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1 Primality Testing

The problem of determining whether a given number is prime is ancient. The input is a number n,
represented in binary, and the goal is to decide if it is prime. Notice that the input length is the
number of bits needed to represent n, i.e., log n. Clearly the problem is in coNP, but it was also
shown to be in NP [?]. There are several algorithms putting it in BPP. We are now going to see a
deterministic polynomial time algorithm for it, putting it in P [1].

1.1 Random Algorithms

There are several probabilistic algorithms for the problem that rely on the following property of
primes numbers.

Claim 1. [Fermat’s little theorem] Let n be a prime number then for any integer a it holds that
an ≡ a (mod n).

Unfortunately, this is not a characterization of prime numbers since there are non-prime numbers
that have this property. Consider the following randomized algorithm for primality Testing:

Algorithm 1 Algorithm for PT

1. Sample a ∈ Z∗n uniformly.

2. If gcd(a, n) 6= 1, return ”Composite”.

3. If an = a (mod n) return ”Prime”, else return ”Composite”.

According to Claim 1, if n is prime, we will always return ”Prime”. However, there are non-prime
integers n that will always pass the test and so the algorithm fails for these numbers. It is true that
there are very few inputs for which the above algorithm fails, but we want a worst-case algorithm,
namely an algorithm which works for every input with small error probability over the random
coins of the algorithm (and not for most inputs).

1.2 Characterization of primes with a polynomial identity

The identity an = a (mod n) over Z is true for primes n, but does not characterize primes. Now,
instead of working over Z, we will work over the polynomial ring Zn[X], the ring of all polynomials
with degree at most n over Z, and in return we will get a characterization. Working with polynomials
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might look more complicated than working over the integers, but this is often not the case. In fact,
quite the contrary is true. For example, polynomials (as integers) have unique factorization to
irreducible polynomials. The problem of polynomial factorization can be done in polynomial time
(sometimes, probabilistic polynomial time and sometimes deterministic polynomial time, depending
on the field over which we work). In contrast, integer factorization is believed to be hard, and many
cryptographic algorithms rely on the assumption that (at the very least) factorization is not in BPP.
We claim:

Lemma 2. Suppose a, n ∈ Z and gcd(a, n) = 1. Then, n is prime iff (X + a)n = Xn + a, where
the equality is over Zn[X].

Proof. We always have the binomial identity (x+ a)n =
∑n

i=0

(
n
i

)
xian−i where

(
n
0

)
=
(
n
n

)
= 1. If n

is prime then for all i > 1, (
n

i

)
= n(n−1)···(n−i+1)

i!

The prime n divides the numerator once, and does not divide the denominator, hence
(
n
i

)
mod n =

0 and we are done (and for this part a can be any integer, not necessarily co-prime with n).

Suppose n is not prime and a ∈ Z s.t. gcd(a, n) = 1. Then n has a prime factor p and an integer k
such that pk divides n but pk+1 does not. Consider the monomial with coefficient(

n

p

)
=
n(n− 1) . . . (n− p+ 1)

p!
.

pk divides n but p doesn’t divide (n− 1), . . . , (n− p+ 1), meaning pk|n(n− 1) . . . (n− p+ 1) but
pk+1 does not. Also, p divides p but not 1, . . . , p − 1, meaning p|p! but p2 does not. Therefore,
pk−1|

(
n
p

)
, but pk -

(
n
p

)
. This means that n -

(
n
p

)
, so the monomial xp does not vanish.

2 The AKS algorithm

2.1 Outline and Complexity

The AKS algorithm [1] is a deterministic polynomial time algorithm for primality testing based on
the characterization in Lemma 2. However, there is a problem in turning this characterization to
a primality testing algorithm. To understand this, consider the following naive pseudo-algorithm:

Algorithm 2 Naive AKS

1. Check if (X + a)n = Xn + an for some arbitrary a ∈ Zn (say a = 2).

2. If there equality return ”Prime” otherwise return ”Composite”.

First, Lemma 2 implies that this algorithm is indeed a deterministic algorithm for primality testing.
The problem is that the equality in step 2 is not an equality of integers, but rather an equality
of polynomials, namely the PIT problem, and we do not know how to test this equality efficiently
in general. Computing the polynomial would clearly require Ω(n) time as potentially this polyno-
mial may have Ω(n) nonzero coefficients which is exponentially more time than we are allowed to
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use. In fact, our problem now reduces to a special case of the famous PIT problem - testing the
equality of two polynomials. The AKS algorithm finds a way around this and manages to solve
deterministically this special case of PIT.

The approach is based (among other things) on an idea we already saw in the one-sided error
algorithm for PIT. In the PIT algorithm we needed to evaluate a given polynomial f(x) at a point
p ∈ RN , but the value of f(p) might be extremely large. Roughly, this is because polynomials
might have degree exponentially large in their size of representation. To overcome this problem we
computed this value modulus some prime, allowing us to use the fast exponentiation algorithm while
controlling the magnitude of the values. Analogously, we will check the equality (X+a)n = Xn+a
modulus some polynomial, namely check whether (X + a)n = Xn + a (mod ψ(x)).

Algorithm 3 AKS

1. Check whether n is a perfect power. If so, return ”Composite”.

2. Set r̄ = 2000 log6 n

3. Check for all 2 ≤ i ≤ r̄ that (i, n) = 1. If not, return ”Composite”.

4. Find 2 ≤ r ≤ r̄ s.t. ordr(n) > t0 = 9 log2 n 1. The order of an element ordr(n) is defined in
the next section.

5. For all 1 ≤ a ≤ r, check whether (X + a)n = Xn + a over the ring Zn[X] (mod Xr − 1).

6. If one of the tests failed - return ”Composite”. Else, return ”Prime”.

We start by going over the algorithm and verify that each step can be done in polynomial time:

• Step 1: We need to verify if there exists integers a, k such that n = ak and k > 1. First
we rule out n = 1. If n > 1 then clearly a > 2 and so n = ak ⇒ log n = k log a > k and
so k 6 log n. Therefore, it suffices to verify if for k = 2, 3, 4, . . . , log n there exists n = ak.
For every fix k 6 log n this can be verified in polynomial time (i.e, polylog(n) time). To see
this consider the trivial algorithm which preforms binary search to find such a which takes
O(log n) time. We conclude that this step takes O(log2 n) time.

• Step 3: We can compute (i, n) using Euclid’s algorithm in O(log n) for any i = 2, . . . , r̄ =
O(log5 n) and therefore this step takes O(log7 n) time.

• Step 4: This step seems a bit dubious as it is unclear whether there exists an integer r
satisfying ordr(n) > log2 n and r 6 r̄. Nonetheless, this step can be done efficiently using
brute force approach. There are O(log2 n) many integers to check r = 1, 2, . . . , r̄ = O(log5 n)
and all we need to check is that we can verify if ordr(n) > t0 or not efficiently. To do this one
can simply compute r2, r3, . . . , rt0 (which can be done efficiently using fast exponentiation).
If r2, r3, . . . , rt0 6= 1 (mod r) then ordr(n) > t0 and otherwise ordr(n) 6 t0. In total, this
step takes O(r̄ log3 n) = O(log9 n).

• Step 5: This step can be done using fast exponentiation algorithm. That is, compute
(X + a)2i (mod Xr − 1) for i = 1, 2, . . . , r sequentially. In each iteration we can main-

1ordr(n) is the order of the element n within the group Z∗r . This is formally defined in Section 3.
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tain our polynomial to have degree at most r. A naive computation of the square of degree
r polynomials takes O(r2) time which is O(log12 n) time (this can be reduced to roughly
O(r log r log n) times using FFT). After that we have to multiply log n such polynomials.
There are r such computations then this step takes O(r3 log n) = O(log19 n) time in total.

2.2 Simple Lemma

Step 4 of the AKS algorithm seems a bit suspicious as it is not clear that there exists an integer
r 6 r̄ such that ordr(n) > t0. The next lemma shows that such r always exists.

Lemma 3. For every n ∈ N there exists 2 6 r 6 r̄ = 2000 log5 n such that ordr(n) > t0 = 9 log2 n.

Proof of Lemma 3. We will show that such r exists using a simple counting argument. Suppose r
is such that ordr(n) = i 6 t0. Note that,

• ordr(n) = 1⇒ n1 = 1 (mod r)⇒ r | n− 1

• ordr(n) = 2⇒ n2 = 1 (mod r)⇒ r | n2 − 1
...

• ordr(n) = t0 ⇒ nt = 1 (mod r)⇒ r | nt0 − 1

Therefore, such r must divide the product
∏t0
i=1(ni − 1). Denote A =

∏t0
i=1(ni − 1) then A is some

positive integer bounded by
t0∏
i=1

ni = n
∑t0
i=1 i 6 nt

2
0 .

Also, A has at most logA 6 t20 log n distinct prime factors. On the other hand we have the following
lower bound on the prime counting funciton.

Claim 4 (Chebyshev’s Bound). For any natural number k ∈ N+ we have,

π(2k) >
k

log(2k)
,

where π(k) denotes the number of prime numbers smaller or equal to k.

It follows that there are at least r̄
2 log(r̄) = 1000 log5 n

log(2000)+log5 n)
primes which are small or equal to r̄. It

straightforward to verify that 1000 log5 n
log(2000)+log5 n)

> 81 log5 n = t20 log n for every n ∈ N+. Hence there

must be some prime which does not divide A. Denote this prime by r then as r does not divide A
we have ordr(n) > t0. We remark that in the paper the argument is done in a more concise way
and r̄ = log5 n suffices.

3 Some mathematical preliminaries

3.1 Multiplicative Order

For an integer r, Z∗r = {1 ≤ a ≤ r | (a, r) = 1}. Z∗r is a multiplicative group. ϕ(r) = |Z∗r | is Euler’s
totient function. For example, If p, q are prime, ϕ(p) = p − 1 and ϕ(pq) = pq − p − q + 1. In our
case, (n, r) = 1 (because r ≤ r̄) and so n ∈ Z∗r and nϕ(r) = 1.
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Definition 5. ordr(n) is the smallest number k ≥ 1 s.t. nk = 1 (mod r).

3.2 Cyclotomic Polynomials

How does x6 − 1 factor over C? It has exactly 6 roots - we define ω = e
2πi
6 and get

X6 − 1 =

5∏
k=0

(X − ωk)

How does X6−1 factor over Z? An easy claim (to be given as homework) shows that Xa−1 | Xb−1
iff a | b. Therefore, X − 1, X2− 1, X3− 1 divide X6− 1. It is not true that X6− 1 = (X − 1)(X2−
1)(X3 − 1) because X − 1, X2 − 1, X3 − 1 have common factors.

Definition 6. ω is a primitive d-root of unity if ωd = 1 and ωi 6= 1 for all i < d.

Definition 7. The d-th cyclotomic polynomial is

Φd(X) =
∏

ω is a primitive
d-root of unity

(X − ω).

Lemma 8. For all r,

Xr − 1 =
∏
d|r

Φd

Proof. We compare the r roots of xr − 1 with the roots of Πd|rΦd.

There are r different roots of unity of order r. In particular all the roots of xr − 1 are different,
i.e., xr− 1 is separable. (A polynomial p ∈ K[x] is separable, if p has distinct roots in the algebraic
closure of K). Every r-root of unity is a primitive d-root of unity for some d | r. Thus, we can
define a mapping from the roots of xr − 1 to the roots of

∏
d|r Φd. This map is one-to-one (because

xr − 1 is separable) and onto (because each primitive root of order d|r is a root of order r). Hence
the two polynomials have the same roots in the algebraic closure and are equal.

We therefore get the following sequence of polynomials:

Φ1 = x− 1

Φ2 =
x2 − 1

Φ1
= x+ 1

Φ3 =
x3 − 1

Φ1
=
x3 − 1

x− 1
= x2 + x+ 1

Φ4 =
x4 − 1

Φ1Φ2
=
x4 − 1

x2 − 1
= x2 + 1

Φ5 =
x5 − 1

Φ1
= 1 + x+ x2 + x3 + x4

Φ6 =
x6 − 1

Φ1Φ2Φ3
= (x− ω)(x− ω5).
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The representation of Φ6 as (x− ω)(x− ω5) does not immediately reveal that Φ6 is a polynomial
over Z (even though it is relatively easy to see that because w5 = ω̄). A better way to see that Φ6

is a polynomial over Z is:

Fact 9. If f · g ∈ Q[X] and f ∈ Q[X], then g ∈ Q[X]. If f · g and f are monic and in Z[X] then
g ∈ Z[X].

With that we claim:

Claim 10. Φd ∈ Z[x].

Proof. By induction on d. For d = 1, Φ1 = x − 1. Assume for d < n. Then, Φn = xn−1
Πd|n,d<nΦd

and

the claim follows by induction and the Fact 9

Finally:

Fact 11. The polynomial Φd(X) is irreducible over Z[X] for any d.

3.3 Finite fields

For every prime power pk there exists a finite field with pk elements. We describe one representation
of such a field. Take an irreducible polynomial E ∈ Zp[X] of degree k (A fact: for every finite field
F and integer k there exists an irreducible polynomial of degree k over F ). The elements of our
new field, Fpk , are Zp[X] (mod E(X)), i.e., the polynomials over Fp[X] with degree smaller than
k. The addition and multiplication operations are:

• Addition: regular polynomial addition,

• Multiplication: f · g (mod E).

Definition 12. Suppose F ⊂ K are finite fields. Let z ∈ K. We say z is algebraic over F if there
exists a polynomial p ∈ F [x] such that p(z) = 0.

Definition 13. Suppose F ⊂ K are finite fields and z ∈ K algebraic over F . The minimal
polynomial of z is the least degree monic polynomial among all polynomials in F [X] that has z as
its root.

Remark 14. The minimal polynomial is unique.

Claim 15. Suppose F ⊂ K are finite fields, z ∈ K algebraic over F and p(X) ∈ F [X] is the
minimal polynomial of z. Then, if q(z) = 0 for some q ∈ F [X] then p|q.

For example, consider R ⊆ C. The minimal polynomial of i over R is x2 +1. In general, the minimal
polynomial of z ∈ C is (x− z)(x− z̄) = x2 − (z + z̄)x+ zz̄, which always a real polynomial.

Claim 16. If F is a finite field then F∗ = F \ {0} is a multiplicative group.

The above claim implies that for any z ∈ Fq it holds that zq−1 = 1 and so for any z ∈ Fq it holds
that zq = z. Therefore,

Xq−1 − 1 =
∏
z∈F∗q

(X − z)

and all elements in Fq are algebraic over Fp (where p is the characteristic of Fq).
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3.3.1 Finding the minimal polynomial

Let us first consider the familiar field extension R ⊂ C. If z = a + bi ∈ C \ R with a, b ∈ R,
then the minimal polynomial of z is the polynomial p(x) = (x− z)(x− z̄) = x2 − (z + z̄)x+ zz̄ =
x2 − 2ax+ |z|2 ∈ R[x]. z̄ is the conjugate of z. In fact, there is one automorphism of K that keeps
R in place, which is the mapping ψ : (a+ bi)→ (a− bi) and the conjugate of z is ψ(z).

The situation when F ⊂ K are finite fields is similar. Suppose F = Fp[X] (mod E) is an extension
field of Fp with pk elements. The mapping ψ : z → zp is an automorphism of F leaving the base

field Fp unchanged, and so are the mappings z → zp
i
. The conjugates of z ∈ F, are zp

i
for i ∈ N.

The conjugates repeat themselves and go in cycles of length k, and sometimes with shorter cycles
whose length divides k.

Now let z ∈ F. Clearly p(X) = X |F| − x is a polynomial in Fp[X] and z vanishes on p(X), so z is
algebraic over Fp. Suppose Q(x) is the minimal polynomial of z over Fp. Denote Q(x) =

∑
αix

i

where αi ∈ Fp then Q(z) = 0⇒ Q(zp) = 0. To see this,

Q(zp) =
∑

αiz
pi =

(∑
αiz

i
)p

=
(
Q(z)

)p
= 0

Applying this repeatedly we get that Q(z) = 0 implies Q(zp
i
) = 0 for every i ∈ N. This suggests

that all the conjugates of z are roots of Q(X) (i.e, roots of the minimal polynomial of z). In fact,
these are the only roots of the minimal polynomial of z.

Claim 17. Suppose Fp ⊂ Fq where p is prime (hence q = pk for some k), z ∈ Fq algebraic over Fp
and p(X) ∈ Fp[X] is the minimal polynomial of z. Then,

p(X) =
∏
α is a

conjugate of z

(X − α).

3.3.2 An Example

Let us construct a field with 73 elements. Let E(x) = X3 + 2,F′ = F7[X] (mod E). To see that
E is irreducible over F7, notice that otherwise E must have a linear factor (because E is degree 3)
but it does not have a linear factor because it does not vanish on F7.

Now, let us find the minimal polynomial of z = X2 ∈ F′. We first compute the conjugates of z
(remember that in F, X3 = −2):

z = X2

z7 = x14 = X3·4+2 = (−2)4X2 = 16X2 = 2X2

z72 = (2X2)7 = 2 · (2X2) = 22X2

z73 = (22X2)7 = 2 · (22X2) = 23X2 = x2.

Therefore, the minimal polynomial of z = X2 is Q(Y ) = (Y − X2)(Y − 2X2)(Y − 4X2). In this
representation it looks as if Q does not have coefficients from F7. However, the coefficients are
symmetric functions in the conjugates and do belong to F7. For example, the free coefficient is
−X2 · 2X2 · 4X2 = −8X6 = −32 = 3 ∈ F7.
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3.4 The factorization of Φr over Fp

Suppose (n, p) = 1. How does Xn − 1 and Φn(x) factorize over Fp? To answer this we try to
analogously define cyclotomic polynomials over Fp, or more accurately, over the algebraic closure
of Fp, namely Fp = ∪kFpk .2

Definition 18. We say that α ∈ Fp is a primitive d’th root of unity if αd = 1 (this equality is in
the field Fp) and d is the least such positive integer with that property.

Definition 19. Define Φd(p)(X) to be the monic polynomial whose roots are all the primitive d’th

roots of unity in Fp = ∪kFpk . That is,

Φd(p)(X) =
∏

α is a d’th
primitive root of unity

(X − α)

Note that the definition of Φd(p)(X) over Fp is completely analogous to the definition of Φd(X) over
C. Using the cyclotomic polynomials Φd(X) we were able to factorize the polynomial Xn − 1 over
C Xn − 1 =

∏
d|n Φd(X). We now prove an analogous claim over Fp.

Claim 20. Let f(X) ∈ Fp[X]. f is separable iff gcd(f, f ′) = 1 (f ′ is the formal derivative of the
the polynomial p).

Using that (n, p) = 1 we conclude that Xn − 1 is separable (i.e, all roots have multiplicity 1) and
so we conclude that

Xn − 1 =
∏
d|n

Φd(p)(X)

over Fp (the proof is the same as over C). Using again the same induction we see that Φd(p)(X) ∈
Fp[X]. In fact,

Claim 21. Suppose d is relatively prime to p. Then Φd(p)(X) = Φd(X) (mod p).

Proof. Φ1(p) = x− 1 = Φ1. By induction, Φn(p) =mod p
xn−1

Πd|n,d<nΦd(p)
= xn−1

Πd|n,d<nΦd
= Φn.

Henceforth we will write Φd(X) for the d’th cyclotomic polynomial, whether we are over C or Fp).
Recall that Φd(X) is irreducible over C which brings us to the next question - is Φd(X) irreducible
over Fp? The answer is ”no”, in general.

Example 22. The cyclotomic polynomial Φ7(X) = X6 +X5 +X4 +X3 +X2 +X+1 is irreducible
over C though reducible over F2 Φ7(X) = (X3 +X2 + 1)(X3 +X + 1) (mod 2).

Now, suppose Φd(X) factorizes over Fp[X]. What do the factors over Fp look like? To answer
that, suppose θ is a root of Φd in the algebraic closure of Fp. According to Claim 17 the minimal
polynomial of θ (over Fp) is given by

m(X) =

k∏
i=1

(X − θpi),

2This is the minimal field extension of Fp satisfying that every polynomial f(X) ∈ Fp[X] completely factorizes in
it, i.e all the roots of f(X) are in Fp
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where k is the minimal positive integer such that θp
k

= 1, i.e., θp
kmod d = 1 (because θ is a

primitive d root of unity), or equivalently k = ordd(p) (note that this quantity only depends on d, p
and independent on the choice of θ). Also recall that the minimal polynomial m(X) must divide
any polynomial that has θ as its root. Thus m(X) is an irreducible (over Fp) dividing Φd(X).
This can be done to any root (in the aslgebraic closure) of Φd, implying that Φd(X) factorizes to

minimal polynomials each of degree exactly ordd(p). That is, Φd(X) factors into deg(Φd)
ordd(p) = ϕ(d)

ordd(p)

irreducible polynomials over Fp each of degree ordd(p) (as a sanity check verify that ordd(p) divides
ϕ(d)).

Example Consider d = 10 and take prime p such that ord10(p) = 2. Consider Φ10(x) = X4 −
X3 +X2 −X + 1 then Φ10(X) factors into 2 irreducible polynomials over Fp of degree 2 each.

Φ10(X) = (X2 + aX + b)(X2 + cX + d)

There exist θ, ζ in the algebraic closure of Fp s.t.

X2 + aX + b = (X − θ)(X − θp)
X2 + cX + d = (X − ζ)(X − ζp)

Indeed, take p = 19 then ord10(p) = 2 and Φ10(X) = (X2 + 4X + 1)(X2 + 14X + 1) (mod 19).

4 Correctness of The AKS Algorithm

4.1 Proof Overview

To prove that the AKS algorithm works we need to show that an integer n is prime if and only if
the AKS algorithm outputs ”Prime”. The easy direction is that if n is prime then the algorithm is
correct, i.e outputs ”Prime” and indeed this is straightforward to see. The hard direction is proving
that if n is not prime then the algorithm outputs ”Composite”.

Theorem 23. If n is compositite then the AKS algorithm outputs ”Composite”.

We are going to prove the contra-positive of this statement, namely that if the AKS outputs ”Prime”
then n is necessarily prime. Therefore, our starting point is an integer n that passes all the tests
(i.e, the AKS algorithm outputs ”Prime”). The proof is by contradiction - we shall assume that n
is composite and reach a contradiction. To simplify things lets write down all the properties of n:

• n has at least two distinct large prime factors. That is, there exists primes p 6= q such that
p, q|n and p, q = Ω(log5 n).

• For every i = 1, 2, . . . , r̄ it holds that (i, n) = 1. In particular (n, r) = 1.

• There exists an integer r 6 r̄ such that for every a = 1, . . . , r it holds that,

(X + a)n = Xn + a (mod Xr − 1, n).

It follows that n has two distinct prime factors since n n is composite and not a perfect power.
Also, due to the fact that n passed step 2 of the algorithm, for every i = 1, 2, . . . , r̄ it holds that
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(i, n) = 1. This shows that the above first two properties hold. The last property is since n passed
step 5 of the algorithm. Our objective is to show if n satisfy all the above properties then this leads
to a contradiction.

Henceforth n denotes a composite integer which satisfy all of the above properties and p is some
(large) prime factor of n. Also, denote

R = Zp[X] (mod Xr − 1)

and every equality of polynomials is by default equality in the polynomial ring R (unless stated
explicitly otherwise). That is, the equality f = g means that there exists a polynomial A(X) ∈ Z[X]
such that f(X) = g(X) +A(X) · (Xr − 1).

Lets start by giving an overview of the proof highlighting the key ideas. The main idea is to consider
the set P of all polynomials f ∈ R satisfying

f(Xn) = f(X)n (mod Xr − 1, n). (1)

Let us explain why this is a natural thing to do. If n is prime then P is simply the set of all
polynomials (as X → Xq is an automorphism of Zq if q is prime). However, in our case n is
not prime though it behaves like a prime in the sense that it passes all the tests, specifically that
equation (1) holds for all a = 1, 2, . . . , r. This immediately implies that all the polynomials (X+a)
for a = 1, 2, . . . , r are in the set P and possibly suggests that P is large. Indeed, we will show
that this holds by showing that P satisfy some closure properties. On the other hand, we shall
show that the fact that n has two distinct large prime factors implies that P cannot be too large
which leads to a contradiction (as P must be large). To make this argument work we will need
algebraic tools that we can apply. Unfortunately, we are not working over a field but rather over
the polynomial ring Zn[X] (mod Xr − 1) which makes life a bit harder for us. To amend this our
analysis will be done in Zp[X] (mod ψ(X)) where ψ(x) is some irreducible factor of Xr − 1 and
hence Zp[X] (mod ψ(X)) is a field.

4.2 The Set P and Its Properties

We shall now define the set P and a more general class of sets.

Definition 24. For every integer m define Pm = {f ∈ R | f(Xm) = f(X)m (mod Xr − 1, p)}.
Moreover, define P = Pn.

Remark 25. The polynomial f(Xm) is obtained by substituting Xm to f(X). For instance, if
f(X) = X3 +X + 6 and m = 2 then f(X2) stands for the polynomial X6 +X2 + 6.

Claim 26. The set Pm is well defined.

Proof. It is not trivial that Pm is well-defined as the operation f(X) → f(Xm) may not respect
the equivalence classes of R. To see that this is non-trivial we give a non-example first. Consider
f(X) = X + 1, g(X) = 0 in the ring Zn[X] (mod X + 1) then clearly g(X), f(X) are both
equivalent to the zero polynomial and so are f(X)2, g(X)2. On the other hand, while g(X2) = 0 is
also equivalent to the zero polynomial, the polynomial f(X2) = X2 +1 is not equivalent to the zero
polynomial in the ring Zn[X] (mod X + 1). Fortunately for us, P is well defined in the polynomial
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ring R. To see this, let f = g in the polynomial ring R then f(X) = g(X)+A(X)·(Xr−1)+p·B(X)
for some polynomials A(X), B(X) ∈ Z[X]. Thus,

f(Xm) = g(Xm) +A(Xm)(Xmr − 1) + pB(Xm)

= g(Xm) +A(Xm)(Xr(m−1) +Xr(m−2) + . . .+Xr + 1) · (Xr − 1) + p ·B(Xm)

and so f(Xm) = g(Xm) in the polynomial ring R.

One immediate observation is:

Observation 27. Pp = R.

Another simple claim is:

Claim 28. For every j = 1, 2, . . . , r we have (X + j) ∈ Pn.

Proof. Let 1 6 j 6 r. Since n passed step 5 of the algorithm we have (X+j)n = Xn+j (mod Xr−
1, n). Thus,

(X + j)n = Xn + j (mod Xr − 1, n)

= A(x)(Xr − 1) +Xn + j + nB(X)

= Xn + j (mod Xr − 1, p)

because p|n.

We now show P has a closure property:

Claim 29. f, g ∈ Pm ⇒ f · g ∈ Pm.

Proof. Let f, g ∈ Pm then f(Xm) = f(X)m (mod Xr − 1, p), g(Xm) = g(X)m (mod Xr − 1, p).
Thus,

f · g(Xm) (mod Xr − 1, p) = f(Xm) · g(Xm) (mod Xr − 1, p)

=
(
f(X)

)m · (g(X)
)m

(mod Xr − 1, p)

=
(
f(X) · g(X)

)m
(mod Xr − 1, p)

=
(
f · g(X))

)m
(mod Xr − 1, p).

Corollary 30. For any α1, . . . , αr ∈ N we have
∏r
j=1(X + j)αj ∈ P .

Next, we show a closure property of a different kind:

Claim 31. f ∈ Pm, f ∈ Pk ⇒ f ∈ Pm·k

11



Proof. Set Y = Xm. Then Xr − 1 | Y r − 1 = Xrm − 1

f(Xm·k) (mod Xr − 1, p) = f(Y k) (mod Y r − 1, p)

=
(
f(Y )

)k
(mod Y r − 1, p)

=
(
f(Y )

)k
(mod Xr − 1, p)

=
(
f(Xm)

)k
(mod Xr − 1, p)

=
(
f(X)

)m·k
(mod Xr − 1, p).

4.3 Projecting P To a Field

The next step in the proof is to embed P = Pn in a field. To achieve this, let ψ(X) be an irreducible
factor of Φr(X) (which is a factor of Xr−1). According to section 3.4 the degree of ψ equals ordr(p).
Consider F = Zp[X]/ψ(X) which is a field extension of Zp of degree deg(ψ) = ordr(p). Note that
r 6= p as (n, r) = 1, but a-priori it is possible that p = 1 (mod r) and ordr(p) = 1, i.e the extension
might be trivial or not. The elements of F can be though of as polynomials in Zp[X] of degree at
most deg(ψ)− 1.

Next, we project the elements of P = Pn to F.

Definition 32. Define Pψ = {f (mod ψ(X), p) | f ∈ P}.

What can one expect from this projection? Is it one-to-one? The answer is NO. The set P is
infinite but the set Pψ is finite.However, we shall soon see that it is one-to-one on a large subset of
P .

Our lower and upper bounds on Pψ will not be absolute, but rather related to a different quantity
which is the size of the following set.

Definition 33. Define G =
{
i | i ∈ N ∧ (i, r) = 1 ∧ ∀f ∈ P.f(Xi) = f(X)i (mod Xr − 1, p)

}
.

The set G is naturally a subset of N. However, we are more interested in working over the multi-
plicative group Z∗r , which is more natural to us as we work with polynomials modulus Xr − 1, and
so we will project G to Zr by taking all its elements modulus r.

Definition 34. Define Gr = {i (mod r) | i ∈ G}.

Observation 35. Note that while Gr is naturally a subset of Zr and in fact a subset of Z∗r as all
the elements of G are co-prime to r.

Claim 36. Gr is closed under multiplication.

Proof. Let i, j ∈ Gr then for all f ∈ P it holds that f(Xi) = f(X)i (mod Xr − 1, p), f(Xj) =
f(X)j (mod Xr − 1, p) and (i, r) = (j, r) = 1. We want to show that ij ∈ G which is equivalent to
showing that for any f ∈ P it holds that f(Xij) = f(X)ij (mod Xr − 1, p). Let f ∈ Z[X] then in
particular f ∈ Pi, Pj . According to Claim 31 it holds that f ∈ Pij . Also note that (i, r) = (j, r) = 1
implies (ij, r = 1 therefore ij ∈ Gr as required.

12



Corollary 37. For any i, j ∈ N it holds that nipj ∈ Gr.

Proof. Using that Gr is closed under multiplication it suffices to prove that n, p ∈ G. For n this
follows almost by definition as (n, r) = 1 and f ∈ P ⇒ f(Xn) = f(X)n (mod Xr − 1, p). To see
that p ∈ G first note that since (n, r) = 1 and p|n then (p, r) = 1. Let f ∈ Z[X] be any polynomial
then f(Xp) = f(X)p in Zp[X] (Frobenius automorphism) and in particular this holds for every
f ∈ P and modulus Xr − 1.

Corollary 38. |Gr| > ordr(n) > t0.

Proof. For any 1 6 i 6 ordr(n) the elements ni are distinct in Z∗r and are also in Gr due to the
above corollary.

The above corollary sheds a little on the choice of r (See step 2 of the algorithm). It is meant to
ensure that |Gr| is large.

Claim 39. Gr is a subgroup of Z∗r.

Proof. We showed that Gr is closed under multiplication. Clearly Gr is associative and 1 ∈ Gr unit
element, thus it is left to show that Gr is closed under taking the inverse. This basically follows
since Gr ⊆ Z∗r is a subset of a finite group. To see this, let g ∈ G then also g2, g3, . . . ∈ Gr since Gr
is closed under multiplication. By the pigeonhole principle gi = gj for some i < j and so gi−j = 1
(make sure you understand how the fact that Gr is a subset of a group is used).

4.4 Proving |Pψ| Is Large

The lower bound will be proved as follows. We will first find a large set in P . Roughly speaking,
this set will be the set of all polynomials of the form

∏n
i=1(X + i)ji . However, recall that we are

no longer interested in P but rather in Pψ and the problem is that during the projection of P to
Zp[X] (mod Xr − 1) this set might shrink significantly. This is where Gr comes into play and it
turns out that restricting our degree to be smaller than |Gr| does the trick.

Definition 40. A =
{

(X + 1)j1(X + 2)j2 · · · (X + r)jr ∈ Zp[X] |
∑r

i=1 ji < |Gr|
}

Claim 41. |A| =
(|Gr|+r−1
|Gr|−1

)
.

Proof. We first notice that the polynomials in A are indeed distinct in Zp[x]. This is because Zp[x]
is aUFD (unique factorization domain) and different polynomials in A have different factorization,
because r < p.

Calculating the size of A is now equivalent to calculating the number of non-negative integer solu-
tions to the inequality

∑r
i=1 ji 6 |Gr|− 1. This is equivalent to the number of non-negative integer

solutions to the equality
∑r+1

i=1 xi = |Gr| − 1 (by introducing another dummy variable). Generally,
an easy combinatorial argument reveals that the number of non-negative integers solutions to the
equation

∑N
i=1 xi = K equals

(
N+K−1

K

)
and so the claim follows by substituting N = r + 1 and

K = |Gr| − 1.

Lemma 42. Let f, g ∈ A such that f 6= g as polynomials in R then f 6= g in F.
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Proof of Lemma 42. Let f, g ∈ R such that f 6= g and assume f(X) = g(X) in F as field elements,
f, g are equivalent as polynomials modulus ψ(X) and p. Also, let i ∈ Gr then,

(f − g)(Xi) = f(Xi)− g(Xi) = f(X)i − g(X)i = 0,

then Xi is a root of (f − g)(X). That is, we treat f, g as polynomials in the polynomial ring F[X]
and substitute the field elements Xi ∈ F where i ∈ Gr. Applying this to every element of Gr we
obtain |Gr| roots.

We now claim the roots Xi are distinct in F. This is true because X is a root of ψ, and we saw
before that the roots of ψ(X) (or any irreducible factor of Φr over Fp) are primitive roots of unity
of order r over the algebraic closure of Fp. Hence Xi are all distinct, as long as i < r, which holds
because any i ∈ Gr is an element of Z∗r .
Thus, we found |Gr| distinct roots of f − g. However, deg(f), deg(g) < |G| ⇒ deg(f − g) < |G| and
therefore, f − g ∈ F must be the zero polynomial in the sense that every coefficient of it is zero, or,
equivalently, that f = g in R.

Lemma 43. |Pψ| > 2|Gr|−1.

Proof. Lemma 42 implies that the mapping f → f (mod ψ(X), p) from the set A to the set Pψ is

one-to-one and hence |Pψ| > |A|. Also, by Claim 41 |A| =
(|Gr|+r−1
|Gr|−1

)
. Since |Gr| 6 r as Gr ⊆ Z∗r

we have |Gr|+ r − 1 > 2(|Gr| − 1) and so,(
|Gr|+ r − 1

|Gr| − 1

)
>

(
2(|Gr| − 1)

|Gr| − 1

)
=
|Gr| · (|Gr|+ 1) · 3 · · · 2(|Gr| − 1)

1 · 2 · 3 · · · (|Gr| − 1)
> 2|Gr|−1.

4.5 Proving |Pψ| Is Small

We showed an upper bound on the size of Pψ in terms of |Gr| and now we give a lower bound in
terms of |Gr|. While proving that Pψ is large relied on the fact that n passed all the tests, proving
the upper bound relies on the fact that n has two large distinct prime factors.

Lemma 44. |Pψ| 6 n2
√
|Gr|.

Proof. We start with the following sub-claim.

Claim 45. There exists two distinct integers m1 6= m2 satisfying:

• m1 = ni1pj1 , m2 = ni2pj2 where 0 6 i1, j1, i2, j2 6
√
|Gr|.

• m1 ≡ m2 (mod r)

Proof. The proof is simply by counting. For convenience let us denote |Gr| = s and note that s > r.
There are (

√
s+1)2 > s > r of pairs (i, j) such that 0 6 i, j 6

√
s though only r elements in Zr. By

the pigeonhole principle there must exists 0 6 i1, j1, i2, j2 6
√
s satisfying ni1pj1 = ni2pj2 (mod r)

where (i1, j1) 6= (i2, j2) (i.e, either i1 6= i2 or j1 6= j2). Thus, to conclude that ni1pj1 6= ni2pj2 (as
integers) it suffices to prove that ni1pj1 = ni2pj2 necessarily implies that i1 = i2, j1 = j2. To see
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this recall that as n has two distinct prime factors p 6= q and so n = pqα · n′ where n′ is co-prime
to q. Thus, ni1pj1 = ni2pj2 implies pi1+j1qαi1(n′)i1 = pi2+j2qαi2(n′)i2 . Using the uniqueness of the
prime factorization, we have αi1 = αi2 ⇒ i1 = i2 (α is clearly nonzero). Cancelling pi1qαi1(n′)i1

from both sides we get pj1 = pj2 and so j1 = j2.

We now proceed with the proof of Lemma 44. Let m1,m2 as given in the above claim and consider
the following polynomial Q(X) = Xm1−Xm2 ∈ Zp[X] (mod ψ(X)). Without the loss of generality
assume m1 > m2. First observe that as m1,m2 are of the form nipj then by Corollary 37 it follows
that m1,m2 ∈ Gr. Next, recall that Zp[X] (mod ψ(X)) is a field (in fact, field extension of Zp)
and its elements are polynomials in Zp[X] modulus ψ(X). This relies on the fact that ψ(X) is
irreducible polynomial in the polynomial ring Zp[X]. Also, note that Q(X) is clearly nonzero as
m1 6= m2. We claim that every element of Pψ is a root of Q. To see this, let f ∈ Pψ then,

Q(f) = f(X)m1 − f(X)m2 (mod ψ(X), p)

= f(Xm1)− f(Xm2) (mod Xr − 1, p)

= f(Xm1)− f(Xm2) (mod ψ(X), p)

= f(Xm1 mod(r))− f(Xm2 mod(r)) (mod ψ(X), p)

= 0.

Note that we used that ψ(X) divides Xr−1 and so congruence modulus Xr−1 necessarily implies
congruence modulus ψ(X).

Note that we consider f ∈ Pψ as a field element of F and evaluate the polynomial Q(X) ∈ F[X] at
the point f . We show this turned out to be always the zero element in the field F. As deg(Q) = m1,
Q may have at most m1 distinct roots and as every element of Pψ is a root of Q we have |Pψ| 6 m1.

Recall that m1 = nipj where i, j 6
√
s then |Pψ| 6 n

√
sp
√
s 6 n2

√
s.

4.6 Proof of Theorem 23

We now prove theorem 23.

Proof of Theorem 23. Lets assume towards contradiction that n is composite and the algorithm
outputs ”Prime”, i.e n passes all the tests. For convenience let us denote |G| = s. According to
Lemma 44 we have |Pψ| 6 n2

√
s. Also, according to Lemma 43 |Pψ| > 2s−1. Putting the two

together yields,
2s−1 6 n2

√
s ⇒ s− 1 6 2

√
s log n⇒ s 6 2

√
s log n+ 1,

and so s 6 (2 log n + 1)2 < 9 log2 n. On the other hand, by Corollary 38 it we have s > 9 log2 n
contradiction. We conclude that there is no composite n for which the algorithm outputs ”Prime”.
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