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1. Introduction 
The agile development approach welcomes changing requirements even late in the 

development process [1]. Refactoring is a major technique used to cope with changes. 

It is a process and a set of techniques to reorganize code while preserving the external 

behavior of a working system [2]. Several commercial tools that can perform this 

process automatically are available. Among these tools are the Eclipse IDE for Java 

[3] and ReSharper Visual Studio add-in for C# [4]. 

Aspect Oriented Programming (AOP) is another powerful technology that allows 

easily introducing changes to a software system. Sometimes, though aspects have 

been used in the programming process, they cannot be employed in production 

software, for several reasons. For example, the policy of the organization may 

prohibit using aspects in production, because AOP is not considered mature yet, or 

some requirements are fulfilled better with pure object-oriented rather than aspect-

oriented code. A typical case is adding resource pooling to an existing program. 

This work describes ACME, a tool that implements a refactoring process for cases 

when the AspectJ code should not remain in the system. It allows a programmer to 

automatically convert AspectJ code to pure Java source code. The goal of this tool is 

to create modular and readable Java code, as opposed to the AspectJ compiler, which 

produces bytecode. 

ACME offers a solution for an issue that has not been dealt with before. Most work 

on aspect-oriented refactoring focuses on introduction focuses on introduction of 

aspects into existing systems. S. Rura in [13] discusses refactoring manipulations that 

will be valid in an aspect-oriented environment. His work includes discussion of 

regular object-oriented refactorings in such an environment, as well as new 

manipulations, specific to aspect-oriented languages. Rura’s work deals with atomic 

operations, such as moving an introduced member from an aspect to the class into 

which the member is introduced. In this work, I show common situation in which a 

programmer may want to remove aspects from a system and present a system that 

automatically performs this removal. 

The thesis is organized as follows. Section 2 describes the AspectJ language in detail. 

Motivation for developing ACME is explained in section 3. Examples of supported 

transformations are shown in section 4. Section 5 explains design decisions made. In 

section 6 I discuss which features of the AspectJ languages can be supported by 



ACME. A real-life situation in which ACME could have been helpful is described in 

section 7. Section 8 shows possible extensions of ACME and presents the conclusions 

from this work. 



2. Aspect-Oriented Programming 
The main purpose of Aspect-Oriented Programming (AOP) is to enable proper 

encapsulation of crosscutting concerns. One of the advantages of object-oriented 

languages is the modularity they provide. Strong cohesion is an important design 

issue, which requires that each module will be handling only one concern. It is also 

important that each concern will only be handled in one module only. Nevertheless, 

there are cases where a concern is implemented in many modules; i.e. it crosscuts the 

modules and are not implemented in a single class, but rather scattered in several 

classes. This scattering may be unavoidable either due to the secondary role of these 

concerns, or because their nature requires dealing with them in many different 

locations. Another problem is the case where one module is dealing with more than 

one concern. This phenomena is called tangling code. 

Aspects are believed to be the solution to both of these problems. The crosscutting or 

tangling code is represented in aspects. Each aspect deals with one concern. Aspects 

look like classes with additional information of where the crosscutting code, which 

has been removed from the classes in order to provide good modularity, has to be 

weaved into the source code. 

This weaving is a new mechanism that is taken care of by special compilers for AOP 

languages. Weaving allows the programmer to write a portion of code and declare 

when this code should be executed in the course of execution of other modules. 

The rest of this section describes the AspectJ language in detail. It is based on the 

book by R. Laddad [5]. 

2.1. AspectJ 

In AspectJ, the implementation of the weaving rules by the compiler is called 

crosscutting. This name is due to the fact that the weaving rules cut across multiple 

modules in a systematic way in order to modularize the crosscutting concerns. 

AspectJ defines two types of crosscutting: static crosscutting and dynamic 

crosscutting. 

2.1.1. Dynamic crosscutting 

Dynamic crosscutting is the weaving of new behavior into the execution of a program. 

Most of the crosscutting that happens in AspectJ is dynamic. Dynamic crosscutting 



augments or even replaces the core program execution flow in a way that cuts across 

modules, thus modifying the system behavior. For example, if you want to specify 

that a certain action be executed before the execution of certain methods or exception 

handlers in a set of classes, you can just specify the weaving points and the action to 

take upon reaching those points in a separate module. This specification is made using 

pointcuts and advices, as will be explained later. 

2.1.2. Static crosscutting 

Static crosscutting is the weaving of modifications into the static structure—the 

classes, interfaces, and aspects—of the system. By itself, it does not modify the 

execution behavior of the system. The most common function of static crosscutting is 

to support the implementation of dynamic crosscutting. For instance, you may want to 

add new data and methods to classes and interfaces in order to define class-specific 

states and behaviors that can be used in dynamic crosscutting actions. Another use of 

static crosscutting is to declare compile-time warnings and errors across multiple 

modules. 

2.1.3. Crosscutting elements 

AspectJ uses extensions to the Java programming language to specify the weaving 

rules for the dynamic and static crosscutting. The AspectJ extensions use the 

following constructs to specify the weaving rules programmatically; they are the 

building blocks that form the modules that express the crosscutting concern’s 

implementation. 

2.1.3.1.Join point 

A join point is an identifiable point in the execution of a program. In AspectJ, 

everything revolves around join points, since they are the places where the 

crosscutting actions are woven in. The most commonly used join points are method 

calls and assignments to a member of an object. A join point may also be a 

constructor invocation, exception handler execution, class or object initialization and 

advice execution.  

There are two types of join points for method and constructor invocations: execution 

and call join points. The execution join point is in the method body itself, whereas the 

call join points are in other parts of the program, which are usually the methods that 



are calling this method. For most purposes, the difference between the execution and 

call join points does not matter; however, there are subtle differences, some of which 

will be discussed in detail in Section 5. 

All join points also have a context associated with them. For example, a call to a join 

point in a method has the caller object, the target object, and the arguments of the 

method available as the context. Similarly, the exception handler join point would 

have the current object and the thrown exception as the context. This context can be 

used in the crosscutting code, as will be explained below. 

2.1.3.2.Pointcut 

A pointcut is a program construct that selects join points and collects context at those 

points. There are two ways that pointcuts match join points in AspectJ. The first way 

captures join points based on the category to which they belong, such as method call 

join points or field get join points. The pointcuts that map directly to these categories 

or kinds of exposed join points are referred as kinded pointcuts. 

The second way that pointcut designators match join points is when they are used to 

capture join points based on matching the circumstances under which they occur, such 

as control flow, lexical scope, and conditional checks. These pointcuts capture join 

points in any category as long as they match the prescribed condition. Some of the 

pointcuts of this type also allow the collection of context at the captured join points. 

Let’s take a more in-depth look at each of these types of pointcuts. 

Kinded pointcuts follow a specific syntax to capture each kind of exposed join point 

in AspectJ. For example, to capture all write accesses to a private _balance field of 

type float in the Account class, you would use a set() pointcut as follows: 

set(private float Account._balance) 

At times, a pointcut will specify a join point using one particular signature, but often 

it identifies join points specified by multiple signatures that are grouped together 

using matching patterns. For example, the pointcut 

public void Account.set*(*) 

matches all public methods in the Account class with a name starting with set and 

taking a single argument of any type; 

* Account.*(..) 

matches all methods in the Account class including even methods with private access; 

public void Account+.set*(int) 



matches all public methods in the Account class and its subclasses with a name 

starting with set and taking a single integer argument and 

* javax..*.add*Listener(EventListener+) 

matches any method whose name starts with add and ends in Listener in the javax 

package or any of its direct and indirect subpackages that take one argument of type 

EventListener or its subtype, such as 

TableModel.addTableModelListener(TableModelListener) 

Such patterns may be used in other types of pointcuts as well. They are commonly 

referred to as type patterns. 

Control-flow based pointcuts 

These pointcuts capture join points based on the control flow of join points captured 

by another pointcut. The control flow of a join point defines the flow of the program 

instructions that occur as a result of the invocation of the join point. A control-flow 

pointcut always specifies another pointcut as its argument. There are two control-flow 

pointcuts. The first pointcut is expressed as cflow(Pointcut), and it captures all the 

join points in the control flow of the specified pointcut, including the join points 

matching the pointcut itself. The second pointcut is expressed as 

cflowbelow(Pointcut), and it excludes the join points in the specified pointcut. 

Lexical-structure based pointcuts 

A lexical scope is a segment of source code. It refers to the scope of the written code, 

as opposed to the scope of the code when it is being executed, which is the dynamic 

scope. Lexical-structure based pointcuts capture join points occurring inside a lexical 

scope of specified classes, aspects, and methods. There are two pointcuts in this 

category: within() and withincode(). The within() pointcuts take the form of 

within(TypePattern) and are used to capture all the join points within the body of 

the specified classes and aspects, as well as any nested classes. The withincode() 

pointcuts take the form of either withincode(MethodSignature) or 

withincode(ConstructorSignature) and are used to capture all the join points 

inside a lexical structure of a constructor or a method, including any local classes in 

them. 

One common usage of the within() pointcut is to exclude the join points in the 

aspect itself. For example, the following pointcut excludes the join points 



corresponding to the calls to all print methods in the java.io.PrintStream class that 

occur inside the TraceAspect itself: 

call(* java.io.PrintStream.print*(..)) && !within(TraceAspect) 

Execution object pointcuts 

These pointcuts match the join points based on the types of the objects at execution 

time. The pointcuts capture join points that match either the type of the current object, 

or the target object, which is the object on which the method is being called. 

Accordingly, there are two execution object pointcut designators: this() and 

target(). 

In addition to matching the join points the same syntax is also used to collect the 

context at the specified join point. This allows the advice body to refer to the object 

on which the join point was matched. In this case, usually, the execution object 

pointcut will match all join points. 

The this() pointcut takes the form this(Type or ObjectIdentifier); it matches 

all join points that have a this object associated with them that is of the specified type 

or the specified ObjectIdentifier’s type. In other words, if you specify Type, it will 

match the join points where the expression this instanceof <Type> is true. The 

form of this pointcut that specifies ObjectIdentifier is used to collect the this 

object. If you need to match without collecting context, you will use the form that 

uses Type, but if you need to collect the context, you will use the form that uses 

ObjectIdentifier. 

The target() pointcut is similar to the this() pointcut, but uses the target of the 

join point instead of this. The target() pointcut is normally used with a method call 

join point, and the target object is the one on which the method is invoked. A 

target() pointcut takes the form target(Type or ObjectIdentifier). 

Argument pointcuts 

These pointcuts capture join points based on the argument type of a join point. 

For method and constructor join points, the arguments are simply the method and 

constructor arguments. For exception handler join points, the handled exception 

object is considered an argument, whereas for field write access join points, the new 

value to be set is considered the argument for the join point. Argument-based 

pointcuts take the form of args(TypePattern or ObjectIdentifier, ..). 



Similar to execution object pointcuts, these pointcuts can be used to capture the 

context. 

Conditional check pointcuts 

This pointcut captures join points based on some conditional check at the join point. It 

takes the form of if(BooleanExpression). 

2.1.3.3.Advice 

Advice is the action and decision part of the crosscutting puzzle. It is a method-like 

construct that provides a way to express crosscutting action at the join points that are 

captured by a pointcut. The three kinds of advice are as follows: 

• Before advice executes prior to the join point. 

• After advice executes following the join point. 

• Around advice replaces the join point’s execution. This advice is special in that it 

has the ability to bypass execution, continue the original execution, or cause 

execution with an altered context. 

An advice can be broken into three syntactical parts: the advice declaration, the 

pointcut specification, and the advice body. This can be seen on the next example. 

before(Connection connection): connectionOperation(connection) { 

System.out.println("Performing operation on " + connection); 

} 

The part before the colon is the advice declaration, which specifies when the advice 

executes relative to the captured join point—before, after, or around it. The advice 

declaration also specifies the context information available to the advice body, such as 

the execution object and arguments, which the advice body can use to perform its 

logic in the same way a method would use its parameters. It also specifies any 

checked exceptions thrown by the advice. 

The part after the colon is the pointcut; the advice executes whenever a join point 

matching the pointcut is encountered. 

The advice body is similar to a method body. It contains the actions to execute and is 

within the {}. 

The before advice 

The before advice executes before the execution of the captured join point. In the 

following code snippet, the advice performs authentication prior to the execution of 

any method in the Account class: 



before() : call(* Account.*(..)) { 

... authenticate the user 

} 

If you throw an exception in the before advice, the captured operation won’t execute. 

For example, if the authentication logic in the previous advice throws an exception, 

the method in Account that is being advised won’t execute. 

The after advice 

The after advice executes after the execution of a join point. Since it is often 

important to distinguish between normal returns from a join point and those that 

throw an exception, AspectJ offers three variations of after advice: after returning 

normally, after returning by throwing an exception, and returning either way. 

The around advice 

The around advice surrounds the join point. It has the ability to bypass the execution 

of the captured join point completely, or to execute the join point with the same or 

different arguments. It may also execute the captured join points multiple times, each 

with different arguments. 

If within the around advice you want to execute the operation that is at the join point, 

you must use a special keyword—proceed()—in the body of the advice. Unless you 

call proceed(), the captured join point will be bypassed. When using proceed(), 

you can pass the context collected by the advice, if any, as the arguments to the 

captured operation or you can pass completely different arguments. The important 

thing to remember is that you must pass the same number and types of arguments as 

collected by the advice. 

Each around advice must declare a return value (which could be void). It is typical to 

declare the return type to match the return type of the join points that are being 

advised. 

There are cases when an around advice applies to join points with different return 

types. To resolve such situations, the around advice may declare its return value as 

the common base class of these types, or even as Object. In those cases, if around 

returns a primitive type after it calls proceed(), the primitive type is wrapped in its 

corresponding wrapper type and performs the opposite, unwrapping after returning 

from the advice. The scheme of returning the Object type works even when a 

captured join point returns a void type. 



2.1.3.4.Introduction 

The introduction is a static crosscutting instruction that introduces changes to the 

classes, interfaces, and aspects of the system. It makes static changes to the modules 

that do not directly affect their behavior. For example, you can add a method or field 

to a class. You can also modify the inheritance hierarchy of existing classes to declare 

a superclass and interfaces of an existing class or interface as long as it does not 

violate Java inheritance rules. 

Most notable of these rules is, of course, the absence of multiple inheritance in Java. 

AspectJ provides partial workaround for this limitation. In AspectJ an aspect may 

introduce data members and methods with implementation into interfaces. Therefore, 

it is possible to create a class that inherits implementation from several ancestors – 

one of these ancestors may be a class, while others are interfaces with introduced 

implementation. This option is commonly used to provide a default behavior to the 

implementing classes. 

The following introduction declares the Account class to implement the 

BankingEntity interface: 

declare parents: Account implements BankingEntity; 

Introduced members can be marked with an access specifier. The access rules are 

interpreted with respect to the aspect doing the introduction. For example, the 

members marked private are accessible only from the introducing aspect. 

2.1.3.5.Compile-time declaration 

The compile-time declaration is a static crosscutting instruction that allows you to add 

compile-time warnings and errors upon detecting certain usage patterns. 

For example, you can declare that it is an error to call any Abstract Window Toolkit 

(AWT) code from an EJB. 

The following declaration causes the compiler to issue a warning if any part of the 

system calls the save() method in the Persistence class. Note the use of the call() 

pointcut to capture a method call: 

declare warning : call(void Persistence.save(Object)) 

: "Consider using Persistence.saveOptimized()"; 



2.1.3.6.Aspect 

The aspect is a new central unit of AspectJ, in addition to class, which remains as 

significant as it is in Java. Aspects contain the code that expresses the weaving rules 

for both dynamic and static crosscutting. Pointcuts, advice, introductions, and 

declarations are combined in an aspect. In addition to the AspectJ elements, aspects 

can contain data, methods, and nested class members, just like a normal Java class. 

Aspects can be declared to be abstract. With abstract aspects, you can create reusable 

units of crosscutting by deferring some of the implementation details to the concrete 

subaspects. An abstract aspect can mark any pointcut or method as abstract, which 

allows a base aspect to implement the crosscutting logic without needing the exact 

details that only a system-specific aspect can provide. An abstract aspect by itself 

does not cause any weaving to occur; you must provide concrete subaspects to do so. 

An aspect that contains any abstract pointcut or method must declare itself as an 

abstract aspect. In this respect, aspects resemble classes. Any subaspect of an abstract 

aspect that does not define every abstract pointcut and method in the base aspect, or 

that adds additional abstract pointcuts or methods, must also declare itself abstract. 



3. Motivation 
Great deal of work has been done in the last years on combining AOP and refactoring. 

This work focuses mainly on finding crosscutting concerns in “conventional” non-

AOP software, and extracting them into aspects [6]. 

My thesis focuses on manipulating code the other way around – producing 

“conventional” source code from aspect-oriented code. Since AOP is an efficient tool 

for crosscutting modification, we would like to use this tool as often as needed. In this 

case, however, the understandability of the source code may suffer. For example, an 

aspect may replace execution of a function with an execution of completely different 

portion of code, and nothing will indicate that this replacement has happened in the 

code that calls the original function. Such situation is difficult to track and hence 

should be avoided.  

Furthermore, in some existing systems written in object-oriented languages it is 

impractical to use aspects in the late stages of its development, after most of the 

system has been designed and implemented using conventional object-oriented 

methods. Most companies will not even consider this option, since AOP is still 

considered an experimental approach and is not widely used in industry. In this case it 

may seem safer to use AOP only during the modification, and not to rely on its 

availability throughout the entire system’s lifecycle. 

I have developed a new tool called ACME (acronym of Automated Crosscutting 

Modification in Eclipse), which solves this conflict by automatic conversion of 

AspectJ code to pure Java.  

A typical workflow when using ACME would be as follows: when there is a need for 

crosscutting modification, the programmer introduces the required change in an 

aspect. He or she evaluates different solutions and tests the program. After the 

programmer is satisfied with the results, ACME is applied and produces equivalent 

code in pure Java. Thus, the programmer is able to enjoy the benefits of AOP during 

development, yet does not have to keep aspect-oriented code in the production version 

of the system. 



3.1. What is a Crosscutting Concern and What Is Not 

A typical crosscutting concern can be identified even in an informal description of 

system functionality. Someone describing such a concern will usually say that 

execution of any action in a group of system actions should also involve some other 

actions, which are not directly related to it. For example, phrases like “all function 

calls must be logged” or “any manipulation of bank accounts must be preceded by the 

authentication of the user” represent crosscutting concerns. 

Let’s consider some detailed examples. 

The first example is taken from [5]. It deals with user authentication in a banking 

system. This example introduces an abstract aspect, which defines the general 

behavior of an authorization module. The aspect declares an advice which is executed 

whenever a function that requires authorization is called, just before the execution of 

this function. This advice, which is actually a piece of code in Java, checks whether a 

user is already logged into the system. If not, the function attempts to log the user in. 

This abstract aspect can be placed in a reusable library and used in any application. 

Anyone using this library only needs to define a concrete aspect, which will provide 

the exact list of functions, for which the advice of the abstract aspect must be applied. 

Another example is taken from the developers of the AspectJ language. It deals with a 

telecom demo application, and is fully described in [7]. The goal of this example is to 

demonstrate complete separation of business concerns using aspects. The key concern 

of a telecom system is to support telephone calls between customers. This concern is 

implemented in the classes Customer, Call, Connection and their derivatives. 

Another concern is billing the client. Its implementation is located in an aspect named 

Billing. Placing it in an aspect completely separates it from code implementing other 

concerns. This aspect contains calculations related to billing and also defines when 

these calculations should be executed, using pointcuts. 

Of course, it is possible to implement the billing concern in a class instead of an 

aspect. In this case, however, it is necessary to insert calls to this class’s method in the 

implementation of the key concern classes. This means that the separation of concerns 

that a pure object-oriented solution can provide is not as good as one offered by an 

aspect-oriented solution. 

Following is an example of an aspect that does not represent a crosscutting concern, 

but rather a crosscutting modification (also taken from [5]). It shows an 



implementation of database-connection pooling. Here the motivation for using aspects 

is different from the earlier examples. The author first shows a conventional 

implementation of connection pooling and claims that it requires changing “each 

creation and destruction method of the connection object to use the pooling interface”. 

In fact, this means that every point where connection object is created or released 

must be changed. To avoid this, the author offers to use an aspect that will 

encapsulate the change. Introduction of this aspect limits the number of places that 

must be changed. 

This solution, however, has its own problems. In general, it is a significant 

disadvantage of an aspect-based architecture that the program behavior is very hard to 

follow for a reader. This is caused by the fact that no explicit calls for certain portions 

of code (advices) appear at the points these portions are executed. The 

implementation described above brings this disadvantage to extreme. Not just code is 

executed without a traceable invocation; some statements that do appear in the 

program text are not executed at all. 

In the next section we will elaborate this problem and introduce a solution for it and 

several other problematic cases. 

 

3.2. Refactoring Aspects Away 

This work presents several patterns in which conventional Java code can replace 

aspects. There are several guidelines that these patterns should follow. 

The most obvious guideline is that the behavior of the Java code produced by 

elimination of aspects must be exactly the same as the behavior of the original code. 

Furthermore, the Java code should not be significantly longer than the aspect code. 

No programmer would like a tool that will force him to deal with an increased number 

of source lines. The produced code should also allow easy modification, if needed. If 

new modules are added to the system later, it should be possible to use the generated 

Java code from these modules easily. In the optimal case this use should involve 

simple calls to functions in generated code, and not require modification of the 

generated code itself. 

Finally, the generated code must look similar to code written by a human programmer 

as well as understandable to programmers. In practice, this means that such a code 



will be based on commonly used patterns and idioms. This is a critical requirement, 

since our main goal is to improve the understandability of the code by replacing 

aspects by Java. 

Please note, that although ACME has some similarity to an AspectJ compiler, its goal 

is completely different. Java and AspectJ compilers create bytecode that can be 

immediately executed by a JVM. ACME is used to create source code that will be 

maintained by a programmer.  

Even if an AspectJ compiler uses Java source code as an intermediate output, this 

output is not expected to be easy to understand or maintain for a human programmer. 

For the same reason, decompiling tools such as JODE [11] or JAD [12] cannot be 

used instead of ACME. The Java code they produce will be even less readable than 

that generated by an AspectJ-to-Java compiler. 



4. ACME Functionality 

4.1. Creating a Java Class 

Consider a software system that allocates many resource objects, and the creation of 

these objects takes considerable time. It may be helpful to pool these objects and 

reuse them instead of creating a new object every time an object is needed. This 

would be easily achieved, if a dedicated “factory” module would manage object 

lifecycle. Then it would have been sufficient to rewrite this module. In this case all 

creation operators for the resource class would have been concentrated in the factory 

class, and could have been easily replaced by calls to the resource pool’s methods. 

However, the creation operators are more often scattered in the code than kept in a 

single factory class. Thus, it is necessary to introduce this factory module and replace 

all the calls to the creation operators by a call to this module’s methods. Obviously, 

this is a time-consuming and error prone task. 

An aspect oriented environment provides a simpler way to solve this problem. It 

enables a programmer to define a pointcut containing all the points were a resource 

object is created. Furthermore, this pointcut is very simple to write, because it is 

possible to match all calls to the constructor of the resource class with a single 

statement in the pointcut definition. With such a pointcut available, the programmer 

can define an advice on this pointcut, which will get the requested object from the 

pool. Thus, the goal can be achieved with very little effort. 

Following is an aspect that introduces pooling mechanism into existing code. 



public aspect ResourcePoolingAspect { 

 private ResourcePool _rpool = new ResourcePool(); 

  

 pointcut resourceCreation(ResourceDescription rd) 

  : call(Resource.new(ResourceDescription)) && args(rd);  

  

 pointcut resourceDestruction(Resource r) 

  : call(void Resource.free()) && target(r); 

  

 Resource around(ResourceDescription rd): resourceCreation(rd) { 

  Resource resource = _rpool.getResource(rd); 

  if (resource == null) { 

   resource = proceed(new ResourceDescription()); 

  } 

  return resource; 

 } 

  

 void around(Resource r) : resourceDestruction(r) { 

  if (!_rpool.putResource(r)) { 

   proceed(r); 

  } 

 } 

} 

This implementation assumes that a resource is released, using the free method, after 

it is no longer needed. This is a typical situation. Since we are dealing with objects 

that use expensive resources, these objects are likely to have an explicit method for 

releasing the resources rather than rely on automatic garbage collection.  

This example uses the ResourcePool class, which implements the object pool itself. 

The getResource method attempts to obtain an existing object from the pool.  If 

there is an appropriate object in the pool, this object is removed from the pool and 

returned; otherwise, the method returns null. The putResource method places an 

object into the pool, and an object is disposed only if it cannot be placed in the pool 

(putResource fails). Thus, the aspect calls these pool functions instead of the original 

calls to new or free, and only if these fail, uses the original calls. 

A possible implementation of the resource pool is shown below. 



public class ResourcePool { 

 List _pooledResources = new ArrayList(); 

 Map _resourceDescriptionMap = new HashMap(); 

 

 synchronized 

 public Resource getResource(ResourceDescription rd) { 

  List resourcesList = getResources(rd); 

  if (resourcesList == null) { 

   return null; 

  } 

  int size = _pooledResources.size(); 

  for (int i = 0; i < size; ++i){ 

   Resource resource = (Resource)_pooledResources.get(i); 

   if (resourcesList.contains(resource)) { 

    _pooledResources.remove(resource); 

    return resource; 

   } 

  } 

  return null; 

 } 

 

 synchronized 

 public boolean putResource(Resource resource) { 

  _pooledResources.add(resource); 

  return true; 

 } 

 

 synchronized 

 public void registerResource( 

  Resource resource,  

  ResourceDescription rd) 

 { 

  List resourcesList = getResources(desc); 

  if (resourcesList == null) { 

   resourcesList = new ArrayList(); 

   _resourceDescriptionMap.put(rd, resourcesList); 

  } 

  resourcesList.add(resource); 

 } 

 

 private List getResources(ResourceDescription rd) { 



  return (List)_resourceDescriptionMap.get(rd); 

 } 

} 

While aspects provide an easy solution to the problem, the resulting code is complex 

and misleading, because creation operators - which remain from the original source 

code - are never executed in the new version of the system. The object-pooling aspect 

is not really a crosscutting concern. As we have seen, it could easily be implemented 

as a class in an object-oriented language. It was introduced only to solve a design 

problem in the existing software. 

ACME provides both the ease of modification offered by the aspect-oriented 

environment and the understandability of the conventional solution. It can 

automatically convert this aspect into the following Java class. 



public class ResourcePoolingManager { 

 public static ResourcePoolingManager getInstance() { 

  return instance; 

 } 

 

 private static ResourcePoolingManager instance =  

  new ResourcePoolingManager(); 

 

 private ResourcePoolingManager() { 

 } 

 

 private ResourcePool _rpool = new ResourcePool(); 

  

 public Resource resourceCreation(ResourceDescription rd) { 

  Resource resource = _rpool.getResource(rd); 

  if (resource == null) { 

   resource = new Resource(new ResourceDescription()); 

  } 

  return resource; 

 } 

  

 public void resourceDestruction(Resource r) { 

  if (!_rpool.putResource(r)) { 

   r.free(); 

  } 

 } 

} 

The generated class is automatically made a singleton [8] by adding the getInstance 

method and marking the class’s constructor as private. This allows calling its methods 

from anywhere in the program and retains the global scope aspects have by their 

nature. Each advice in the aspect is replaced by a function. By default, ACME uses 

the names of the pointcuts, which are advised by the original aspect, as the names of 

the generated functions. The user, however, is given the opportunity to give these 

functions any other name. All the fields and methods defined in the aspect are 

retained in the new class. 

Finally, ACME finds all the function calls in the system, which are influenced by the 

aspect and replaces them with calls to the singleton’s methods. For example, the line  

Resource r = new Resource(null); 



is replaced with 

Resource r =  

 ResourcePoolingManager.getInstance().resourceCreation(null); 

This process generates a well-structured and readable Java code. One may notice, 

however, that the implementation of the resource pool now consists of two classes: 

the generated ResourcePoolingManager and the original ResourcePool. The 

separation of concerns between the two classes is not very clear, so in some cases it 

may be helpful to merge them into one class. Currently ACME does not perform this 

merging, and the programmer has to make it manually. The Inline Method refactoring 

[2] can be used to simplify this task. In the future invoking this refactoring 

automatically on programmer’s request will be added. 

4.2. Inlining Aspect Code 

Consider a class representing a point on a plane. This class contains only two fields 

for point’s coordinates, as shown: 
public class Point { 

 public int x; 

 public int y; 

} 

Suppose it is needed to introduce polar coordinates to this class. In this case, this class 

can no longer allow direct assignment to the coordinate fields, since any change of 

Cartesian coordinates will also require calculation of new polar coordinates. 

Thus, every access to the fields must be replaced by a call to an accessor method. 

Again, aspect–oriented languages provide an easy way to achieve the functionality. It 

is very simple to write an advice that will execute the required calculation where the 

original code references a data field. This is what such an aspect looks like. 



public aspect PointAspect { 

 pointcut getX(Point p) 

  : get(int Point.x) && target(p); 

 

 pointcut getY(Point p) 

  : get(int Point.y) && target(p); 

  

 pointcut setX(Point p) 

  : set(int Point.x) && target(p); 

 

 pointcut setY(Point p) 

  : set(int Point.y) && target(p); 

 

 before(Point p) : getX(p) { 

  p.prepare(); 

 } 

 

 before(Point p) : getY(p) { 

  p.prepare(); 

 } 

 

 after(Point p) : setX(p) { 

  p.markChange(); 

 } 

 

 after(Point p) : setY(p) { 

  p.markChange(); 

 } 

  

 public void Point.prepare() { 

  // reconcile the Cartesian and polar coordinates  

       // when of them changes 

     } 

 

  

 public void Point.markChange() { 

  // indicate that one of the coordinates have changed 

     // and prepare shall be called 

 } 

  

 // More introduced members, used for representation 



  // polar coordinates 

} 

Implementation of some parts of the aspect is not shown in order to keep the example 

short. 

The methods prepare and markChange introduced into the Point class are used to 

reconcile the Cartesian and polar coordinates when one of them changes. There is a 

pointcut for read access of each of the two data fields and a pointcut for write access. 

For each read access there is an advice that ensures that the Cartesian coordinates are 

valid by calling prepare. The body of the function is not shown here, but it should 

include calculation of Cartesian coordinates based on polar ones. For each write 

access there is an advice that calls the markChange method. It sets a flag to indicate 

that the polar coordinates must be recalculated before they are retrieved. 

Again, this is a fast way to make things work.  

However, we do not really want to have the Point class effectively split into two 

modules. Applying ACME to this aspect prevents this split. It will automatically 

merge the aspect into the Point class. The result is shown below.  



public class Point { 

 public int x; 

 public int y; 

 

 public int getX() { 

  prepare(); 

  return x; 

 } 

  

 public int getY() { 

  prepare(); 

  return y; 

 } 

  

 public void setX(int newX) { 

  x = newX; 

  markChange(); 

 } 

  

 public void setY(int newY) { 

  y = newY; 

  markChange(); 

 } 

  

 public void prepare() { 

  // Body skipped 

 } 

  

 public void markChange() { 

  // Body skipped 

 }  

 

 // More members 

} 

 

The aspect’s advices are transformed into new methods of the class, and members 

introduced by the aspect become regular class members. 

Finally, ACME finds all references to the fields of the Point class anywhere in the 

system and replaces them with calls to the new methods. So, if p is a variable of class 

Point, a line of code such as 



p.x += 56; 

becomes 

p.setX(p.getX() + 56); 

At this stage we already have a working system with all functionality contained in 

Java classes and the data members of the Point class are no longer used anywhere 

besides this class’s methods. These data members, however, are still public and can be 

used by some code that will be written in future. This is undesirable, so the 

programmer has to change the accessibility of these members to private or protected. 

This change is very simple for a human programmer to make, but it is trickier for a 

computer program. For example, it is likely to require moving the data members to a 

different location, because programmers usually keep members with the same 

accessibility together. These considerations are out of the scope of this thesis. 

However, one can consider providing it in a future version of ACME. The 

accessibility change should only be applied on programmer’s explicit request, because 

it could not always be helpful. Therefore, it should be implemented as an option that a 

programmer may choose, but not as default behavior. 

The same manipulation may also modify the behavior of a family of classes, not just a 

single class. Consider a system that contains a family of classes implementing the 

Command pattern [8]. Each class’s execution method makes several calls to database 

operations. The base class of this hierarchy and a sample concrete class are like this: 

public abstract class Command { 

 public abstract void execute(); 

} 

 

public class ConcreteCommand extends Command { 

 public void execute() { 

  // Do something 

 } 

} 

Suppose that at some point it is decided that the execution of these commands must be 

enclosed in a transaction. The common solution for this task is to split the execute 

method of the Command class into two. The clients of the Command class call a 

method that is defined in the base Command class. This method opens the transaction, 

calls an internal execute method, and then commits the transaction. This internal 



method is implemented in each concrete command class and it makes the same calls 

the original method have made. 

Introducing this change into a large project may be difficult, since it requires 

modifying many source files. Aspect-oriented languages provide an easier way. In 

such languages it is possible to define an advice on execution of the base class’s 

execute method. This advice will be called for any class derived from Command. It 

will open the transaction before the method is executed and commit after the method 

is completed. Such an aspect – written in AspectJ - is shown below. 

public aspect TransactionAspect { 

 

 pointcut protectedExecute(Action a) 

  : call(void Action.execute()) && target(a); 

  

 void around(Action a) : protectedExecute(a) { 

  Transaction transaction = new Transaction(); 

  proceed(a); 

  transaction.commit(); 

 } 

} 

ACME can transform this aspect-oriented version to the conventional one. Using the 

aspect definition it creates the new external function in the base class. 

This function’s name is identical to the pointcut name as defined by the programmer, 

protectedExecute in our example. The modified Command class looks as follows. 

public abstract class Action { 

 

 public abstract void execute(); 

 

 public void protectedExecute() { 

  Transaction transaction = new Transaction(); 

  execute(); 

  transaction.commit(); 

 } 

} 

ACME also modifies the clients of this class family to call the new function. 

However, in this case, as opposed to the previous example, it may not be desirable. It 

is likely that the programmer would like to keep the interface of the class unchanged. 



This requires changing the name of the existing functions and using the original name 

for the new function. For instance, in our example the execute function’s name will 

be changed to internalExecute and the protectedExecute function will be called 

execute. The easiest way to achieve this is by invoking the refactoring operation 

Rename Method, which is available in the Eclipse IDE. In a future version of ACME 

this refactoring may be applied automatically, but as for now the programmer still 

needs to invoke it explicitly. 

4.3. Converting Aspect Hierarchies 

So far we have only discussed processing one aspect at a time. In general, this is good 

enough. Even if several aspects are applied to the same classes and we need to convert 

these aspects to pure Java, this still can be done. Applying ACME to each aspect 

separately enables achieving this goal. The user should only pay attention to applying 

the transformations in an order that matches the precedence order defined on the 

aspects, if there is one. 

However, AspectJ also enables splitting functionality between several aspects by 

means of aspect inheritance. Usually an abstract base aspect defines the common 

behavior of the aspects. Often this behavior is defined using template methods. In this 

case the base aspect implements the general part of the advices whereas parts the 

specific parts are deferred to the derived aspects. Abstract pointcuts are another 

common mechanism for splitting functionality in an aspect hierarchy. When using 

abstract pointcuts, the programmer defines the advice implementation in the base 

aspect but does not define to which join points the advices are applied. In the derived 

aspects the programmer provides concrete pointcut definitions that specify the join 

points to be used by the advice. Naturally, different derived aspects may specify 

different join points. Below is an artificial example of such a structure, which includes 

a base aspect and two derived aspects. A more realistic example is presented in detail 

in section 7, which presents a detailed case study. 



public abstract aspect ParentAspect { 

 public abstract pointcut exec(); 

  

 void around(Base.Resource r) : exec() && target(r) { 

  foo(); 

  System.out.println("Replaced call"); 

 } 

  

 public abstract void foo(); 

}  

public aspect DerivedAspect extends ParentAspect { 

 public pointcut exec() : call(void Base.Resource.free()); 

 

 public void foo() { 

  System.out.println("Replaced call");  

 } 

} 

public aspect AnotherDerived extends ParentAspect { 

 public pointcut exec() :  

  call(void Base.Resource.testFunction(String)); 

 

 public void foo() { 

  System.out.println("Replaced call");  

 } 

} 

Such a structure represents a new challenge for the implementation of ACME.  

ACME only supports creation of classes from aspect hierarchies. Some of the 

generated classes are made singleton, similar to the class generated from a single 

aspect. However, this is not required for other classes, as I will explain later. 

On the other hand, it is probably useless to inline aspect hierarchies into existing 

classes: aspect hierarchies are rather complex constructs and forcing all their 

functionality into a single class is not likely to improve the code understandability. 

Now consider the implementation of the conversion process. Though conversion of 

the aspects into classes is still relatively simple, there are several new issues to 

consider.  

The most obvious is the introduction of inheritance. Since it splits the original aspect 

code to several modules, a similar separation must be retained in the generated Java 



code. We can achieve this separation easily using a hierarchy of Java classes. Aspect 

can be converted to classes one at a time, as it was done in the earlier examples. The 

only information that ACME needs to pass from one aspect to another is the name of 

the generated classes, since the name of the base class must appear in the inherits 

clause of the derived class’s definition. 

It should also be noted that we must treat abstract aspects differently from the 

concrete ones. The AspectJ run-time environment automatically creates a single 

instance of a concrete aspect and ACME simulates this behavior using the Singleton 

pattern. On the other hand, abstract aspects are never instantiated. Therefore, ACME 

transforms them into abstract classes and does not add Singleton pattern 

implementation. 

In addition, we must now consider abstract methods and pointcuts. Fortunately, they 

do not require special treatment in generation of new classes. Abstract methods 

simply can be copied from aspects to corresponding classes, since they are used 

similarly in both. Abstract pointcuts, on the other hand, are not copied at all, since any 

definition of an aspect, abstract or not, affects the join point locations only, not the 

new classes. 

The generated classes are shown below: 



public abstract class ParentManager { 

  

 public void exec(Base.Resource r) { 

  foo(); 

  System.out.println("Replaced call"); 

 } 

  

 public abstract void foo(); 

} 

public class DerivedManager extends ParentManager { 

 public static DerivedManager getInstance() { 

  return instance; 

 } 

 

 private static DerivedManager instance = new DerivedManager(); 

 

 private DerivedManager() { 

 } 

 

 public void foo() { 

  System.out.println("Replaced call");  

 } 

} 

public class AnotherDerivedManager extends ParentManager { 

 public static AnotherDerivedManager getInstance() { 

  return instance; 

 } 

 

 private static AnotherDerivedManager instance =  

  new AnotherDerivedManager(); 

 

 private AnotherDerivedManager() { 

 } 

 

 public void foo() { 

  System.out.println("Replaced call");  

 } 

} 



As we have seen, supporting aspect hierarchies requires only minor changes in the 

process of generation of new classes. Modifying the join points is, however, 

significantly more complicated than before, for two reasons. 

First, it is more difficult to analyze the pointcuts that specify the involved join points. 

Since abstract pointcuts can be used, the definition of a pointcut may be spread over 

several source files. Therefore, ACME must process all these files to collect the 

information needed to transform each aspect. 

Second, in some Java files one may encounter join points that match pointcuts from 

different aspects. In order to correctly make all the required modifications, ACME 

must first create a list of all join points modified by any of the aspects and only then 

modify the files.  



5. Design Decisions 
The most important decision is, naturally, to define what Java code should be inserted 

instead of the aspects, and where it should be placed.  

5.1. Call vs. Execution pointcuts 

At first it may seem that call and execution pointcuts only differ in the context that 

is available to the advice. For example, this keyword when used with the call 

pointcut provides access to the calling object, while the same keyword when used 

with execution pointcut references the called object. There is even more significant 

difference between the two types of pointcuts when inheritance is involved. A call 

pointcut selects join points according to the static type of a reference. This means that 

an advice on a function of a derived class will not be called when the function is 

invoked through a reference to a base class. On the other hand, execution pointcuts 

select join points according to the dynamic type, which means the pointcut on a 

function will be called whenever this function is called.  

Consider, for example, base class Base and class Derived, which is derived from 

Base, and a function call  

b.foo() 

where b is defined as type Base. A pointcut, which is defined as 

call(void Derived.foo()) 

will never match this call, while a pointcut defined as 

execution(void Derived.foo()) 

will match the call in cases where b references an object of type Derived. 

Hence, ACME must treat call and execution pointcuts differently. The semantic 

difference between call and execution pointcuts is discussed in depth in [15] 

 

5.2. Call Pointcuts 

There are two separate issues that must be dealt with while converting advices to Java 

functions. The first is where to place the calls to the new functions. The second is the 

implementation of these functions. 



To mimic the above-mentioned behavior, ACME must place the code it inserts 

instead of a call advice at the locations of all calls made to the effected function. 

Since those locations are chosen according to the static type of objects, it is easy to 

find them by searching the source code. There are two possible strategies of 

modification at the call location. We can either replace the original call with a call to a 

new function that is generated by ACME, or we can keep the original call and place 

an additional call next to it. The latter approach is problematic for two reasons. First, 

it makes the client code longer, because it inserts an additional call for every call to 

the original function. As we have already discussed, this is undesirable. Second, and 

more important, this approach cannot be used for all possible advices. For example, it 

cannot be used when an advice should be called instead of the original call, and not in 

addition to it. The first approach does not suffer from such problems; therefore, it is 

always used for processing call pointcuts. 

The most simple case of implementation of an advice is the implementation of an 

advice on an around pointcut, that does not contain a proceed command. In this case 

the original function should not be called at all, so the new one will only include the 

advice code. In all other cases the new function must include both the original 

functionality and the functionality of the advice. As it has been described, a typical 

use of ACME is to create a singleton class instead of an aspect. Since the generated 

function will be part of this class, it cannot directly include the functionality of the 

original function. Instead, it is better to make this new function call the original one. 

There is still a considerable problem in this implementation. A direct call to the 

original function may only be used if the pointcut references a single function. 

Otherwise, the implementation must call the correct function for each modified join 

point. This is not a simple task. The AspectJ compiler uses special “closure” objects, 

which encapsulate such calls [9]. Practically, this means that a new class is generated 

for each join point or, at least, for each function used in a join point. This solution 

works well for a compiler; however, it is not useful for a source code-generating tool 

like ACME. One of the key goals of ACME is to generate code that is easy to 

understand and maintain, and the structure described above hardly fulfils this goal. 

Due to this problem, ACME only supports pointcuts referencing multiple functions 

when they are used in an around advice with no proceed command. 



In addition to the functionality that appears explicitly in advice and function bodies, 

ACME must also deal with exception handling. The generated code must behave 

similarly to the AspectJ run-time when advised functions throw exceptions. The 

required action differs for the various advice types. A Before advice does not require 

special treatment, because the function is, obviously, executed after the advice, and 

exceptions it throws cannot influence the execution of the advice. This is true for an 

around advice as well, because for this type of advice it is the responsibility of the 

advice itself to deal with exception. However, ACME must deal with exceptions when 

generating functions for after advices. In fact, AspectJ allows the users to define 

advices that match functions exiting in three different ways, and ACME must support 

all three. The possibilities are to execute the advice when a function returns normally, 

when a function throws an exception or to execute the advice in both cases. To 

support the first case no special treatment is needed; it is sufficient just to place a call 

to the original function in the generated one. For the remaining cases the call to the 

original function must be enclosed in a try statement. If the advice should be called 

when the function throws an exception, the advice body is placed in the catch part of 

the statement; otherwise it is placed in the finally part. 

This formal transformation may produce functions that are unnecessarily complicated. 

For instance, in the Point class example ACME generates try statement around an 

assignment operator, which cannot throw exceptions. It is possible to process field 

access pointcuts differently from function call pointcuts. This different processing 

will not include any processing for exceptions. Practically this means that the try 

block would not be generated. However, such a feature does not provide a significant 

improvement. The user can achieve the same result easily by using an advice that 

selects only normally returning join points, instead of join points that either return 

normally or throw exceptions. Furthermore, using such an advice is considered a good 

practice in common AspectJ programming.  

5.3. Execution pointcuts 

As I have already mentioned, execution pointcuts require selection of join points 

based on the dynamic type of the object whose functions are used in the pointcut. 

Practically, this means that the advice code must be inserted in this object’s class. It 

can be inserted either in the same function or in a new function that will be generated 

by ACME. Generating a new function is problematic. This function must be declared 



in all parents of the original class, including interfaces. It is very likely that such a 

function will have no reasonable meaning in these interfaces. So, this solution must be 

avoided. Thus, the original function has to be changed. 

Consider now the changes that should be done in this function. In case of an around 

advice with no proceed command the changes are very simple: the body of the 

function should be replaced with the advice’s body. If this function is overridden in 

some derived class, the overriding function must be deleted. This can still be achieved 

easily. 

For any other advice, the function will be responsible for execution of the advice body 

as well as the execution of its own original functionality. Obviously, for the sake of 

clarity we must still keep the advice implementation visually separated from the 

original function’s implementation. This means that in order to achieve this separation 

at least one new function must be introduced. For example, if foo is the original 

function and adviceFunction is the function generated from an advice, after ACME is 

applied the foo function will become 
void foo() { 

 adviceFunction(); 

 // original implementation of foo 

} 

 

for a before advice or 
void foo() { 

 try { 

  // original implementation of foo 

 } finally { 

  adviceFunction(); 

 } 

} 

for an after advice which is executed both when the function returns normally and 

when it throws exceptions.  

Next, one must decide where this function will be created and what it will look like. 

In general, ACME can place new functions either in the same class the original 

function is located, or in a new class, which is created as a replacement for the aspect. 

However, with execution pointcuts the second option has little practical value. Using 

an aspect or a separate class is usually intended to keep distinct concerns in separate 

modules. In the original structure, which contains aspects, the source code of the 



aspect is dependant on the advised class’s code. The aspect obviously references this 

class in its pointcut definition and probably contains additional references, for 

example, as advice parameters. Now ACME has to insert a call to the function which 

is replacing the aspect’s advice in the new class to the original function. This call 

creates a dependency in the opposite direction, completing a dependency cycle. For 

example, if the original class is named C and the class replacing an aspect is named 

AspectSubstitute, the result may look as follows: 
class C { 

 … 

 void foo() { 

  AspectSubstitute.getInstance().adviceFunction(this); 

  … 

 } 

 … 

} 

class AspectSubstitute { 

 … 

 public void adviceFunction(C target) { 

  … 

 } 

 … 

} 

This cyclic structure violates the modularity principle of decomposability [14], and 

should be avoided. 

So, it turns out that the modification must create a new method in the existing class. 

The simplest way to achieve the needed functionality would be to place the advice 

body in the original function, and move this function’s body to a new function. In 

addition, it would be necessary to rename all overrides of the original function in 

derived classes. Since the advice affects them as well as the original function, in the 

modified structure only the new function should be overridden, and the names must 

be changed to achieve this. 

However, while this modification is theoretically possible, its practical application is 

very limited. If the advised function does not override a function of some base class, 

the behavior of an execution pointcut does not differ from the behavior of a call 

pointcut, which can be processed by ACME. On the other hand, if this function is 

never overridden in derived classes, the modification only changes a single location in 



the source code, and this hardly justifies introduction of an automatic tool. The 

remaining cases are rather rare, and therefore the practical benefit of this modification 

is not significant. For this reason it is currently not implemented. 



6. AspectJ Language Support 
ACME is designed to perform refactoring transformation whenever the AspectJ 

source code follows one of several known patterns. Therefore, it only needs to support 

a subset of the AspectJ language, which is used in those patterns. One may consider, 

however, supporting additional patterns in a similar manner. In order to identify the 

cases when such an extension would be possible, one must first identify language 

constructs that allow it. As explained in section 3.2, there are significant rules that the 

produced Java code must follow. Obviously, some AspectJ constructs cannot be 

converted to such Java code. Claiming the opposite would practically mean that the 

AspectJ language is not needed at all. However, the exact list of these constructs is, to 

some extent, a matter of personal choice. Some programmers may use certain 

language structures freely, while other will normally avoid them. In this section I 

describe several AspectJ constructs that cannot be supported by ACME. 

6.1. Wildcards 

Wildcards are an important feature of the aspect-oriented architecture. They allow 

defining a rule for selecting join points while not making an implicit list. This is an 

extremely flexible mechanism. A pointcut, which uses wildcards, may match 

functions that are written after the pointcut has been defined.  

This flexibility practically disallows converting advises that use wildcards into 

functions. The automatic conversion made by ACME will modify calls to all the 

existing function as needed. However, it removes the aspect from the system. 

Therefore, if a new function is added, the aspect will not be applied to it. This means 

that the conversion modifies system’s behavior, and must be avoided. 

A possibility that may be considered is to keep both the version with aspects and the 

aspect-free version of the system available. This option may allow running ACME 

again when new join points are added that match the pointcuts. It is probably useful 

when the use of ACME is due to the need to avoid using aspects in production code. 

It must also be mentioned that even if we try to implement this possibility, the 

problems described in Section 6.3 still make the conversion impractical in many 

cases. 



6.2. Type-based Matching 

AspectJ pointcuts may select join points according to the type of objects involved. For 

example, consider the classes Base and Derived where Derived is subclass of Base 

and function foo declared in Base. An advice defined with the pointcut 

call(Base.foo()) && target(Derived d) 

is only invoked when the actual type of the target object is of type Derived or its 

subclass. The generated Java code must mimic this behavior. As we have already 

discussed, the generated code for the Java Class Creation is not placed in the 

original classes. This means that polymorphism cannot be used to distinguish objects 

of the Derived class from objects of Base class or its other subclasses.  

The pointcut may also check the type of arguments passed to the function. In this case 

polymorphism cannot be used either for Java Class Creation or Inlining Aspect 

Code. 

Therefore, explicit type casting must be used. The function that replaces the advice 

checks whether its parameter is of the requested type, and call the advice code, if so; 

otherwise, it will call the original function. This an example of such a function: 

void adviceFunction(Base b) { 

    if (b instanceof Derived) { 

        Derived d = (Derived) b; 

        // Execute advice logic 

    } else { 

        b.foo(); 

    } 

} 

This function structure is usually considered poor coding style by itself. It becomes 

much worse when there are several pointcuts on the same function, which differ on 

the target object’s type. Such pointcuts would have been transformed into several if 

blocks. 

One may attempt to use the Visitor pattern [8] to avoid this structure. This pattern is 

often used when a multiple dispatch structure is required, as in this case. However, 

using this pattern will require generation of rather complicated and long code. In 

addition, this solution cannot be scaled to support several pointcuts in an aspect. Each 

pointcut must be supported by its own set of advice and visit functions, which 



means functions with awkward names such as visitForAdviceA will have to be 

created. 

These attempts to find equivalent Java code for the aspect show that any solution has 

considerable drawbacks. In order to discourage creating any of the described code 

structures, ACME does not support aspects that use type-based matching. ACME can 

still, however, be helpful in converting such an aspect to Java code. A programmer 

may rewrite the advice to use explicit type casting or Visitor pattern instead of the 

type-matching pointcut. To achieve this he only needs to modify the aspect itself. 

Afterwards, he will be able to run ACME to replace the aspect with a singleton class 

and update the effected calls. This limits the manual modification to one source file or 

a small number of files. 

6.3. Implicit Type Casting 

The AspectJ language allows the types of advice parameters and the return values to 

differ from the corresponding types in the advised functions. It is only needed to 

consider the cases when the type in an advice is either a subclass or a superclass of the 

type in the original function. Any other case either behaves in a similar way, or yields 

no join points at all. 

When an advice parameter’s type is a superclass of the function parameter’s type the 

transformations introduced in Section 4 will produce valid Java code. In the client 

code, ACME replaces an existing function call by a call to the function it generates 

from an advice. The new call expects to receive as an argument an object of a type 

that is more general than the type expected by the original call. Obviously, the object 

that the client has been using can be passed safely. In fact, this situation is similar to 

contravariant redefinition of function parameters. [14] 

In a similar manner, ACME can correctly process the case when an advice return type 

is a subclass of the original function’s return type. This case resembles covariant 

redefinition of the return type, which is known to be type-safe. 

We have already analyzed what happens when the advice parameter’s type is a 

subclass of the original parameter’s type in the section on type-based matching. The 

only remaining case is when the advice’s return type is a superclass of the original 

function’s return type, as in the following advice definition: 

Object around() : call(String B.foo()) {…} 



In this case, in order to achieve Java code that produces the same results as the aspect 

code, an explicit type cast must be used. The straightforward solution is to place this 

type cast in the client code at every location that ACME modifies. Theoretically, this 

solution should not be considered well structured, since it makes heavy use of type 

casting. However, until recently, most Java code has suffered from this problem due 

to the absence of generics from the language. The recent introduction of generics in 

Java version 1.5 may improve the style of general Java code, but will also allow for a 

better solution for our problem. Unfortunately, the currently available version of the 

AspectJ environment (1.2) does not support generics, although the next version (5) is 

expected to fully support this important feature. 

The need for the advice to use a type, which is more general than the type used by the 

original function, usually arises when the same advice is applied to different 

functions. Often, this is achieved using aspect hierarchies. The base aspect defines the 

advice and an abstract pointcut. The derived aspects define concrete pointcuts for the 

advice and, possibly, some protected functions that are used by the advice. These 

concrete pointcuts may refer to functions with different return types; therefore the 

abstract pointcut and the advice have to use the common parent of these types. 

Example from Section 4.3 can be modified to show this situation. All that is needed is 

to change the return type of the advice and of the functions referenced in the 

pointcuts.  



public abstract aspect ParentAspect { 

 public abstract pointcut exec(); 

  

 Object around(Base.Resource r) : exec() && target(r) { 

  System.out.println("Replaced call"); 

  return foo(); 

 } 

  

 public abstract Object foo(); 

}  

public aspect DerivedAspect extends ParentAspect { 

 public pointcut exec() : call(Integer Base.Resource.foo()); 

 

 public Object foo() { 

  return new Integer(1); 

 } 

} 

public aspect AnotherDerived extends ParentAspect { 

 public pointcut exec() :  

  call(String Base.Resource.testFunction(String)); 

 

 public Object foo() { 

  return “Test Function”; 

 } 

} 

In AspectJ version 5 the same functionality may be achieved by using the following 

aspects, which employ generics: 



public abstract aspect ParentAspect<C> { 

 public abstract pointcut exec(); 

  

 C around(Base.Resource r) : exec() && target(r) { 

  System.out.println("Replaced call"); 

  return foo(); 

 } 

  

 public abstract C foo(); 

}  

public aspect DerivedAspect extends ParentAspect<Integer> { 

 public pointcut exec() : call(Integer Base.Resource.foo()); 

 

 public Integer foo() { 

  return new Integer(1); 

 } 

} 

public aspect AnotherDerived extends ParentAspect<String> { 

 public pointcut exec() :  

  call(String Base.Resource.testFunction(String)); 

 

 public String foo() { 

  return “Test Function”; 

 } 

} 

It is possible to convert these aspects into Java classes in a process similar to that 

shown in Section 4.3. The results of these conversions are shown below: 



public abstract class ParentManager<C> { 

  

 public C exec(Base.Resource r) { 

  System.out.println("Replaced call"); 

  return foo(); 

 } 

  

 public abstract C foo(); 

} 

public class DerivedManager extends ParentManager<Integer> { 

 public static DerivedManager getInstance() { 

  return instance; 

 } 

 

 private static DerivedManager instance = new DerivedManager(); 

 

 private DerivedManager() { 

 } 

 

 public Integer foo() { 

  return new Integer(1); 

 } 

} 

public class AnotherDerivedManager extends ParentManager<String> { 

 public static AnotherDerivedManager getInstance() { 

  return instance; 

 } 

 

 private static AnotherDerivedManager instance =  

  new AnotherDerivedManager(); 

 

 private AnotherDerivedManager() { 

 } 

 

 public String foo() { 

  return “Test Function”; 

 } 

} 

 



This conversion is currently not supported by ACME yet, because the required 

AspectJ version is not released yet. 

6.4. Control Flow Pointcuts 

These pointcuts select join points that are encountered during the execution of a 

certain function. There is no structure in common object-oriented languages that can 

be used to implement similar behavior. One can attempt to use a flag variable to 

indicate that the program execution enters the function and test this flag when the join 

point is reached. The resulting code, however, does not provide a clear separation of 

concerns and is very hard to deal with for a human programmer, because it is split to 

several small portions located in different places and even in different files. 

Hence, supporting this language feature in ACME will not provide any benefit. 

6.5. Compile-Time Aspects 

These are aspects that modify the behavior of the compiler as opposed to the behavior 

of the program in which they appear. For example an aspect may declare that no join 

point may exist that matches certain pointcuts. There is no similar structure in Java; 

therefore, it is impossible to support compile-time aspects in ACME. 



7. A Case Study 

7.1. NMS Introduction 

The work by S.Raz [10] is a typical example that clearly demonstrates the need for 

ACME. This work discusses scaling up NMS, a network management system. The 

original version of the system was designed for relatively small networks, so it was 

keeping the entire network configuration in memory and only required loading data 

from a database on system startup. After the need had appeared to support larger 

networks, this strategy became inadequate. 

The preferred strategy for large networks is based on keeping the network 

configuration in a database and loading data when needed. The author describes a 

process introducing this strategy. This process involves a series of code modifications; 

each modification involves replacing an implementation of a certain data access 

operation. NMS uses two types of such operations. One is retrieving a single object, 

such as device or port from the database, using the object ID. The other is retrieving 

objects that are related to a given object. Examples of this type of operations are 

retrieving the list of all ports of a hardware device or retrieving the device that owns 

the specified port. 

The work shows that these modifications can be done using AOP. Furthermore, 

aspects allow introducing the changes quickly and easily. They also allow a 

programmer to experiment with different solutions, evaluate their behavior and 

choose the best one. The use of aspects is especially important because this 

reengineering effort is undertaken while the system is continuously developed and 

other, unrelated features are introduced into the system. Aspects provide the complete 

independence of the unrelated efforts. 

This aspect-oriented approach was tested on a demonstration system, which was 

similar to the production system. However, while aspects are helpful in testing the 

changes, the possibility of using aspects for evolution of a production system seems to 

be unlikely. The major limitation is that it is practically impossible to introduce such 

an innovative tool into large commercial system, especially in a relatively late stage in 

its lifecycle. 

This is the situation, in which ACME may be especially helpful. In this section I 

discuss the applicability of ACME to the aspects shown in Raz’s work His work 



shows both development and production aspects. Development aspects are aspects 

that are used during the development of a system only. For example, they may be 

used to collect profiling information about system execution. Obviously, it is never 

needed to convert development aspects into conventional code, since they are not 

included in the production code anyway. Therefore, it is only needed to consider 

production aspects. 

One must notice that the aspects were written with no automatic conversion tool in 

mind. Therefore, it is not surprising that ACME cannot process them as they have 

been written originally. It is good enough to show that ACME can process aspects 

that have the same effect and are not more difficult to write. In fact, the original 

aspects use execution pointcuts, which cannot be processed. However, in most of 

these cases no polymorphic calls are involved, and the behavior of execution 

pointcuts does not differ from that of call pointcuts. This means that practically the 

same pointcuts may be processed. 

7.2. Retrieving List of Related Objects 

The simplest operation in Raz’s thesis is retrieving the list of related objects. Its 

implementation is split to several aspects. The AbstractGetRelatedIdsAspect is an 

abstract aspect that defines behavior, which is common to loading lists of all types of 

objects. It is shown below: 



public abstract aspect AbstractGetRelatedIdsAspect { 

 

 public abstract pointcut execOfGetRelatedElements( 

  Element owner); 

 

 protected abstract String getSelectString(int ownerID); 

 protected abstract Class getRelatedClass(); 

  

 Collection around(Element owner) :  

  execOfGetRelatedElements(owner) { 

  int ownerID=owner.getId().intValue(); 

  return getRelatedElements(ownerID); 

 } 

 

 private Collection getRelatedElements(int ownerID) { 

  Collection relatedElements=new LinkedList(); 

  Class relatedClass = getRelatedClass(); 

  Collection ids=loadRelatedIds(ownerID); 

  Iterator idsIt=ids.iterator(); 

  while (idsIt.hasNext()){ 

   Integer id=(Integer)idsIt.next(); 

   if (id!=null && id.intValue()!=0) { 

    Element element=(Element)ServerImpl.getInstance(). 

     getElement(relatedClass,id); 

    relatedElements.add(element); 

   } 

  } 

  return relatedElements; 

 } 

  

 private Collection loadRelatedIds(int ownerID) { 

  Collection relatedIds=new HashSet(); 

  String select = getSelectString(ownerID); 

  try { 

   Connection conn =  

    DbConnectionManager.getInstance().getConnection(); 

   Statement state = conn.createStatement(); 

   ResultSet rs = state.executeQuery(select); 

   while (rs.next()) { 

    Integer id=new Integer(rs.getInt(1)); 

    relatedIds.add(id); 



   } 

  } catch (SQLException e) { 

   e.printStackTrace(); 

  } 

  return relatedIds; 

 } 

} 

In addition, there are several concrete aspects that are derived from 

AbstractGetRelatedIdsAspect. One of them is DeviceGetRelatedPortIdsAspect, which 

retrieved all ports owned by a specific device.  

public aspect DeviceGetRelatedPortIdsAspect 

 extends AbstractGetRelatedIdsAspect { 

 

 public pointcut execOfGetRelatedElements(Element owner) :  

  execution (public Collection Device.getPorts()) &&  

  this(owner); 

 

 protected String getSelectString(int ownerID) { 

  return "select port_id from port where device_id=" + ownerID; 

 } 

 protected Class getRelatedClass(){ 

  return Port.class; 

 } 

}  

This structure is very similar to the structure shown in Section 4.3. The only 

difference from that structure is the use of execution pointcut instead of a call 

pointcut. However, in this case, a call pointcut can be used at the same place with no 

change in program behavior. After the pointcut definition had been changed, ACME 

successfully converted these aspects to classes. 

7.3. Retrieving Single Related Object 

Retrieving a single related object is trickier. Its implementation is very similar to the 

implementation shown above; however, there are some subtle differences. Since this 

aspect deals with retrieving single objects, its pointcut matches functions that return 

objects of specific types and not general collections. This is a typical pointcut used for 

retrieving a single object: 



 public pointcut execOfGetRelatedElement(Element owner) : 

  execution (public Device PortImpl.getDevice()) &&  

  this(owner); 

Due to this change, the definition of the advice also changes; now the advice’s return 

type must be declared as Object, because it replaces several functions with different 

return types. 

These changes make the structure similar to one shown in section 6.3. Currently 

ACME cannot process this structure; however, introduction of generics into Java 

language may make it possible. On the other hand, it is possible to rewrite the aspects 

in a way that avoids using such a structure. For example, one may implement the 

same functionality without using abstract pointcuts in a base aspect. In this case it is 

possible to use the return type of the original function (Device in our example) as the 

advice’s return type as well. After making this minor modification, one will be able to 

convert these aspects to Java using ACME. 

7.4. Retrieving Objects by ID 

In the original system all data objects are held in memory data structures. There are 

several types of these objects, such as Device, Port, etc. All objects of the same type 

are held in a special manager object. For each manager object a special class is 

defined; these classes share a common base class, named ElementManagerImpl. 

Retrieving the objects from the database is split into several aspects. The base aspect, 

AbstractGetElementAspect, defines most of the functionality needed for the 

retrieval, while the child aspects define the parts specific for each data object type. 

The advice used by all these aspects is defined in the base aspect and it is always 

applied to the same function, ElementManagerImpl.getElement(Integer). During 

program execution, the appropriate aspect is selected according to the type of the 

manager object on which the getElement function is called in each case. This 

selection is made by means of a target pointcut. 

The base aspect and an example child aspect are shown: 



public abstract aspect AbstractGetElementAspect { 

 

 public abstract pointcut managerTarget(); 

 

 public pointcut callOfGetElement(Integer id): 

  execution(public Element 

   ElementManagerImpl.getElement(Integer)) 

  && args(id) 

  && managerTarget(); 

 

 public abstract String getSelectString(Integer id); 

 public abstract Element  

  createElement(ResultSet rs) throws SQLException; 

 

 Element around(Integer id) : callOfGetElement(id) { 

  return loadElement(id); 

 } 

 

 private Element loadElement(Integer id) { 

  Element element = null; 

  String select = getSelectString(id); 

  try { 

   Connection conn =  

    DbConnectionManager.getInstance().getConnection(); 

   Statement state = conn.createStatement(); 

   ResultSet rs = state.executeQuery(select); 

   if (rs.next()) { 

    element = createElement(rs); 

   } 

  } catch (SQLException e) { 

   e.printStackTrace(); 

  } 

  return element; 

 } 

} 

This aspect is used to load devices: 



public aspect DeviceGetElementAspect  

 extends AbstractGetElementAspect { 

 

 public pointcut managerTarget() : target(DeviceManagerImpl); 

 

 public String getSelectString(Integer id) { 

  return "select * from device where device_id=" + id; 

 } 

 public Element createElement(ResultSet rs) throws SQLException { 

  return DeviceDbManager.createDevice(rs); 

 } 

} 

ACME cannot convert aspects that use target pointcuts to select join points. 

Furthermore, the given implementation of the aspects implies that selection of a 

program portion to execute is based on the run-time type of an object. Therefore, any 

attempt to reproduce similar behavior in pure Java code must involve modification of 

the code of the manager classes, as explained in section 7.4. ACME doesn’t support 

such a modification for any AspectJ construct. Fortunately, in this case it is relatively 

simple to make the required change without using any automatic tool. 

7.5. Disabling data preloading 

One of the problems of the original NMS system is the long time that is used on 

system startup to load all data objects to memory. Since the aspects load this objects 

at the point they are required, loading the objects on startup is no longer needed. The 

following aspect prevents its invocation. 



public aspect PreventLoadAspect { 

 /** 

  * pointcut of loading elements 

  */ 

 public pointcut execManagersElementsOperations() 

  : execution(public void ElementDbManager+.load()) 

  || execution(public void ElementManagerImpl+.addElement(..)) 

  || execution(public * ElementManagerImpl+.removeElement(..)); 

 

 public pointcut execSetRelations()  

  : execution ( 

   static private void ElementDbManager+.setRelations(..)); 

 /** 

  * skip loading of elements 

  */ 

 Object around () 

  : execManagersElementsOperations() ||execSetRelations(){ 

  return null; 

 } 

} 

This aspect cannot be converted as is, since it uses wildcards and execution 

pointcuts. However, a programmer can safely and easily replace both wildcards and 

execution pointcuts by other structures. Each part of the 

execManagersElementsOperations pointcut references several overrides of a single 

function defined in a base class. For some of these parts the base class is 

ElementDbManager, while for others it is ElementManager. This means that the 

wildcards have practically no effect. For example, the expression  

public void ElementManagerImpl+.addElement(..)  

references the same functions as  

public void ElementManager.addElement(Element element)  

For the same reason, there is no significant difference between execution and call 

keywords in this case. Since all overrides match the original pointcut, the same 

functions will match a call pointcut as well. 

The execSetRelations pointcut references static functions; therefore in this case the 

programmer may replace the execution keyword with call as well. Furthermore, in 

the example system there is only one function that matches this pointcut, so the 



wildcards in the pointcut definition may be replaced by an exact function declaration. 

It is possible that in a real system there will be several matching functions, but it is 

likely that there number will be small enough, so they can be explicitly listed in the 

pointcut definition. 

The advice in this aspect must also be changed. In its present form its return type is 

defined as Object. This is needed in order to use the advice with function that return 

a value as well as functions that are declared as void. There is no similar structure in 

Java; therefore we must create two separate advices, one for each return type, before 

invoking the conversion. 

Now we can generate a Java structure that replaces this aspect. However, it is not 

likely that any programmer will ever want to keep such a structure in a program, 

because it consists of a singleton class that contains two functions that do nothing and 

is, therefore, absolutely unnecessary. A possible solution is to use Inline Method 

refactoring to remove all references to this functions and then remove the singleton 

class from the project. 



8. Future Work and Conclusions 
The agile development approach welcomes changing requirements even late in the 

development process. Refactoring is a major technique used to cope with changes. 

There are commercial tools that support refactoring in programs written in Java and 

other object-oriented languages. Research is also in progress to introduce aspects into 

object-oriented programs automatically. ACME provides the programmer an opposite 

transformation. It refactors aspects out of a program, generating a pure object-oriented 

structure. 

This new capability can be used in numerous different situations. Most obviously, it 

can be used when a structural change, which makes an aspect inappropriate, is 

required. In addition, ACME allows using aspects in some cases, in which aspect 

usage has been avoided earlier. For example, in an organization that prohibits using 

aspects in production code, it is now possible to use aspects during development, and 

convert them to object-oriented code when required. ACME also provides an 

opportunity to experiment with possible implementation improvements, such as 

introduction of resource pooling, without modifying existing classes. When an 

improvement is shown to be helpful it may be incorporated in the system 

automatically. 

As we have seen, the goal of ACME is to convert AspectJ code into Java code. But 

one can view the work on ACME in a broader context, and view it as a contribution to 

refactoring in general. The basic motivation of refactoring is to allow the programmer 

to evolve the code and obtain the most suitable design for the functionality that is 

already written in. In this context, the transformations developed for ACME may be 

used even if they do not remove all the aspects present in the code. ACME 

transformations are then used along with other refactoring transformations, such as 

those that deal strictly with java code, as well as transformations that attempt to 

introduce aspects to replace scattered and tangled code that implements crosscutting 

concerns. 

For example, ACME may be helpful when it is required to add some code to a system 

in such a way that existing aspects will not affect this code. In this case one may apply 

ACME in order to convert the aspects to Java code and then introduce the new code. 



Aspects will not affect the new code, because they will have been removed from the 

system by the time of creation of this code. 

This possibility is especially important when a system is built by combining several 

unrelated parts, and all parts contain aspects. It may happen that in the combined 

system the aspects will affect the parts that these aspects were not intended for. The 

resulting system may have unpredictable and probably undesirable behavior. Using 

ACME to remove some of the aspects before combining the system parts will solve 

this problem. 

The current version of ACME is based on examples of potentially useful patterns of 

conversion from aspect-oriented to conventional code, such as creation of a singleton 

class from an aspect. Naturally, a possible development would be to find new such 

patterns and implement them. 

However, applicability of ACME has some limitations. The tool cannot support the 

entire AspectJ language. For some language constructs, such as complex wildcard 

expressions or declarations of compile-time errors, this limitation is natural. On the 

other hand, AspectJ is a very flexible language, and some tasks can be solved in 

several ways, using different language constructs. In some cases one of this constructs 

can be processed by ACME, while others cannot, because they represent behavior that 

generally cannot be implemented in an object-oriented language. The distinction in 

this usage may be subtle and it is best to consider it while creating the aspects. 

Therefore, the easiest use of ACME is to incorporate aspects that are created as 

experimental modules. 

On the other hand, AspectJ language constructs preventing ACME execution in some 

situations are equivalent to other constructs, which are supported by ACME. To help 

the user in these situations ACME may offer to treat the unsupported in the same 

manner as the supported ones. For example, it may offer to treat execution pointcuts 

as call poincuts. It is important to notice that ACME cannot decide on its own if this 

treatment is valid, therefore it can only offer this change, but not perform it 

automatically. 

In addition, some extensions that are not directly related to aspects are also possible. 

For instance, in some of the examples we have seen that after ACME is applied to the 

system, some additional modifications may be required, such as inlining the generated 

methods or changing accessibility of some members.  These modifications may also 

be performed automatically as a part of ACME functionality. However, since such 



modifications are an addition to ACME’s core functionality, they are not applicable in 

all cases when ACME is used. Therefore, in each case a programmer must have the 

opportunity to decide if he wants to apply the additional modifications. 

The case study shows that it is possible to convert aspects that have been written 

without intended use of ACME in mind, but some preparation for conversion have 

been required. 
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