most D/2. So by removing k1, k2, we maintain a feasible schedule while running j ∈ Si at sj .
Thus, we obtain the profit of Si while losing the profit of Si−1 and Si−2.

For i ∈ {0, 1, 2}, let Xi =
⋃
n≥1 S3n+i−1. If we choose the Xi with largest total profit and

remove all other Si as above, we can construct a feasible schedule with total profit at least 1
3 of the

total profit due to all Si with i ≥ 2.
Now consider only the tasks in Si for i = 0, 1. Each task j is running at speed at most

smax
j ≤ 2sj , thus j has execution time between D/4 and D. If we reduce the speed of each j to sj ,

this at most increases the execution time of each by D/2. By our definition of sj , this execution
time must fit within [aj , dj], but can overlap with any task within D/2 of either side of the original
Wj . Extending task j’s duration causes it to overlap with at most two other tasks in each direction.

We split Si into 5 feasible sets X1, . . . , X5 as follows. We first sort the tasks in order of Wj . Set
Xi consists of the i-th task and every fifth task thereafter in the ordering. One of these sets must
obtain at least 1

5 the total profit of Si.
Thus, to construct OPT ′′ we do the following: If S0 contains profit at least 5

13 · profit(OPT ′),
then we schedule only S0 as described above to get total profit 1

13 · profit(OPT ′). Otherwise, we
try the same with S1. Otherwise, it must be that the profit in levels Si for i ≥ 2 is at least
3
13 ·profit(OPT ′). Thus, we can schedule one of the Xi as above to obtain at least 1

13 ·profit(OPT ′).
In all cases, we find a schedule that obeys speeds sj and gets profit at least 1

13 that of OPT ′.

Theorem 2. There exists a randomized O(log V log V L)-competitive online algorithm where V is
the ratio of maximum to minimum task value and L is the ratio of maximum to minimum length.

Proof. For each task i we compute si. Note that in order to be profitable, we should never run at
a speed that costs more than the maximum task value per unit work. Moreover, we only consider

6

speeds that obtain at most half the optimum profit. Since optimum can get at most vi from each
task, the slowest speed we consider costs at least vmin

2L . By the convexity of the cost function, we
can conclude the ratio of the maximum to minimum speeds we consider is at most 2V L.

Then we partition tasks into buckets by their value of vi − `iĉ(si) and by their value of `i/si,
such that any two tasks in the same bucket are within a factor of two in each value. Note that
this creates at most O(log V log V L) buckets. We now select a bucket uniformly at random, and
run the algorithm of [8] on the tasks from this bucket. Their algorithm is 2-competitive for unit
values and equal execution times, and it is simple to extend this to our case for a single bucket
with an increase in the constant. Also note that their algorithm is non-preemptive (even though
it competes against a possibly preemptive offline optimum). In expectation our random choice of
bucket costs us at most O(log V log V L), completing the proof.

We note that if we do not know V and L a priori, we can randomly select buckets in a different
way. For any ε > 0, we can select a value i such that Pr[n/2 ≤ i ≤ n] > Θ(ε)

log1+ε n
. This only slightly

increases our competitive ratio to O(1
ε2

log1+ε V log1+ε V L).

4 Packet Scheduling to Minimize Drop Value

We consider online packet scheduling at a single speed to minimize the total value of dropped
packets. Note that this is quite similar to the problem of [19] and that the optimum offline is
identical; however from a competitive perspective the change in objective makes a substantial
difference. This will be used in a result for multi-speed scheduling in the next section.

Problem 3 (Packet Scheduling: PS). A set of n packets (ap, dp, bp) arrives in an online fashion.
We are allowed to transmit one packet at each time step, and all packets must be transmitted
between their arrival time ap and deadline dp (or not transmitted at all). If S is the set of packets
transmitted and N−S is the set of packets not transmitted, then our goal is to minimize Σp∈N−Sbp.

We will prove that no algorithm can be competitive for this problem unless we permit a super-
constant speedup (online is allowed to send more-than-constant number of packets per time). We
will then provide competitive algorithms with speedup logarithmic in natural parameters.

4.1 Lower Bound

Our lower bound resembles [11], which shows that optimum maximization performance cannot be
attained without super-constant speedup in a problem where tasks have variable workloads. In our
problem the goal is only constant-competitiveness but on the minimization objective, and all packets
have workload one. We will construct an example, where L and α are arbitrarily large constants
and k is the speedup factor we are allowed over optimum. Our set of packets is enumerated as
follows:

• ∀j s.t. 1 ≤ j ≤ L: Aj = (1, j, αj−1)
• ∀j s.t. 1 ≤ j ≤ L: Bj = (j, L+ 2k−1, αL)
• ∀j s.t. 1 ≤ j ≤ 2k−1: Cj = (L+ 1, L+ 2k−1, αL)

• ∀i s.t. 0 ≤ i ≤ k − 2 and ∀j st 2i + 1 ≤ j ≤ L− 2i + 1: Di
j = (j, j + 2i − 1, αj+2i−2)

Lemma 4. For all times t: 2k−1 ≤ t ≤ L, if no more packets arrived after t, then OPT would send
all packets of value v ≥ αt−1.

7

Proof. It suffices to show that there exists an algorithm that would be able to send all packets of
value v ≥ αt−1. Note that no packet of appropriate value has a deadline less than t.

• All Aj packets (j ≥ t) must be sent. Send At through At+2k−2−1 in the first 2k−2 timesteps.
• Send all packets At+2k−2 and greater at their deadline.
• Send packets Bj for 1 ≤ j ≤ t− 2k−1 at time j + 2k−2.
• Send packets Bt−2k−1+1 through Bt during time intervals L+ 1 through L+ 2k−1.

This leaves time intervals t − 2k−2 + 1 through t + 2k−2 − 1 to send the D packets. We will
prove this can be done by induction on k.

If k = 2, then the only D packet of value v ≥ αt−1 is D0
t , which can be sent at time t. Assume

this is also true for k = k′. If k = k′ + 1, then by the inductive hypothesis, we have time intervals
t− 2k−2 + 1 through t− 2k−3 and t+ 2k−3 through t+ 2k−2 − 1 to send all Dk−2 packets of value
v ≥ αt−1. The appropriate value packets are Dk−2

j ∀j : t− 2k−2 + 1 ≤ j ≤ t. If j ≤ t− 2k−3, send

Dk−2
j at time j. Otherwise, send it at time j + 2k−2 − 1.

Lemma 5. Any algorithm ALG which obtains a finite competitive ratio on drop value can send no
more than k · 2k−1 B packets by time L.

Proof. Since α is arbitrarily large, if OPT sends all packets of value v ≥ αt−1 for any given t, then
ALG must do so also. Note that ∀t: 2k−1 ≤ t ≤ L, exactly k packets of value αt−1 are due at time
t: packets At and Di

t−2i+1
, 0 ≤ i ≤ k− 2. By Lemma 4, these packets must be sent by ALG. Thus,

if we have a k speedup over OPT , then ALG must send less than k · 2k−1 B packets by time L.

Theorem 3. If we are limited to a constant speedup factor of k over OPT , there is no algorithm
which can bound the competitive ratio on drop value.

Proof. ALG may only send k · 2k−1 B and C packets after time L. OPT may send all B and C
packets, there are L+2k−1 B and C packets, and L may be arbitrarily large. Therefore by lemma 5,
ALG cannot send all B and C packets. Thus if we are limited to constant k speedup, no algorithm
can obtain a finite competitive ratio on drop value.

In fact, we can extend this further to make a claim of any speedup k, which may or may not be
- and will turn out not to be - constant. Note that k · 2k ≥ L+ 2k−1, and thus (2k − 1)2k−1 ≥ L.
Solving for k, we find that if the speedup k is a function of L, it must be Ω(logL

log logL). Setting the
window size to be this value L, as is a valid input, gives us the matching bound if the speedup
must be a function of the window size. This allows us to state:

Theorem 4. If any algorithm that solves this problem is to have a bounded competitive ratio, and
the speedup must be a function of the window size W , then the speedup must be Ω(logW

log logW).

4.2 Algorithmic Results

By Theorem 3, our speedup must depend on parameters of the instance. We propose two such
speedups. Let W denote the maximum packet window maxp(dp − ap). Let V denote the ratio of
the maximum to minimum packet value. We will design algorithms with speedup O(logW) and
O(log V) which obtain optimum performance. Our algorithms are based on splitting up tasks into
buckets, then using the speedup to simultaneously solve all buckets optimally. The main result of
this section is the following theorem, the proof of which is deferred to appendix B.

Theorem 5. Packet Scheduling admits an O(logW)-speedup optimal algorithm and an O(log V)-
speedup optimal algorithm. If the packets have agreeable deadlines then there is an O(1)-speedup
optimal algorithm.

8

5 Multi-Speed Task Scheduling to Minimize Energy

We consider a task scheduling problem on a single processor with variable speed, where all tasks
must be scheduled by their deadlines. We are allowed to suspend tasks and resume them later,
implying that we can execute tasks in order of earliest deadline and the problem reduces to selecting
the speed at each time step. Formally, our problem is defined as follows.

Problem 4 (Task Scheduling). A set of n tasks (`i, ai, di) arrives in an online fashion. We are
given a single processor with m speeds sj (work units/time units) which consume energy pj (energy
units/time units). Find a task and speed schedule such that `i units of work are performed on each
task i between its arrival time ai and deadline di, and the total energy consumption is minimized.

We cannot be competitive for this problem without speedup: if there is a maximum speed and
the algorithm does not use it, later arriving tasks can force the algorithm to violate deadlines. If
the algorithm always runs at the maximum speed, the energy will not be competitive.

We order the speeds such that sj+1 > sj and assume that for any j we have
pj+1

sj+1
≥ pj

sj
and

sj+1 ≥ αsj . If this fails to hold, we can eliminate energy-inefficient speeds for no cost (the first
inequality) and we can eliminate too-similar speeds from consideration for a speedup factor of α
(the second inequality). We will also assume that there is a speed zero with s0 = 0 and p0 = 0
(this assumption can be easily removed, but makes our proofs simpler). Our algorithm will run a
number of virtual machines in parallel. The jth virtual machine Mj will always run at speed sj if
it has any work to do, or at speed zero otherwise. When a task arrives, we will schedule as much
work as possible on machine one, then place as much of the remaining work as possible on machine
two, and so forth. All the virtual machines will be simulated in parallel by the real processor.

Theorem 6. The algorithm completes all tasks by their deadlines with speedup α
α−1 .

Proof. Let wj be the total work performed by machine Mj , w
∗
j be the total work OPT performs

at speed sj , and W be the total work in the instance. Note that our speedup is sufficient that
we can run all machines 1 through j in parallel while paying only pj per time. Thus our energy
consumption is bounded by

∑
j wjpj/sj whereas OPT has energy consumption

∑
j w
∗
jpj/sj . Since

we push as much work onto the lowest virtual machine as possible, the amount of work we perform
at the first k speeds is at least the amount of work OPT performs at the first k speeds:

k∑
j=1

w∗j ≤
k∑
j=1

wj ⇒
m∑

j=k+1

wj = W −
k∑
j=1

wj ≤W −
k∑
j=1

w∗j =
m∑

j=k+1

w∗j .

Using our assumption that
pj
sj
≤ pj+1

sj+1
, it follows that we use at most as much energy as optimum.

To compare our result against the work of Yao et al. [33], we consider the case where all speeds
are available and c(s) = sp. Their main results are a 2ppp-competitive algorithm, along with an
8-competitive algorithm when p = 2. We improve these to 4p and 6.5 respectively. The proof of
the following theorem is in Appendix C.

Theorem 7. We can obtain competitive ratio (2p−1)2/(p ln 2) with continuous speeds and c(s) = sp.

5.1 Unrelated Tasks

We consider a modification of the task scheduling problem which permits tasks to react differently
when the processor speed is increased. This models, for example, inputs where some tasks have

9

memory as a primary bottleneck (thus they do not speed up much when the processor is accelerated)
whereas other tasks are primarily computational (run-time inversely proportional to speed). The
formal problem definition follows.

Problem 5 (Variable Workload Task Scheduling: VWTS). A set of n tasks (~ti, ai, di) arrives
online, where ~ti specifies task i’s computation time at each of the speeds. We have one processor
with m speeds sj that use energy pj. Find an order to execute tasks and a processor speed schedule
where each task i runs only between its arrival time ai and deadline di, and if i runs at sj for time

τi[j] then Σj
τi[j]
ti[j]

= 1. The goal is to minimize the total energy usage
∑

i

∑
j pjτi[j].

We observe that the offline version of VWTS can be solved optimally in polynomial time using
a carefully designed linear program (see Appendix D). We establish a reduction between VWTS
and the Packet Scheduling problem (PS) described in section 4. A packet scheduling algorithm is
said to Decide-on-Arrival if the determination as to whether packet j will be dropped is made as
soon as packet j arrives (and never changed at a later point in the algorithm). The algorithms
described in Theorem 5 have this property.

Theorem 8. A ρ-competitive algorithm with speedup s for VWTS implies a ρs-competitive algo-
rithm with speedup s for PS. A ρ-competitive algorithm with speedup s for PS which is Decide-on-
Arrival implies a ρ-competitive algorithm with speedup O(s) for VWTS.

Proof. Suppose we are given an algorithm for VWTS, and we want to solve PS. We pretend there
are two speeds s1 and s2 which use energy 0 and P , respectively. Whenever packet (ai, di, bi)
arrives, we suppose that a task has arrived with the same arrival time and deadline, which has
ti[1] = 1 and ti[2] = 1

P bi. We assume P is extremely large, implying that we have no difficulty
meeting deadlines at s2. Our goal is now to minimize the total benefit of the tasks which we run
at s2, which is identical to minimizing the total benefit of tasks which we fail to run at s1. This is
identical to PS.

Now suppose we are given an algorithm for PS and want to solve VWTS. For each task i, define
benefit bi[j] = ti[j+1]pj+1−ti[j]pj . This represents the energy saved by running task i at sj instead
of sj+1. Let X∗j be the set of tasks which OPT runs at sj ; then OPT’s energy usage is given by
ΣjΣi∈X∗j ti[j]pj = ΣjΣi∈X∗k ;k>jbi[j] + Σiti[1]p1. Thus if we can approximately minimize the sum of
benefits, we can also approximately minimize the energy. We now model our system as j parallel
machines, where machine j runs at sj or 0. We divide each task into an appropriate number of

packets with scaled benefits (i.e. bi[j]
ti[j]

) and let each machine see the set of tasks not finished by
slower machines. Let Xj be the set of tasks that are not finished on the first j machines by our
algorithm. It follows that Σi∈Xjbi[j] ≤ ρΣi∈X∗k ;k>jbi[j] since it is possible to finish all tasks that
OPT does at speeds sj or lower on one machine which runs always at sj . Summing gives us a total
energy usage of at most OPT. If we Decide-on-Arrival, our total speed is the sum of lower speeds
times the speedup s, giving an O(s) speedup when speeds scale geometrically.

Combining with our previous results, this implies an O(min{log V, logW})-speedup optimum
algorithm for VWTS, and an O(1)-speedup optimum algorithm for VWTS with agreeable deadlines.
No constant-speedup, bounded-competitive algorithm is possible for VWTS in the general case.

10

References

[1] Susanne Albers. Energy-efficient algorithms. Communications of the ACM, 53:86–96, 2010.

[2] Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow time minimization.
Lecture Notes in Computer Science, 3884, 2006.

[3] Nikhil Bansal, Niv Buchbinder, Anupam Gupta, and Joseph Naor. An O(log2 k)-competitive
algorithm for metric bipartite matching. In Proceedings of the 13th European Symposium on
Algorithms, 2007.

[4] Nikhil Bansal, Ho-Leung Chan, Tak-Wah Lam, and Lap-Kei Lee. Scheduling for bounded
speed processors. In Proceedings of the International Colloquium on Automata, Languages,
and Programming, 2008.

[5] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary power func-
tion. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, 2009.

[6] Nikhil Bansal, Kirk Pruhs, and Clifford Stein. Speed scaling for weighted flow time. In
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007.

[7] Yair Bartal, Francis Y. L. Chin, Marek Chrobak, Stanley P. Y. Fung, Wojciech Jawor, Ron
Lavi, Jǐŕı Sgall, and Tomáš Tichý. Online competitive algorithms for maximizing weighted
throughput of unit jobs. In Proceedings of the 21st Symposium on Theoretical Aspects of
Computer Science, 2004.

[8] Sanjoy Baruah, Jayant Haritsa, and Nitin Sharma. On-line scheduling to maximize task
completions. In IEEE Real-time Systems Symposium, 1994.

[9] Luca Becchetti, Stefano Leonardi, Alberto Marchett-Spaccamela, and Kirk Pruhs. Online
weighted flow time and deadline scheduling. In Workshop on Approximation Algorithms for
Combinatorial Optimization, 2001.

[10] Enrico Bini, Giorgio Buttazzo, and Giuseppe Lipari. Minimizing CPU energy in real-time
systems with discrete speed management. ACM Transactions on Embedded Computer Systems,
8(4):1–23, 2009.

[11] Marek Chrobak, Leah Epstein, John Noga, Jǐŕı Sgall, Rob van Stee, Tomáš Tichý, and Nodari
Vakhania. Preemptive scheduling in overloaded systems. Lecture Notes in Computer Science,
2380, 2002.

[12] Marek Chrobak, Wojciech Jawor, Jǐŕı Sgall, and Tomáš Tichý. Improved online algorithms for
buffer management in QoS switches. Lecture Notes in Computer Science, 3221, 2004.

[13] Béla Csaba and András Pluhár. A randomized algorithm for the on-line weighted bipartite
matching problem. Journal of Scheduling, 11(6):449–455, 2008.

[14] Matthias Englert and Matthias Westermann. Considering suppressed packets improves buffer
management in QoS switches. In Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2007.

[15] Bruce Hajek. On the competitiveness of on-line scheduling of unit-length packets with hard
deadlines in slotted time. In Proceedings of the Conference on Information Sciences and
Systems, pages 434–439, 2001.

11

[16] Bala Kalyanasundaram and Kirk Pruhs. On-line weighted matching. In Proceedings of the
2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 1991.

[17] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. Journal of the
ACM, 47(4), 2000.

[18] Bala Kalyanasundaram and Kirk Pruhs. Maximizing job completions online. Journal of
Algorithms, 49(1):63–85, 2003.

[19] Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boaz Patt-Shamir, Baruch Schieber, and
Maxim Sviridenko. Buffer overflow management in QoS switches. In Proceedings of the 33rd
annual ACM Symposium on Theory of Computing, 2001.

[20] Samir Khuller, Stephen Mitchell, and Vijay Vazirani. On-line algorithms for weighted bipartite
matching and stable marriages. Theoretical Computer Science, 127(2):255–267, 1994.

[21] Chiu-Yuen Koo, Tak-Wah Lam, Tsuen-Wan Ngan, and Kar-Keung To. On-line scheduling
with tight deadlines. In Proceedings of the 26th International Symposium on Mathematical
Foundations of Computer Science, 2001.

[22] Gilad Koren, Dennis Shasha, and Shih-Chen Huang. MOCA: a multiprocessor on-line compet-
itive algorithm for real-time system scheduling. Theoretical Computer Science, 128(1-2):75–97,
1994.

[23] Tak-Wah Lam, Lap-Kei Lee, Isaac K. To, and Prudence W. Wong. Speed scaling functions for
flow time scheduling based on active job count. In Proceedings of the 16th European Symposium
on Algorithms, 2008.

[24] Tak-Wah Lam and Kar-Keung To. Trade-offs between speed and processor in hard-deadline
scheduling. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms,
1999.

[25] Fei Li, Jay Sethuraman, and Clifford Stein. An optimal online algorithm for packet schedul-
ing with agreeable deadlines. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2005.

[26] Fei Li, Jay Sethuraman, and Clifford Stein. Better online buffer management. In Proceedings
of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007.

[27] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized
online matching. Journal of the ACM, 54(5), 2007.

[28] Adam Meyerson, Akash Nanavati, and Laura Poplawski. Randomized online algorithms for
minimum metric bipartite matching. In Proceedings of the 17th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 2006.

[29] Intergovernmental Panel on Climate Change. Climate change 2007. Fourth Assessment Report,
2007.

[30] Kirk Pruhs, Jǐŕı Sgall, and Eric Torng. Online scheduling. In Handbook of Scheduling. Chapman
& Hall, 2004.

12

[31] Sebi Ryffel, Thanos Stathopoulos, Dustin McIntire, William Kaiser, and Lothar Thiele. Accu-
rate energy attribution and accounting for multi-core systems. In Technical Report 67, Center
for Embedded Network Sensing, 2009.

[32] Thanos Stathopoulos, Dustin McIntire, and William Kaiser. The energy endoscope: Real-
time detailed energy accounting for wireless sensor nodes. In IPSN ’08: Proceedings of the 7th
International Conference on Information Processing in Sensor Networks, 2008.

[33] Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced CPU energy.
In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, 1995.

A Lower Bounds for Benefit-Maximizing Task Scheduling

Recall that tasks arrive online and each is specified by a tuple (`i, ai, di, vi) where `i is the workload,
ai is the arrival time, di is the deadline, and vi is the value. We will show that even in simple cases
where only one non-zero speed is allowed and tasks are required to be identical in various charac-
teristics, we still cannot obtain constant competitive algorithms. In fact, deterministic algorithms
have polynomial lower bounds.

Theorem 9. Even if di − ai = `i = W for all tasks i, there is no constant competitive algorithm.

Proof. Consider the set of tasks where ti = (W,αi,W + αi,W + αi), for 0 ≤ i < T and a speed
structure where we can run only at speed s = 1 for cost 1 per unit time (ĉ(1) = 1) or at speed
s = 0 for cost 0 per unit time (ĉ(0) = 0).

If we run a deterministic algorithm, only tasks t0 and t1 are relevant. We must start running
on t0 immediately, or task t1 will never arrive and we will get an infinite competitive ratio. Once t1
arrives, however, we can only get a total profit of 1, regardless of whether we switch tasks or not.
OPT will ignore t0 and start t1 when it arrives, for a profit of α. As α must be smaller than W
to enforce that only one task can be done, this gives us an Ω(W) polynomial deterministic lower
bound.

We can do better with a randomized algorithm. If we bound αi < W , then we can still only
do one task. If we do not choose the last-arriving task to do, we get at best a competitive ratio of
α. The adversary continues with the tasks until one arrives which our algorithm has probability at
most 1

T of executing. This gives a competitive ratio of at best Ω(logW
log logW).

Theorem 10. Even if di− ai = vi = W for all tasks i, there is no constant competitive algorithm.

Proof. Consider the set of tasks where ti = (W − αi, αi,W + αi,W), for 0 ≤ i < T and a speed
structure where we can run only at speed s = 1 for cost 1 per unit time (ĉ(1) = 1) or at speed
s = 0 for cost 0 per unit time (ĉ(0) = 0).

If we run a deterministic algorithm, only tasks t0 and t1 are relevant. We must start running
on t0 immediately, or task t1 will never arrive and we will get an infinite competitive ratio. Once t1
arrives, however, we can only get a total profit of 1, regardless of whether we switch tasks or not.
OPT will ignore t0 and start t1 when it arrives, for a profit of α. As α must be smaller than W/2
to enforce that only one task can be done, this gives us an Ω(W) polynomial deterministic lower
bound.

We can do better with a randomized algorithm. If we bound 2 < αi < W/2, then we can still
only do one task, and we must start each task before the next one arrives if we wish to complete
it. If we do not choose the last-arriving task to do, we get at best a competitive ratio of α. The

13

adversary continues scheduling tasks until one arrives which our algorithm has probability at most
1
T of executing. This gives a competitive ratio of at best Ω(logW

log logW).

Of course, if all tasks have identical workload, value, and window, then we can run the algorithm
of [8] to obtain a constant-competitive result. The lower bounds imply that holding one or two
of these properties fixed is insufficient, and hence our competitive ratio needs to be logarithmic in
natural parameters.

B Algorithms for Packet Scheduling with Speedup

Lemma 6. There is an online O(logW)-speedup optimum algorithm for packet scheduling.

Proof. We round arrival times and deadlines as follows. For each packet i, let fi = blog2(di−ai+1
2)c

and gi such that ai ≤ 2figi + 1 and 2fi(gi + 1) < di. We let a′i = 2figi + 1 and d′i = 2fi(gi + 1). We
argue that a factor 3-speedup will allow us to send the same total value as optimum while satisfying
these new arrival times and deadlines in lemma 7. We can now sort into logW buckets based on
the value of fi, and packets within each bucket have either identical or disjoint windows (the time
interval from arrival to deadline). We will run on all buckets simultaneously and independently,
making use of our overall speedup factor of O(logW). Within each bucket, we can easily solve
optimally based on the modified arrival times.

Theorem 11 (Hall’s Theorem). A bipartite graph G = (V1 ∪ V2, E) contains a ρ-to-one complete
mapping from V1 to V2 iff ∀X ⊆ V1, ρ|Γ(X)| ≥ |X| (where Γ(X) denotes the neighborhood of X).

Lemma 7. If it was possible to complete some total value of packets by their original deadlines,
then using a processor which always runs 3 times faster, it is possible to complete the same value
between their modified arrival times a′i and deadlines d′i (as described in lemma 6).

Proof. Suppose that it was possible to complete some subset of the packets by their original dead-
lines. We discretize time into increments, where at each increment optimum completes a single
packet. We will establish a three-to-one mapping φ from packets to time increments, with the
property that for every packet x sent by optimum we have φ(x) ∈ [a′i, d

′
i]. Provided that such a

mapping exists, we can complete all packets completed by optimum by making use of a factor 3
speedup. The key to the proof is thus showing that φ exists, for which we will apply Hall’s theorem.

We need to prove that for any set of packets X completed by optimum, the set of feasible time
steps Γ′(X) =

⋃
x∈X [a′x, d

′
x] between the modified arrivals and deadlines has size |Γ′(X)| ≥ 1

3 |X|.
Suppose for the sake of contradiction that X is the smallest set of packets completed by optimum
where this does not hold. If Γ′(X) contains several disjoint time intervals, then we can break
X down into packets belonging to these intervals, one of which must also violate the inequality
(implying that X is not the smallest set where it fails). Since this is a contradiction, we can assume
that Γ′(X) = [u+1, v] for some u < v. We now consider the original arrival times and deadlines for
the packets x ∈ X. Due to the definition of the modified times, we can conclude that ax ≥ 2u−v+1
and that dx ≤ 2v − u, from which we have a set of feasible times for X according to the original
arrivals and deadlines of Γ(X) ⊆ [2u − v + 1, 2v − u]. We know that optimum can schedule all
members of X between their true arrival and deadlines, so we have |X| ≤ |Γ(X)| ≤ 3v − 3u by
applying Hall’s theorem again. But then |Γ′(X)| = v − u ≥ 1

3 |Γ(X)| ≥ 1
3 |X|, which shows that in

fact our inequality is satisfied. We conclude that a processor which can send three packets per time
step can send all packets sent by optimum between their modified arrival times and deadlines.

14

We say deadlines are agreeable if for every i, j with [ai, di] ⊆ [aj , dj], either ai = aj or di = dj (i.e.
later arrival implies later deadline). We observe that if we modify the arrival times and deadlines as
described in lemma 7, the modified instance still has agreeable deadlines. Packets with fi = 0, 1, 2
can be scheduled optimally with a 9-speedup. For packets with fi ≥ 3, we further modify the
arrival times and deadlines setting a′′i = (2fi)gi+ (3/4)2fi−1 + 1 and d′′i = (2fi)(gi+ 1)− (3/4)2fi−1.
Using Hall’s theorem again, we see that a 12-speedup can still achieve optimum benefit. In total,
a 21-speedup is sufficient, provided we can prove the following lemma:

Lemma 8. There is an online algorithm which solves packet scheduling optimally on the modified
arrival and deadline times a′′i , d

′′
i provided the original arrivals and deadlines were agreeable.

Proof. Consider two packets i, j where [a′′i , d
′′
i] intersects [a′′j , d

′′
j]. Then since [a′′i , d

′′
i] ⊆ [a′i, d

′
i] (and

analogously for j), we can conclude that either a′i = a′j or d′i = d′j . We will consider the case when
the arrival times are the same (the other case is symmetric).

Since a′i = a′j then 2figi = 2fjgj . Thus, if fi = fj then [a′′i , d
′′
i] = [a′′j , d

′′
j]. Otherwise, assume

without loss of generality that fi < fj . Then:

a′′j = 2fjgj + 1 + (3/4)2fj−1 ≥ 2figi + 1 + (6/4)2fi−1 > 2fi(gi + 1)− (3/4)2fi−1 = d′′i

But this contradicts the fact that [a′′i , d
′′
i] and [a′′j , d

′′
j] intersect. Thus, all packets have either

disjoint or identical intervals. Such an instance can be solved optimally in a greedy fashion.

Lemma 9. There is an online O(log V)-speedup optimum algorithm for packet scheduling.

Proof. We partition the packets into log V buckets, based on each packet i’s value bi. We will use
the speedup to send as many as two packets from each bucket at each time step. For each bucket j,
we will greedily construct a set of packets Pj . Each time a packet p arrives, we determine whether
it is possible to send (offline) all the packets of Pj ∪ {p}, at most two per time step, by matching
them to times between arrival and deadline. If so, we add p to Pj . It should be clear that the
final Pj is maximal. In terms of actually transmitting packets, at each step we transmit the two
packets in the current set Pj which have the earliest deadline. It is not hard to show by a swapping
argument that this will succeed in transmitting all packets of Pj .

Let P ∗j be the set of packets from bucket j which are transmitted by optimum. We construct
a graph where the vertices are the packets of Pj ∪ P ∗j , with a directed edge (p, q) if packet p ∈ P ∗j
and if packets p and q were transmitted at the same time by our algorithm and by optimum. We
observe that each node has in-degree at most one, since at most one optimum packet from P ∗j was
transmitted at any time step, and that nodes representing packets from P ∗j −Pj have in-degree zero.
For each packet p ∈ P ∗j − Pj , we consider the subgraph consisting of nodes reachable from p. Note
that these subgraphs are disjoint and acyclic because all nodes have in-degree at most one. Packet
p must have two outgoing edges, since otherwise our algorithm sent at most one packet at the time
when optimum sent p, and we could therefore augment Pj by adding the single packet p to it. Thus
we conclude that the component of p includes at least two nodes q1, q2 with out-degree zero. If one
of these nodes were a member of P ∗j , then we consider the path from p = x0, x1, x2, ..., xk = qi. Each
of these packets is sent at some time by optimum, and all but the first are sent by our algorithm
as well. We could modify our algorithm’s output to send each xi at the time when the optimum
sends xi; this keeps the number of packets sent at each time the same, except for the time when
optimum sends xk = qi... but since this node has out-degree zero, it follows that our algorithm was
not sending anything at that time, and thus remains feasible. We conclude that we could add p
to Pj , contradicting local maximality. Thus nodes q1, q2 must not be members of P ∗j . So for each

15

packet in P ∗j − Pj , there are at least two corresponding packets in Pj − P ∗j . We then measure the
total benefit:

b(Pj) ≥ b(Pj ∩ P ∗j) + 2j |Pj − P ∗j | ≥ b(Pj ∩ P ∗j) + 2j+1|P ∗j − Pj | ≥ b(P ∗j)

Since the total benefit of Pj is at least the total benefit of P ∗j , we conclude that our algorithm’s
total benefit sent is at least optimum. Thus the total benefit lost by our algorithm is at most that
of optimum. So with speedup 2 log V we have obtained optimum Packet Scheduling.

C Proof of Theorem 7

Since the problem calls for continuous speeds, we can select any discrete speeds we like. We will
use sj = αr+j for a chosen r ∈ [0, 1]. The description of the algorithm will assume that r is selected
uniformly at random; we can de-randomize this by simultaneously running multiple copies of the
algorithm for each r which is a multiple of some small ε, then allowing each copy to handle an ε
fraction of the workload of each task.

Note that the optimum solution can run at any speed, whereas our solution is assumed to run
only at speeds sj ; this will cause us to lose some factor in the competitive ratio. Consider some
speed sOPT = qαj used by optimum; we will replace this by the lowest speed sj ≥ sOPT for an
expected extra energy required of:

E[energy] =

∫ logα q

0

1

qp
αrp+pdr +

∫ 1

logα q

1

qp
αrp =

αp − 1

p lnα

Thus in expectation, the restricted-speed version of the problem can be solved using at most
this factor increase in energy. Of course, we cannot compute the optimum solution even for the
restricted-speed version online. However, our algorithm guarantees that we would use at most the
energy for the restricted-speed optimum provided that we could simultaneously run the virtual
machines M1 through Mj (for any j) by using energy Σj

i=1c
pαpi. Of course, the real cost of

simultaneously running these virtual machines is (Σj
i=1cα

i)p. The ratio between these will be
largest when j is large, so considering the limit as j goes to infinity we are comparing an energy of
cp αp

αp−1 against cp(α
α−1)p. Dividing and canceling appropriately gives a ratio of αp−1

(α−1)p . Multiplying
the extra energy needed to discretize the speeds by the extra energy needed to simulate the virtual

machines gives competitive ratio (αp−1)2

p(α−1)p lnα . Setting α = 2 gives the result claimed in theorem 7.

D Offline task scheduling with variable workloads

In this section, we show how to optimally solve the offline version of the task scheduling with variable
workloads problem. In this case, tasks take the form of a triplet (~ti, ai, di) where ~ti specifies the
computation times at each of the speeds. Our job is to determine the tasks being performed and
the speeds at which to run at each point in time so as to minimize energy while completing all
tasks by their deadlines. We show how to do this using linear programming.

Consider a task (~ti, ai, di). Recall that tij denotes the time it takes to complete task i at speed
j and that ti1 ≥ · · · ≥ tim. However, our ability to split a task across multiple speeds gives us
a continuum of computation times for task i. In particular, for every pair of speeds sj , sj′ and
α ∈ [0, 1], we can complete task i by running it for αtij seconds at speed sj and (1−α)tij′ seconds
at speed sj′ . The energy required to do this is simply αpjtij + (1− α)pj′tij′ .

16

Thus, we can achieve any computation time within [ti1, tim]. Suppose for some speed sj , there

were two speeds sa and sb such that sa < sj < sb and such that when α =
tij−tib
tia−tib we have

pjtij ≥ αpatia + (1− α)pbtib.

Then it is in fact more energy efficient to perform this task using a linear combination of speeds
sa and sb than it is to perform the task at speed sj . Thus, in this case sj is non-optimal and we
should never use this speed for task i. We can easily identify the optimal speeds si1, . . . , s

i
mi using

a convex hull calculation. Now, given a desired computation time y for a task i, the minimum
amount of energy we must use in order to finish i in exactly y time is given by the convex function:

ei(y) =



p1ti1−p2ti2
ti1−ti2 (y − ti2) + p2ti2, if ti1 ≤ y < ti2,

p2ti2−p3ti3
ti2−ti3 (y − ti3) + p3ti3, if ti2 ≤ y < ti3,

...
pmi−1ti,mi−1−pmi ti,mi

ti,mi−1−ti,mi
(y − ti,mi) + pmiti,mi , if ti,mi−1 ≤ y < ti,mi .

We now use linear programming in the follwing way: Let c0 < c1 < · · · < cT be the times at
which some task arrives or is due. We use variables xik to denote the amount of time between ck
and ck+1 spent on task i, yi to indicate the total computation time of task i, and ei for the total
energy used to compute task i in ti time. Our LP is as follows:

minimize:
∑
i

ei + p1

∑
k

(ck+1 − ck −
∑
i

xik)

subject to: ei ≥
pjtij − pj+1ti,j+1

tij − ti,j+1
(yi − ti,j+1) + pj+1ti,j+1 ∀i,∀j ∈ {1, . . . ,mi}

xik = 0 ∀i,∀k with ck < ai or ck ≥ di
yi =

∑
k

xik ∀i

ti1 ≤ yi ≤ ti,mi ∀i∑
i

xik ≤ ck+1 − ck ∀k

Notice here that our objective function minimizes the total energy used among all tasks (and
also assumes that during idle times we run at the lowest energy speed s1). Our first constraint
uses the convex function described above to calculate the energy of task i. Our second constraint
ensures that we never perform a task before its arrival or after its deadline. Our third constraint
calculates the total computation time of our task. The fourth constraint ensures that our total
computation time is feasible. Our final constraint ensures that we do not schedule too much work
between each ck.

After solving this LP, we can use the xik and yi variables to reconstruct our schedule. We use
yi to determine the speeds at which to run our task and the fraction of the task we should run
at each speed. We use the xik variables to determine when we should be performing which tasks
(within ck and ck+1 the order in which tasks are performed does not affect solution quality). It is
straightforward to combine these two to completely recover our energy-efficient schedule.

17

