
BOUNDS FOR DISPERSERS, EXTRACTORS, AND DEPTH-TWO
SUPERCONCENTRATORS∗

JAIKUMAR RADHAKRISHNAN† AND AMNON TA-SHMA‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 2–24

Abstract. We show that the size of the smallest depth-two N -superconcentrator is

Θ(N log2 N/ log logN).

Before this work, optimal bounds were known for all depths except two. For the upper bound, we
build superconcentrators by putting together a small number of disperser graphs; these disperser
graphs are obtained using a probabilistic argument. For obtaining lower bounds, we present two
different methods. First, we show that superconcentrators contain several disjoint disperser graphs.
When combined with the lower bound for disperser graphs of Kővari, Sós, and Turán, this gives an
almost optimal lower bound of Ω(N(logN/ log logN)2) on the size of N -superconcentrators. The
second method, based on the work of Hansel, gives the optimal lower bound.

The method of Kővari, Sós, and Turán can be extended to give tight lower bounds for extractors,
in terms of both the number of truly random bits needed to extract one additional bit and the
unavoidable entropy loss in the system. If the input is an n-bit source with min-entropy k and the
output is required to be within a distance of ε from uniform distribution, then to extract even one
additional bit, one must invest at least log(n − k) + 2 log(1/ε) − O(1) truly random bits; to obtain
m output bits one must invest at least m− k + 2 log(1/ε)−O(1). Thus, there is a loss of 2 log(1/ε)
bits during the extraction. Interestingly, in the case of dispersers this loss in entropy is only about
log log(1/ε).
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1. Introduction.
Superconcentrators. An N -superconcentrator is a directed graph with N distin-

guished vertices called inputs, and N other distinguished vertices called outputs, such
that for any 1 ≤ k ≤ N , any set X of k inputs and any set Y of k outputs, there
exist k vertex-disjoint paths from X to Y . The size of a superconcentrator G is the
number of edges in it, and the depth of G is the number of edges in the longest path
from an input to an output.

Superconcentrators were studied originally to show lower bounds in circuit com-
plexity. Valiant [23] showed that there exist N -superconcentrators of size O(N); Pip-
penger [16] showed that there exist N -superconcentrators of size O(N) and depth
O(logN). On the other hand, Pippenger [17] showed that every depth-two N -
superconcentrators has size Ω(N log2N). This raised the question of the exact tradeoff
between depth and size, which attracted much research during the last two decades [17,
7, 19, 1]. Table 1.1 gives a summary of the results. Here λ(d,N) is the inverse of
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Table 1.1

Depth Size

2 O(N log2 N) [17], Ω(N log3/2 N) [1]
3 Θ(N log logN) [1]
4, 5 Θ(N log∗N) [7, 19]
2d, 2d+ 1 Θ(Nλ(d,N)) [7, 19]
Θ(β(N)) Θ(N) [7]

functions in the Ackerman hierarchy: λ(1, N) behaves like logN , λ(2, N) behaves
like log∗N . In general, λ(d,N) decays very rapidly as d grows; β grows more slowly
than the inverse of any primitive recursive function. We refer the reader to [7] for
the definition of λ and β. Thus, the dependence of the size on the depth was well
understood for all depths except two. In this paper, we close this gap.

Let size(N) denote the size of the smallest depth-two N -superconcentrator.

Theorem 1.1 (main result). Size(N) = Θ
(
N · log2 N

log logN

)
.

For the upper bound, we use the method of Wigderson and Zuckerman [24], who
showed how superconcentrators can be constructed using a type of expander graphs
called disperser graphs.

Definition 1.2 (disperser graphs [20, 6]). A bipartite graph G = (V1 = [N ], V2 =
[M ], E) is a (K, ε)-disperser graph, if for every X ⊆ V1 of cardinality K, |Γ(X)| >
(1 − ε)M (i.e., every large enough set in V1 misses less than an ε fraction of the
vertices of V2). The size of G is |E(G)|.

Nisan and Wigderson suggested (see [14]) that it might be possible to choose
better parameters in the construction given in [24]. We implement their suggestion to
obtain superconcentrators by putting together a smaller number of disperser graphs.
These disperser graphs are obtained by probabilistic arguments.

Remark. The best explicit construction known gives N -superconcentrators of size
O(N(logN)poly(log log n)) (see [22, 13]).

We also observe a connection in the opposite direction: every depth-two su-
perconcentrator contains many disjoint disperser graphs. Thus, lower bounds for
disperser graphs imply lower bounds for depth-two superconcentrators. Using this
method, we derive a simple Ω(N · (logN/log logN)2) lower bound for depth-two N -
superconcentrators; this is only a factor of log logN away from the upper bound. To
obtain the optimal lower bound, we use a method based on the work of Hansel [9]
(see also Katona and Szemerédi [11]).

Dispersers and extractors. Disperser graphs arise from disperser functions. For a
random variable X taking values in {0, 1}n, the min-entropy of X is given by

H∞(X) = min
x∈{0,1}n

log(1/Pr[X = x]).

Definition 1.3 (dispersers). F : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-disperser
if for all random variables X taking values in {0, 1}n with H∞(X) ≥ k and all W ⊆
{0, 1}m of size at least ε2m, we have

Pr[F (X,Z) ∈W ] > 0,

where Z is uniformly distributed over {0, 1}d.
With F : {0, 1}n × {0, 1}d → {0, 1}m, we associate the bipartite graph GF =

(V1, V2, E), where V1 = {0, 1}n, V2 = {0, 1}m, and there is one edge of the form (x,w)
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for each z such that f(x, z) = w. In this graph, the degree of every vertex in V1 is
exactly 2d.

It is then easy to verify the following.
Proposition 1.4. F is a (k, ε)-disperser iff GF is a (2k, ε)-disperser graph.
One special case of disperser graphs is the class of highly-expanding graphs [18],

sometimes called a-expanding graphs [24]. These are bipartite graphs G = (A =
[N ], B = [N ], E), where for any two subsets X ⊆ A, Y ⊆ B of size a, there is an edge
between X and Y . This is clearly equivalent to saying that G is a (K = a, ε = a

N )-
disperser graph. If G is an a-expanding graph, then Ḡ (the bipartite complement of G)
has no subgraph isomorphic to Ka,a. Such graphs have been studied extensively, and
the problem of determining the maximum possible number of edges in these graphs
is known as the Zarankiewicz problem (see [2, pp. 309–326]). An elegant averaging
argument, due to Kővari, Sós, and Turán, gives good upper bounds on the number
of edges in these graphs. When applied to disperser graphs, this method gives the
following lower bounds.

Theorem 1.5 (lower bounds for disperser graphs). Let G = (V1 = [N ], V2 =
[M ], E) be a (K, ε)-disperser. Denote by D̄ the average degree of a vertex in V1.

(a) Assume that K < N and
⌈
D̄
⌉ ≤ (1−ε)M

2 (i.e., G is not trivial). If 1
M ≤ ε ≤ 1

2 ,

then D̄ = Ω( 1
ε · log N

K ), and if ε > 1
2 , then D̄ = Ω( 1

log(1/(1−ε)) · log N
K ).

(b) Assume that K ≤ N
2 and D̄ ≤M/4. Then, D̄K

M = Ω(log 1
ε ).

Dispersers play an important role in reducing the error probability of algorithms
that make one-sided error. In such applications, we typically have ε ≤ 1/2. Also,
a-expanding graphs fall in this category, because there ε tends to 0. Hence, the
case ε ≤ 1/2 is the one usually studied. However, for showing lower bounds for
superconcentrators, we need to consider the case ε > 1/2.

For reducing the error in algorithms that make two-sided error, one requires the
function to satisfy stronger properties. Such functions are called extractors. For a
survey of constructions and applications of dispersers and extractors, see the paper
of Nisan [13].

For distributions D1 and D2 on {0, 1}n, the variational distance between D1 and
D2 is given by

d(D1, D2) = max
S⊆{0,1}n

|D1(S)−D2(S)|.

Definition 1.6 (extractors). F : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor,
if for any distribution X on {0, 1}n with H∞(X) ≥ k, we have that d(F (X,Ud), Um) <
ε, where Ud, Um are random variables uniformly distributed over {0, 1}d and {0, 1}m,
respectively.

In this view, an extractor uses d random bits to extract m quasi-random bits
from a source with min-entropy k. Graphs arising from extractors have uniformity
properties similar to random graphs.

Definition 1.7 (extractor graphs). A bipartite multigraph G = (V1 = [N ], V2 =
[M ], E) is a (K, ε)-extractor with (left) degree D, if every x ∈ V1 has degree D and
for every X ⊆ V1 of size K, and any W ⊆ V2,∣∣∣∣ |E(X,W )|

|E(X,V2)| −
|W |
|V2|

∣∣∣∣ < ε.

Here, E(V,W ) is the set of edges between V and W in G.
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We then have the following analogue of Proposition 1.4 (see Chor and Goldreich [4]
and Zuckerman [25]).

Proposition 1.8. F is a (k, ε)-extractor iff GF is a (2k, ε)-extractor graph.
Theorem 1.9 (lower bounds for extractors). There is a constant C > 0 such

that the following holds. Let G = (V1 = [N ], V2 = [M ], E) be a (K, ε)-extractor with
K ≤ N

C . Then,

(a) if ε ≤ 1
2 and D ≤ M

2 , then D = Ω( 1
ε2 · log(NK ));

(b) if D ≤ M
4 , then DK

M = Ω(( 1
ε )2).

In the terminology of functions this means that if F : {0, 1}n×{0, 1}d → {0, 1}m is
a (k, ε)-extractor, then d ≥ log(n−k)+2 log(1

ε )−O(1) and d+k−m ≥ 2 log(1
ε )−O(1).

These two bounds have the following interpretation.
(a) In order to extract one extra random bit (i.e., having m ≥ d + 1) we need

to invest at least d ≥ log(n − k) + 2 log(1
ε ) − O(1) truly random bits (and

d ≥ log(n− k) + log(1
ε )−O(1) for dispersers).

(b) There is an unavoidable entropy loss in the system. The input to the extractor
has entropy at least k + d (k in X and d in the truly random bits that we
invest), while we get back only m quasi-random bits. Thus, there is a loss
of k + d − m ≥ 2 log(1

ε ) − O(1) bits. In the case of dispersers we have
d+ k −m ≥ log log(1

ε )−O(1).
Surprisingly, the entropy loss (which can be compared to the heat wasted in a

physical process) has different magnitudes in dispersers (about log log 1
ε ) and extrac-

tors (about 2 log 1
ε ). In [8, 21], explicit (k, ε)-extractors F : {0, 1}n×{0, 1}d → {0, 1}n,

with d = n−k+ 2 log 1
ε + 2 are constructed. Theorem 1.9 shows that the entropy loss

of 2 log 1
ε in these extractors is unavoidable.

Theorems 1.5 and 1.9 improve the lower bounds shown by Nisan and Zucker-
man [15]; they showed that D ≥ max{log(NK ), 1

2ε}, and DK
M ≥ 1 − ε. Furthermore,

our lower bounds match the upper bounds up to constant factors. Using standard
probabilistic arguments [20, 26] one can show that our lower bounds are tight up to
constant factors (for completeness we include the proofs in Appendix C).

Theorem 1.10 (probabilistic constructions). For every 1 < K ≤ N, M > 0 and
ε > 0 there exists a

(a) (K, ε)-disperser graph G = (V1 = [N ], V2 = [M ], E) with degree D = d 1
ε (ln(NK )+

1) + M
K (ln(1

ε ) + 1)e,
(b) (K, ε)-extractor graph G = (V1 = [N ], V2 = [M ], E) with D = dmax{ 1

ε2 (ln(NK )+

1), ln 2 · MK · 1
ε2 }e.

1.1. Organization of the paper. In section 2, we first describe the lower
bounds for dispersers. We describe the argument informally, leaving the formal proof
for the appendix. Then we derive the lower bounds for extractors assuming a techni-
cal lemma on hypergeometric distributions. In section 3, we present the new upper
and lower bounds for depth-two superconcentrators. The appendix has three parts.
In the first we give the formal proof of the lower bounds for dispersers; in the second,
we give the proof of the technical lemma used in section 2; in the third, we prove
Theorem 1.10.

2. Bounds for dispersers and extractors. In this section we present the lower
bounds for disperser and extractor graphs. In the rest of this section, we will drop the
word “graphs,” and refer to them as dispersers and extractors. As stated earlier, the
lower bounds for dispersers claimed in Theorem 1.5 follows from the bounds obtained
by Kővari, Sós, and Turán for the Zarankiewicz problem. Instead of quoting their
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result directly, we will present the complete proof based on their method. This will
help clarify the proof of Theorem 1.9, where we use the same method to show lower
bounds for extractors.

In the rest of this section, we will use the following notation. For a bipartite
graph G = (V1, V2, E), D(G) will denote the maximum degree of a vertex in V1 and
D̄(G) will denote the average degree of a vertex in V1.

2.1. Dispersers. We now describe the proof of Theorem 1.5. Suppose G =
(V1 = [N ], V2 = [M ], E) is a (K, ε)-disperser.

We first observe that part (b) follows from part (a). Let G′ = ([M ], [N ], E′) be
the graph obtained from G by interchanging the roles of V1 and V2. Then, G′ is a
(dεMe, KN )-disperser. Hence, by the first half of part (a) we have

D̄(G′) = Ω

(
N

K
· log

(
M

εM

))
.

Now D̄(G′) = D̄(G)N/M ; thus D̄(G)K
M = Ω(log(1

ε )), as claimed in part (b).
Now consider part (a). For a vertex v of G and a subset X of vertices of G we say

that X misses v (and also v misses X) if Γ(v) ∩X = ∅. Now, we let B be a random
subset of V2 of size L = dεMe. For v ∈ V1 with degree dv, we have

Pr[B misses v] =

(
M − dv

L

)(
M

L

)−1

.(2.1)

The expected number of vertices missed by B (that is, E[|V1 \ Γ(B)|]) is the sum of
these probabilities. Since B can miss at most K − 1 vertices, we have

∑
v∈V1

(
M − dv

L

)(
M

L

)−1

≤ K − 1.

Note that f(u) =
(
u
t

)
is a convex function of u. By applying Jensen’s inequality,

f(E[X]) ≤ E[f(X)], to the left-hand side above, we obtain

N

(
M − D̄
L

)(
M

L

)−1

≤ K − 1.(2.2)

Our lower bounds follow from this inequality. We will now informally sketch the main
points of the derivation; the formal proof is in the appendix.

For ε ≤ 1/2, the left-hand side of (2.2) is approximately N exp(−εD̄). Thus, we
obtain the lower bound

D̄ ≥ 1

ε
ln

N

K − 1
.

This strengthens the previous lower bound D ≥ max{1/(2ε), log(N/K)} (due to Nisan
and Zuckerman [15]).

For ε > 1/2, the left-hand side of (2.2) is approximated better by N
(

1−ε
2

)D̄
, i.e.,

D̄ ≥ log(N/(K − 1))

log(1/(1− ε)) + 1
.
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2.2. Extractors. Since a (K, ε)-extractor is also a (K, ε)-disperser, the lower
bounds for dispersers apply to extractors as well. We will now improve these bounds
by exploiting the stronger properties of extractors. As in the proof of Theorem 1.5 we
will show that Theorem 1.9(a) implies Theorem 1.9(b). To that end we define “slice”
extractors.

2.2.1. Slice-extractors.

Definition 2.1. Let G = (V1 = [N ], V2 = [M ], E) be a bipartite graph. For
v ∈ V1 and B ⊆ V2, let

disc(v,B) = Pr
w∈Γ(v)

[w ∈ B]− |B|
M

,

where w is generated by picking a random edge leaving v. We say that v ε-misses B
(and also B ε-misses v) when |disc(v,B)| ≥ ε.

Definition 2.2 (slice-extractor). G is a (K, ε, p)-slice-extractor, if every B ⊆ V2

of size dpMe, ε-misses fewer than K vertices of V1.

A slice-extractor seems to be weaker than an extractor because it is required to
handle only subsets of V2 of one fixed size, whereas an extractor must handle sets of
all sizes. It is simple to show (see, e.g., [26])

Claim 2.3. If G = (V1 = [N ], V2 = [M ], E) is (K, ε)-extractor, then G is also a
(2K, ε, p)-slice-extractor for all p.

In fact, we have the following lemma.

Lemma 2.4. Suppose dqMe ≤ dpMe < M/2 and G = (V1 = [N ], V2 = [M ], E) is
a (K, ε, p)-slice-extractor. Then G is also a (2K, 2ε, q)-slice-extractor.

Proof. We will show that for any A ⊆ V1 of size K and any S ⊆ V2 of size dqMe,∣∣∣∣ Pr
w∈Γ(A)

[w ∈ S]− dqMe
M

∣∣∣∣ ≤ 2ε.(2.3)

This implies that S can not 2ε-miss more than 2K vertices, and G is a (2K, 2ε, q)-
slice-extractor.

We now show (2.3). Let S1, S2 ⊆ V2 be subsets of size dqMe and T ⊆ V2 a subset
of size dpMe− qM disjoint from S1 ∪S2. Denote T1 = T ∪S1 and T2 = T ∪S2. Since
G is a (K, ε, p) slice-extractor, |Prw∈Γ(A)[w ∈ Ti] − p| ≤ ε, for i = 1, 2. This implies
that ∣∣∣∣ Pr

w∈Γ(A)
[w ∈ S1]− Pr

w∈Γ(A)
[w ∈ S2]

∣∣∣∣ ≤ 2ε,(2.4)

for every two subsets S1, S2 ⊆ V2 of size dqMe. Now, pick S ⊆ V2 of size dqMe
randomly and uniformly. Then,

E
S

[ Pr
w∈Γ(A)

[w ∈ S]] =
|S|
M
.

Hence, exist sets S+ and S− such that

Pr
w∈Γ(A)

[w ∈ S−] ≤ dqMe
M

≤ Pr
w∈Γ(A)

[w ∈ S+].
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This, when combined with (2.4), implies (2.3).
2.2.2. Proof of Theorem 1.9(a).
Lemma 2.5. There exists a constant C > 0, such that if G = (V1 = [N ], V2 =

[M ], E) is a (K, ε, p)-slice-extractor with D ≤ M/2, K ≤ N/C, p ≤ 1/10, pM ≥ 1
and ε ≤ p/25, then

D̄ ≥ p

Cε2
ln

N

CK
.

Proof. We proceed as in the case of dispersers, by picking a random dpMe-sized
subset R ⊆ V2. To bound from below the probability that R ε-misses a vertex v ∈ V1,
we will use the following lemma, whose proof appears in the appendix.

Lemma 2.6. Let R be a random subset of [M ] of size qM , Γ be a nonempty

subset of [M ] of size D, and w : Γ → [0, 1] be a weight function such that w(Γ)
def
=∑

i∈Γ w(i) = 1. Suppose δ ≤ 1/25, q ≤ 1/4 and D ≤M/2. Then,

Pr[|w(Γ ∩R)− q| ≥ δq] ≥ C−1 exp(−Cδ2qD).

Here C is a constant independent of δ, q, D, and w.
Fix v ∈ V1. Denote the set of v’s neighbors by Γ. Since in our definition of

extractors we allow multiple edges, |Γ| can be smaller than dv (the degree of v); so
when we pick a random edge leaving v, some vertices in Γ might be more likely to be
visited than others. Let us define a weight function w : Γ→ [0, 1] by letting w(b) be
the number of multiple edges between v and b divided by dv. Then, by definition

v ε-misses R iff |w(R ∩ Γ)− p| ≥ ε = (ε/p)p.

We take D = dv, dpMe = qM (so q ≤ 1
4 ) and δ = ε

p ≤ 1
25 . For C a large enough

constant we have Pr[R ε-misses v] ≥ C−1 exp(−Cδ2qdv) ≥ C−1 exp(−Cε2dv/p). It
follows that the expected number of vertices missed by R is at least∑

v∈V1

C−1 exp

(
−C ε

2

p
dv

)
.

Since R never misses K vertices, we have∑
v∈V1

C−1 exp

(
−C ε

2

p
dv

)
≤ K − 1.

Since exp(−Cx) is a convex function of x, Jensen’s inequality implies that

N C−1 exp

(
−C ε

2

p
D̄

)
≤ K − 1.

By taking logarithms we obtain

D̄ ≥ p

Cε2
ln

N

CK
.

We now show Theorem 1.9(a). Note that we may assume that ε ≤ 10−3 (say); oth-
erwise the claim follows from the lower bound for dispersers proved in Theorem 1.5(a).
But, if ε ≤ 10−3, our claim follows immediately from Lemma 2.5 by taking p = 1/10.
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2.2.3. Proof of Theorem 1.9(b). We next show that, as in the proof of The-
orem 1.5, part (b) follows from part (a) by reversing the roles of V1 and V2.

Claim 2.7. Suppose G = (V1 = [N ], V2 = [M ], E) is a (K, ε)-extractor. Let
G′ = (V ′1 = [M ], V ′2 = [N ], E′) be the graph obtained from G by reversing the roles of
V1 and V2. Suppose p ≥ K/N and pN is an integer. Then, for all T > 2, G′ is a
( 4M
T , ε′ = Tεp, p)-slice-extractor.

Proof. Suppose G′ is not a (4M
T , ε′ = Tεp, p)-slice-extractor. Then, there is some

B ⊆ V ′2 of size pN that ε′-misses at least 4M
T vertices of V ′1 . Let A− = {v ∈ V ′1 :

disc(v,B) ≤ −ε′} and A+ = {v ∈ V ′1 : disc(v,B) ≥ ε′}. One of these sets must have
size at least 2M

T , say A−. Then

|E′(A−, B)| =
∑
v∈A−

|E′(v,B)|

≤
∑
v∈A−

dv

( |B|
N
− ε′

)
≤ |E′(A−, V ′2)| ·

( |B|
N
− ε′

)
.

Therefore,

|E′(A−, B)|
|B|D ≤ |E

′(A−, V ′2)|
|B|D

( |B|
N
− ε′

)
=
|E(V1, A

−)|
ND

(
1− Nε′

|B|
)
.(2.5)

Since G is an extractor, we have

|E(V1, A
−)|

ND
≤ |A−|

M
+ ε.(2.6)

We will now consider the sets B ⊆ V1 and A− ⊆ V2 in the extractor G, and obtain
a contradiction by showing that there are fewer edges between them than required.
By combining (2.5) and (2.6), we obtain

|E(B,A−)|
|B|D ≤

( |A−|
M

+ ε

)(
1− Nε′

|B|
)

≤ |A
−|
M

+ ε− |A
−|
M

Nε′

|B|
≤ |A

−|
M

+ ε− 2ε

=
|A−|
M
− ε.

(For the third inequality, we used |A−| ≥ 2M/T , |B| = pN and ε′ = Tεp.) But this
contradicts our assumption that G is a (K, ε)-extractor.

Finally, to obtain part (b) of Theorem 1.9, we choose p = K/N and T = 16C in
the above claim and conclude that G′ is a (M/(4C), 16εCK/N,K/N)-slice-extractor.
Since D(G) ≤ M/4, we have D̄(G′) ≤ N/4. By Markov’s inequality, at least half
the vertices of V1(G′) have degree at most N/2. By restricting ourselves to the
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vertices of lowest degree, we obtain an (M/(4C), ε′ = 16εCK/N, p = K/N)-slice-
extractor G′′ with |V1(G′′)| ≥M/2, V2(G′′) = N , D(G′′) ≤ N/2 and D̄(G′′) ≤ D̄(G′).
If ε < 1/(400C), we have ε′ ≤ p/25. Then, by Lemma 2.5, we have D̄(G′′) ≥
p

Cε′2 ln( M/2
CM/(4C) ); i.e.,

D̄(G′′) = Ω

(
p

ε2p2

)
= Ω

(
N

K

1

ε2

)
.

Since D̄(G′′) ≤ ND̄(G)/M , we get KD̄(G)
M = Ω( 1

ε2 ).

3. Superconcentrators of depth two. In this section, we show bounds on the
size of depth-two superconcentrators. First, we show an O(N log2N/ log logN) upper
bound using the upper bounds for dispersers from Theorem 1.10 (a). Next, we show
that the lower bounds on dispersers, shown in Theorem 1.5 (a), imply an (almost
tight) Ω(N(logN/ log logN)2) lower bound for superconcentrators. Finally, by using
a different method, we improve this lower bound to Ω(N log2N/ log logN), matching
the upper bound (up to constant factors).

Recall that size(N) is the size of the smallest depth-two N -superconcentrator. It
is enough to establish the claimed bounds assuming that N is a power of two. For,
let 2n ≤ N < 2n+1, where n ≥ 1; then size(2n) ≤ size(N) ≤ size(2n+1).

3.1. The upper bound.
Theorem 3.1. Size(N) = O(N log2N/ log logN).
Proof. Our construction is based on a similar construction due to Wigderson and

Zuckerman [24]. We build a depth-two graph (A = [N ], C,B = [N ], E), where C is
the disjoint union of Ci, i = 0, . . . ,

⌈
loglogN N

⌉−1, where |Ci| = 2 logi+1N . For every

i put a (K = logiN, ε = 1/4)-disperser Di = (A,Ci, Ei), and another (K, ε)-disperser
between B and Ci.

For logiN ≤ K ≤ logi+1N , for every K-set X ⊆ A, Γ(X) covers at least 3/4 of
Ci. Similarly, for every K-set Y ⊆ B, Γ(Y ) covers at least 3/4 of Ci. So, at least half
of the vertices of Ci are common neighbors of X and Y . We thus have the following
claim.

Claim 3.2. Any two sets X ⊆ A , Y ⊆ B of size K have at least K common
neighbors in C.

However, as shown by Meshulam [12], Menger’s theorem implies that this is suffi-
cient for G to be a superconcentrator (clearly, it is necessary). All that remains is to
count the number of edges inG. By Theorem 1.10 (a), we may take |Ei| = O(N logN).
Thus, we have |E(G)| = ∑i 2|Ei| = O(N log2N/ log logN).

Remark. This construction differs from the one in [24] in only one respect: in
their construction each Ci takes care of all K-sets for 2i ≤ K < 2i+1, whereas in
ours each Ci takes care of all K-sets for logiN ≤ K < logi+1N . The point is that
constructing a disperser that works for just one K, in itself, requires average degree
logN (as can be seen from Theorem 1.5). Furthermore, we can build dispersers that
recover almost all the random bits we invest (see Theorem 1.10(a)). This enables us
to hash sets of size K into sets of size K logN and use fewer Ci’s.

3.2. Lower bound via dispersers. Now we show that any depth-two super-
concentrator must contain Ω(logN/ log logN) disjoint disperser graphs and derive
from this an Ω(N(logN/ log logN)2) lower bound. The idea is as follows. Consider
any depth-two superconcentrator G = (A = [N ], C,B = [N ], E). By definition, for
any 1 ≤ K ≤ N , and any two subsets X ⊆ A, Y ⊆ B of cardinality K, X, and Y
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have at least K common neighbors in C. In particular, if we fix a subset X ⊆ A
of cardinality K and look at Γ(X), we see that every K-subset of B must have at
least K neighbors in Γ(X). In other words, the induced graph on Γ(X) and B is a
disperser. By doing this for different K’s we get several disjoint dispersers. Our lower
bound then follows by applying the disperser lower bound to each of them.

Theorem 3.3. Size(N) = Ω(N · (logN/ log logN)2).
Proof. Let G = (A = [N ], C,B = [N ], E) be a depth-two N -superconcentrator.

We will proceed in stages. In stage i, we will consider subsets of A and B of size
Ki = log3iN . If Ki ≤

√
N (i.e., i ≤ (1/6) logN/ log logN), then we will show that

there is a subset Ci of the middle layer C such that the number of edges between B
(the output vertices) and Ci is at least N logN/ log logN . The sets Ci will be disjoint
for different values of i. Collecting the edges from the different Ci’s, we have

|E(G)| ≥
⌊

logN

6 log logN

⌋
· Ω
(
N

logN

log logN

)
= Ω

(
N

(
logN

log logN

)2
)
.

Suppose the average degree in A is D̄. If D̄ ≥ log2N , then the number of edges
between A and C is ND̄ ≥ N log2N and we are done. So assume D̄ ≤ log2N .

Let Xi ⊆ A be the set of Ki = log3iN vertices with smallest degrees (breaking
ties using some order on the vertices). Let Zi = Γ(Xi). Clearly |Zi| ≤ KiD̄. Let
Ci = Zi\(Z1

⋃
Z2

⋃ · · ·⋃Zi−1). Since Xi ⊆ Xi+1 for all i, we also have Zi = Γ(Xi) ⊆
Γ(Xi+1) = Zi+1; thus, Ci = Zi \ Zi−1.

Claim 3.4. G restricted to B and Ci is a (Ki, ε = 1− 1
2D̄

)-disperser.
Proof of claim. Any two sets X ⊆ A, Y ⊆ B of cardinality Ki must have Ki

common neighbors in C. In particular, any set Y ⊆ B of size Ki has Ki distinct
neighbors in Zi = Γ(Xi), and therefore at least Ki − |Zi−1| distinct neighbors in Ci.

Notice that Ki − |Zi−1| ≥ Ki −Ki−1D̄ > Ki/2. Thus, in G restricted to B and
Ci, any subset in B of size Ki has more than Ki/2 distinct neighbors. Thus, the claim
follows if Ki/2 ≥ (1− ε)|Ci|. Indeed

(1− ε)|Ci| = |Ci|
2D̄
≤ KiD̄

2D̄
=
Ki

2
,

where the inequality follows from |Ci| ≤ |Zi| ≤ KiD̄.
By Theorem 1.5(a), the number of edges between A and Ci is

Ω

N · log
(
N
Ki

)
log
(

1
(1−ε)

)
 .

As long as Ki ≤
√
N , this is at least Ω(N logN/log logN). Since the Ci’s are disjoint,

we have obtained Ω(logN/log logN) disjoint dispersers, each having Ω(N logN/log logN)
edges.

3.3. The improved lower bound. If we look at the construction of Theorem
3.1, we see that sets of cardinality Ki communicate mainly through a specific subset
of C denoted Ci. Furthermore, the vertices of Ci can be identified using their degree:
vertices in Ci have degree about N/Ki. In our proof we will find this structure in the
superconcentrator.
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Theorem 3.5. Size(N) = Ω(N log2N/ log logN).

Proof. Let G = (A = [N ], C,B = [N ], E) be a depth-two N -superconcentrator.
We assume that N is large. As in the proof of Theorem 3.3, we proceed in stages. In
stage i (i = 1, 2, . . .), we consider sets of size K = Ki = log4iN . Let

Ci =

{
w ∈ C :

N

K

1

log2N
≤ deg(w) <

N

K
log2N

}
;

Di =

{
w ∈ C : deg(w) <

N

K

1

log2N

}
.

We will show that if K ≤ N3/4 (i.e., i ≤ 3
16 (logN/ log logN)), then there are at least

1
10N logN edges incident on Ci. Since the sets Ci are disjoint for different values of
i, we have

|E(G)| ≥
⌊

3

16
(logN/ log logN)

⌋
· 1

10
N logN

= Ω(N log2N/ log logN).

It remains to show that the number of edges incident on Ci is at least 1
10N logN . We

assume that

|E(G)| ≤ 1

10
N log2N ;(3.1)

otherwise the theorem follows immediately.

Lemma A. For every pair of K-sets X ⊆ A and Y ⊆ B, there is a common
neighbor in Ci ∪Di.

Proof of lemma. All vertices outside Ci ∪Di have degree at least (N/K) log2N .
Then, assumption (3.1) implies that the number of vertices outside Ci∪Di is at most

|E(G)|
(N/K) log2N

≤ K

10
.

Since X and Y have at least K common neighbors in the original graph, they must
in fact have at least 9

10K common neighbors in Ci ∪Di.

We wish to show that G restricted to A ∪ B and Ci cannot be sparse. We know
from Lemma A that every pair of K-sets in A∪B has a common neighbor in Ci∪Di.
Suppose that G restricted to A ∪B and Ci is sparse. We will first obtain sets S ⊆ A
and T ⊆ B such that S and T have no common neighbors in Ci. Then, all pairs of
K-sets in S and T have to communicate via Di; in other words, the bipartite graph
induced on S and T by the connections via Di is a K-expanding graph. Since the
number of edges incident on Di is small (because of (3.1)), Di cannot provide enough
connections for such a K-expanding graph, leading to a contradiction. We thus have
three tasks ahead of us.

• First, we need to show how to obtain sets S and T . For this we use a method
based on the work of Hansel [9]. We go through all vertices in Ci, and for
each, either delete all its neighbors in A or all its neighbors in B. Clearly,
after this the surviving vertices in A and B do not have any common neighbor
in Ci. It is remarkable that even after this severe destruction, we expect large
subsets of vertices S ⊆ A and T ⊆ B to survive.
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• Second, we need to show that the number of connections required between S
and T is large. This follows from the fact that the bipartite graph induced
on S and T by the connections via Di is a K-expanding graph.
• Finally, we need to show that the low degree vertices in Di cannot provide

the required number of connections between S and T . This will follow from
the definition of Di and the fact that S and T are sufficiently random subsets
of A ∪B.

Lemma B. If K = Ki ≤ N3/4, then there are more than 1
10N logN edges incident

on Ci.
Proof of lemma. For u ∈ A∪B, let du be the number of neighbors of u in Ci. Let

A′ be the set of N
2 vertices u ∈ A with smallest du, and B′ be the set of N

2 vertices
v ∈ B with smallest dv. We will prove that there is some u ∈ A′∪B′ with du >

1
5 logN .

This implies the lemma for, say, u ∈ A′. Then, for all u ∈ A \A′, du >
1
5 logN , and

we have more than 1
10N logN edges incident on Ci, as required.

Now we have to prove that there is some u ∈ A′ ∪ B′ with large du. Otherwise,
for all u ∈ A′ ∪B′, du ≤ 1

5 logN . We will show that this contradicts (3.1).
For each w ∈ Ci, perform the following action (independently for each w):

– with probability 1
2 , delete all neighbors of w from A′;

– with probability 1
2 , delete all neighbors of w from B′.

Set d = 1
5 logN . For each vertex u in A′ ∪ B′ that survives, delete it independently

with probability 1− 2−(d−du).
It is clear that after the above process, the probability that a vertex in A′ ∪ B′

survives is exactly 2−d. Let S be the subset of vertices of A′ that survive and T the
subset of vertices of B′ that survive. Our construction ensures that S and T do not
have a common neighbor in Ci. Lemma A then implies that every pair of K-sets in
S and T has a common neighbor in Di.

Consider the bipartite graph H = (S, T,E), where E consists of pairs (u, v) ∈
S × T such that u and v have a common neighbor in Di. Then H is a K-expanding
graph (i.e., there is an edge joining every pair of K-sets in S and T ). It follows (see
Lemma 3.8 below) that

|E(H)| ≥ |S| · |T |
K

− |S| − |T |.

Thus, if S and T are large, the required number of edges in H is also large. It is not

hard to see that the expected size of S and T is large (N2−d
2 ∼ N4/5 � K). But we

need S and T to be large simultaneously. Instead of ensuring this, it will be easier to
directly estimate the average number of edges needed by H.

Claim 3.6.

E[|E(H)|] ≥ E

[ |S| · |T |
K

− |S| − |T |
]

>
N22−2d

10K
.

This gives a lower bound on the average number of connections required between S
and T . Conversely, our next claim shows that if the number of edges in G is small,
then the average number of edges in H (which is the number of connections between
S and T passing via Di) is small.

Claim 3.7.

E[|E(H)|] ≤ |E(G)| · N

K log2N
· 2−2d.
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Before proceeding to the proofs of these claims, let us complete the proof of Lemma
B. Putting the two claims together we obtain

|E(G)| · N

K log2N
· 2−2d >

N22−2d

10K
,

i.e., |E(G)| > N

10
log2N.

But then G has too many edges, contradicting (3.1).
Proof of Claim 3.6. We have |S| = ∑u∈A′ Xu and |T | = ∑v∈B′ Yv, where Xu and

Yv are the 0-1 indicator variables for the events “u ∈ S” and “v ∈ T ,” respectively.
For u ∈ A′ and v ∈ B′, Xu and Yv are independent whenever u and v don’t have

a common neighbor in Ci, and E[XuYv] = 2−2d. Since du ≤ 1
5 logN and vertices in Ci

have degree at most N
K log2N , each Xu is independent of all but N

K log2N · logN
5 <

N(logN)3

5K < N
4 of the Yv’s. Therefore,

E[|S| · |T |] =
∑

u∈A′,v∈B′
E[XuYv]

≥ |A′| · N
4
· 2−2d

=
1

8
N22−2d.

Clearly, E[|S|] =
∑
u∈A′ E[Xu] = N

2 2−d and similarly E[|T |] = N
2 2−d. Thus we

have

E

[ |S| · |T |
K

− |S| − |T |
]
≥ N22−2d

8K
−N2−d =

N22−2d

K

(
1

8
− 2dK

N

)
>

N22−2d

10K
,

where the last inequality holds because 2dK ≤ N1/5N3/4 = o(N) and N is large.
Proof of Claim 3.7. Consider all pairs (u, v) ∈ A′ ×B′, such that u and v have a

common neighbor in Di. Since the degree of a vertex in Di is at most (N/K) log−2N ,
the number of such pairs is at most∑

w∈Di
deg(w)2 ≤ N

K log2N

∑
w∈Di

deg(w)

≤ N

K log2N
|E(G)|.(3.2)

As argued in the proof of Claim 3.6, for every pair (u, v) ∈ A′ × B′, if u and v
don’t have a common neighbor in Ci, then Pr[(u, v) ∈ S × T ] = 2−2d; conversely,
if u and v have a common neighbor in Ci, then one of them will be deleted, and
Pr[(u, v) ∈ S × T ] = 0. Thus, in both cases Pr[(u, v) ∈ S × T ] ≤ 2−2d. Our claim
follows from this and (3.2) by linearity of expectation.

Finally, we prove the density bound for K-expanding graphs.
Claim 3.8. If (V1 = [N1], V2 = [N2], E) is a K-expanding graph, then |E| ≥

N1N2

K −N1 −N2

Proof. If either N1 or N2 is less than K, then the claim is trivial. Otherwise,
obtain bN1

K c disjoint sets of size K from V1. No set of size K can miss more than K
vertices in V2; in particular, each such set has N2−K edges incident on it. Collecting
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the contributions from the bN1

K c sets, we get at least (N1

K −1)(N2−K) > N1N2

K −N1−N2

edges.

Appendix A. Lower bounds for dispersers.
We now complete the proof of Theorem 1.5. We will use inequality (2.2) derived

in section 2.1.
First, consider the case ε ≤ 1

2 . To simplify the left-hand side of (2.2), we will use

the inequality
(
a−c
b

)(
a
b

)−1 ≥ (a−b−c+1
a−b+1 )b, valid whenever a − b − c + 1 ≥ 0. In our

application, we have D̄ ≤ (1 − ε)M/2 ≤ (1 − ε)M (an assumption in Theorem 1.5)
and L = dεMe ≤ εM + 1; thus, M − D̄ − L+ 1 ≥ M − (1− ε)M − εM − 1 + 1 = 0.
Then, (2.2) gives

N

(
M − L− D̄ + 1

M − L+ 1

)L
≤ K − 1;

i.e.,

N

K − 1
≤
(

M − L+ 1

M − L− D̄ + 1

)L
=

(
1 +

D̄

M − L− D̄ + 1

)L
≤ exp(D̄L/(M − D̄ − L+ 1)).

On taking lns and solving for D̄, we obtain

D̄ ≥ (M − L+ 1) ln(N/(K − 1))

L+ ln(N/(K − 1))
.

If ln(N/(K − 1)) > L, then

D̄ >
M − L+ 1

2
≥ (1− ε)M

2
,

contradicting our assumption. Thus, we may assume that ln(N/(K − 1)) ≤ L. Then,

D̄ ≥ M − L+ 1

2L
ln

N

K − 1

≥ (1− ε)M
2εM + 2

ln
N

K − 1

≥ 1

8ε
ln

N

K − 1
.

For the case ε > 1
2 , we must approximate the left-hand side of (2.2) differently.

Since
(
a
b

)
is a nondecreasing function of a, we have from (2.2) that

N

(
M − ⌈D̄⌉

L

)(
M

L

)−1

≤ K − 1.

Since
(
a−b
c

)(
a
c

)−1
=
(
a−c
b

)(
a
b

)−1
, we have

N

(
M − L⌈
D̄
⌉ )( M⌈

D̄
⌉)−1

≤ K − 1.
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Now we use the inequality
(
a−b
c

)(
a
c

)−1 ≥ (a−b−c+1
a )c and obtain

K − 1 ≥ N
(
M − ⌈D̄⌉− L+ 1

M

)dD̄e

≥ N
(
M − L+ 1

2M

)dD̄e
≥ N

(
1− ε

2

)dD̄e
.

Thus,

⌈
D̄
⌉ ≥ log(N/(K − 1))

log(2/(1− ε)) .

Appendix B. Lower bounds on deviation.

This section is devoted to the proof of Lemma 2.6. We reproduce the lemma
below for easy reference. Note that in the version below we use ε instead of δ and p
instead of q.

Lemma 2.6. Let R be a random subset of [M ] of size pM , Γ be a nonempty

subset of [M ] of size D, and w : Γ → [0, 1] be a weight function such that w(Γ)
def
=∑

i∈Γ w(i) = 1. Suppose ε ≤ 1/25, p ≤ 1/4, and D ≤M/2. Then,

Pr[|w(Γ ∩R)− p| ≥ εp] ≥ C−1 exp(−Cε2pD).

Here C is a constant independent of ε, p, D, and w.

B.1. Overview of the proof. We have two cases based on the value of p.

Case 1 (small p). We first assume that pD ≤ 12. In this case, we show that with
constant probability Γ ∩R = ∅.

Lemma B.1. Pr[Γ ∩R = ∅] ≥ exp(−50).

Case 2 (large p). We now assume that pD > 12. In this case, the proof has two
main parts.

Part 1. The expected value of |Γ∩R| is easily seen to be pD. We first show lower
bounds on the probability that |Γ ∩ R| deviates from this expected value by at least
εpD.

Lemma B.2. If pD ≥ 12, then for some constant C0 (independent of p, D, M ,
and ε)

(a) Pr[|Γ ∩R| ≤ (1− ε)pD] ≥ C−1
0 exp(−C0ε

2pD),
(b) Pr[|Γ ∩R| ≥ (1 + ε)pD] ≥ C−1

0 exp(−C0ε
2pD).

Part 2. Note that Part 1 suffices when the weights are all equal. Next, we consider
a general distribution of weights. We show that when |Γ∩R| differs significantly from
its expected value, then w(Γ∩R) is also likely to differ from its expected value. Note
that the expected value of w(Γ ∩R) is p.

Lemma B.3. Let R+ be a random subset of Γ of size dpDe and R− be a random
subset of size b(1− 4ε)pDc. Then, at least one of the following two statement holds:

(a) Pr[w(R−) ≤ p(1− ε)] ≥ 1/25,
(b) Pr[w(R+) ≥ p(1 + ε)] ≥ 1/4.
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We first complete the proof of Lemma 2.6 assuming that Lemmas B.1, B.2, and
B.3 hold. We shall justify Lemmas B.1, B.2, and B.3 after that.

Proof of Lemma 2.6. If pD ≤ 12, then with constant probability, Γ ∩R is empty.
Clearly, whenever Γ ∩R is empty, |w(Γ ∩R)− p| ≥ εp. The claim follows from this.

Next, assume that pD ≥ 12. We now use Lemma B.3 and conclude that at least
one of the two statements, (a) and (b), of the lemma holds. Suppose (a) holds. Then,
for all sizes k ≤ (1− 4ε)pD, we have

Pr[w(Rk) ≤ p(1− ε)] ≥ 1

25
,(B.1)

where Rk is a random k-sized subset of Γ. Let E denote the event |Γ∩R| ≤ (1−4ε)pD.

Pr[|w(Γ ∩R)− p| ≥ εp] ≥ Pr[E ] · Pr[|w(Γ ∩R)− p| ≥ εp | E ]

≥ Pr[E ] · Pr[w(Γ ∩R) ≤ p(1− ε) | E ]

= Pr[E ] ·
(1−4ε)pD∑
k=0

Pr[|Γ ∩R| = k | E ]

× Pr[w(Γ ∩R) ≤ p(1− ε) | |Γ ∩R| = k].

By Lemma B.2 (a), we have Pr[E ] ≥ C−1
0 exp(−C0ε

2pD), for some constant C0. Also,
under the condition |Γ ∩ R| = k, the random set Γ ∩ R has the same distribution as
Rk. Then, using (B.1), we have

Pr[|w(Γ ∩R)− p| ≥ εp] ≥ Pr[E ] ·
(1−4ε)pD∑
k=0

Pr[|Γ ∩R| = k | E ] · Pr[w(Rk) ≤ p(1− ε)]

≥ C−1
0 exp(−C0ε

2pD) · 1

25

≥ C−1 exp(−Cε2pD)

for C = 25C0.
In the remaining case, statement (b) of Lemma B.3 holds, and the claim follows

by a similar argument, this time using Lemma B.2 (b).

B.2. Proofs. Proof of Lemma B.1. We have

Pr[Γ∩R| = ∅] =

(
M −D
pM

)(
M

pM

)−1

≥
(
M −D − pM
M − pM

)pM
=

(
1− D

M − pM
)pM

.

Now, we use the inequality 1− x ≥ exp(−x/(1− x)), valid whenever x < 1. Thus,

Pr[Γ ∩R| = ∅] ≥ exp

(
− DpM

M −D − pM
)
≥ exp(−4pD) ≥ exp(−48).

For the second inequality, we use D ≤ M/2 and p ≤ 1/4, and for the last inequality,
we use pD ≤ 12.

Part 1.
Proof of Lemma B.2. We will present the detailed argument only for part (a); the

argument for part (b) is similar.

Pr[|Γ ∩R| ≥ (1− ε)pD] =
∑

k≤(1−ε)pD
Pr[|Γ ∩R| = k].



18 JAIKUMAR RADHAKRISHNAN AND AMNON TA-SHMA

We will be interested only in the last approximately
√
pqD terms. Let

A = b(1− ε)pDc and B =
⌈
A−

√
pqD

⌉
+ 1.

Then,

Pr[|Γ ∩R| ≤ (1− ε)pD] ≥
B∑
k=A

Pr[|Γ ∩R| = k].

It can be verified that Pr[|Γ ∩ R| = k] is an increasing function of k, for A ≤ k ≤ B.
Thus,

Pr[|Γ ∩R| ≤ (1− ε)pD] ≥ (A−B + 1) Pr[|Γ ∩R| = B].(B.2)

We will now estimate the two factors on the right-hand side.
• First, A − B + 1 ≥ √pqD − 2, and since pD ≥ 12 and q ≥ 3

4 , we have
A−B + 1 ≥ 1

3

√
pqD.

• To estimate the second term, we write B = pd− h; then we have

εpD +
√
pqD − 2 ≤ h ≤ εpD +

√
pqD.

Since pD ≥ 12 and q ≥ 3
4 , we have 1 ≤ h < pD < qD. Claim B.4 below

shows that

Pr[|Γ ∩R| = B] ≥ 1√
4πpqD

exp

(
− 4h2

pqD

)
.

Substituting these two estimates in (B.2), we obtain

Pr[|Γ ∩R| ≤ (1− ε)pD] ≥ 1

6
√
π

exp

(
− 4h2

pqD

)
.

To finish the proof of the lemma we consider two cases.
• If εpD ≤ √pqD, then h ≤ 2

√
pqD, and the bound above gives

Pr[|Γ ∩R| ≤ (1− ε)pD] ≥ 1

6
√
π

exp

(
−4 · 4pqD

pqD

)
=

1

6
√
π

exp(−16).

• Conversely, if εpD ≥ √pqD, then h ≤ 2εpD, and

Pr[|Γ∩R| ≤ (1−ε)pD] ≥ 1

6
√
π

exp

(
−4 · 4(εpD)2

pqD

)
=

1

6
√
π

exp(−32ε2pD).

Now we return to the claim.
Claim B.4. If 1 ≤ h < pD, then Pr[|Γ ∩R| = pD − h] ≥ 1√

4πpqD
exp(− 4h2

pqD ).

Proof of claim. We have

Pr[|Γ ∩R| = pD − h] =

(
D

pD−h
)(

n−D
p(n−D)+h

)(
n
pn

)
≥
√

2πpqn 2−nH(p)

× 1√
2πpqD

2DH(p) exp

(
− 2h2

pqD

)
exp

(
−1

6

)
× 1√

2πpq(n−D)
2(n−D)H(p) exp

(
− 2h2

pq(n−D)

)
exp

(
−1

6

)
≥ 1√

4πpqD
exp

(
− 4h2

pqD

)
.
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For the last inequality we used the assumption n − D ≥ D. For the first inequality
we used the following bounds on binomial coefficients:

• For the denominator, we used the bound (see [3, p. 4])(
n

pn

)
≤ 2nH(p)

√
2πpqn

.

• For the numerator, we used(
n

pn+ h

)
,

(
n

pn− h
)

>
2nH(p)

√
2πpqn

exp

(
−2h2

pqn

)
exp

(
−1

6

)
,

valid for 1 ≤ h < min{pn, qn}. To justify this, we start from (see [3, p. 12])(
n

pn+ h

)
>

2nH(p)

√
2πpqn

exp

(
− h2

pqn
(
1

2
+

hp

2qn
+

h2q

3p2n2
+
q

n
)− 1

6

)
.

Since h < qn, we have hp
qn < p ≤ 1; since h ≤ pn, we have h2q ≤ h2 ≤ p2n2;

since min{pn, qn} ≥ 1, we have n ≥ 2 and q
n ≤ 1

n ≤ 1
2 . Thus, we get the

required bound(
n

pn+ h

)
>

2nH(p)

√
2πpqn

exp

(
−2h2

pqn

)
exp

(
−1

6

)
.

The bound on
(

n
pn−h

)
follows from the above inequality because(

n

pn− h
)

=

(
n

n− pn+ h

)
=

(
n

qn+ h

)
>

2nH(p)

√
2πpqn

exp

(
−2h2

pqn

)
exp

(
−1

6

)
.

Part 2. We now present the proof of Lemma B.3. We shall first consider the
case p = 1/2. The general case will follow from this.

Lemma B.5. Let S be a random subset of Γ of size ` = (1
2 − 2δ)D. Assume

δ ≤ 1/12. Then,

Pr

[
w(S) ≤ 1

2
− δ
]
≥ 1

12
.

Before we proceed to the proof of this lemma, let us deduce Lemma B.3 from it.
Proof of Lemma B.3. Let X be a random subset of Γ of size 2dpDe. Let

ρ = Pr[w(X) < 2p(1 + ε)].

We consider two cases based on the value of ρ:
1. ρ ≤ 1/2. Let X be as above. Let Y be a random subset of X of size⌊

( 1
2 − 4ε)|X|⌋. Thus, by Lemma B.5, for each value of X

Pr

[
w(Y ) ≤

(
1

2
− 2ε

)
w(X)

]
≥ 1

12
.

Since ρ ≥ 1/2, with probability 1/24, we have w(Y ) < ( 1
2 − 2ε) · 2p(1 + ε) <

p(1− ε). This implies that

Pr[w(R−) < p(1− ε)] ≥ 1

24
.
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2. ρ < 1/2. In this case, let Y be a random subset of X of size dpDe. Whenever
w(X) ≥ 2p(1 + ε), at least one of Y and X \Y has weight of at least p(1 + ε).
Thus

Pr[w(Y ) > p(1 + ε) | w(X) ≥ 2p(1 + ε)] ≥ 1

2
.

Since ρ < 1/2, we have that Pr[w(X) ≥ 2p(1 + ε)] > 1/2. Thus

Pr[w(Y ) ≥ p(1 + ε)] ≥ 1

4
.

Now Y is a random subset of Γ of size dpDe; therefore,

Pr[w(R+) ≥ p(1 + ε)] ≥ Pr[w(Y ) ≥ p(1 + ε)].

Proof of Lemma B.5. Let k = D − 2`, Since δ ≤ 1/12, we have that

` =

(
1

2
− 2δ

)
D ≥ 1

3
D and k = 4δD ≤ 1

3
D.

Thus, ` ≥ k, and we may write ` = mk + k′, where m and k are integers such that
1 ≤ m ≤ `/k and 0 ≤ k′ < k. We now describe a procedure for generating sets of size
`.

Step 1. Let π = {E1, E2, B1, B2, . . . , B2m+1} be a partition of Γ such that
|E1|, |E2| = k′, and for i = 1, 2, . . . , 2m + 1, |Bi| = k. E1 and E2 will be referred to
as the exceptional blocks.

Step 2. Pick a random permutation σ of [2m + 1] and arrange the blocks in the
order

〈E1, Bσ(1), Bσ(2), . . . , Bσ(2m+1), E2〉.

Step 3. Let

Prefix(π, σ) = E1 ∪Bσ(1) ∪Bσ(2) ∪ · · · ∪Bσ(m);

Middle(π, σ) = Bσ(m+1); and

Suffix(π, σ) = Bσ(m+2) ∪Bσ(m+3) ∪ · · · ∪Bσ(2m+1) ∪ E2.

If π and σ are chosen randomly, then Prefix(π, σ) and Suffix(π, σ) are random sets of
size ` (i.e., they have the same distribution as the random set S in the statement of
the lemma).

We will prove the lemma by contradiction. Suppose the claim of the lemma is
false.

Pr
π,σ

[
w(Prefix(π, σ)) >

1

2
− δ
]
>

11

12
and Pr

π,σ

[
w(Suffix(π, σ)) >

1

2
− δ
]
>

11

12
.

It follows that with probability more than 5/6, both Prefix and Suffix are heavy and
consequently w(Middle(π, σ)) < 2δ. Let E(π, σ) denote this event; then,

Pr
π,σ

[E(π, σ)] >
5

6
.(B.3)
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Middle(π, σ) is a random subset of Γ of size k, and E1(π) and E2(π) are random
subsets of Γ of size k′. Since k′ < k, we may conclude that

Pr
π

[w(E1(π)) < 2δ] >
5

6
and Pr

π
[w(E2(π)) < 2δ] >

5

6
.

It follows that with probability 2/3, both E1 and E2 are light. Let F(π) denote this
event; then,

Pr
π

[F(π)] >
2

3
.(B.4)

Let B− be the block in π with the smallest weight; let its weight be w−. Let B+

be the block in π̂ with the largest weight; let its weight be w+. For a partition π and
an ordering σ, let σ′ be the ordering derived from σ by interchanging the positions
of B+ an B−. Clearly, if σ is chosen uniformly from the set of all permutations of
[2m+1], then σ′ is a random ordering with the same distribution as σ. It then follows
from (B.3) that

Pr
π,σ

[E(π, σ′)] >
5

6
.(B.5)

Now, from (B.3), (B.4), and (B.5) we have

Pr
π,σ

[E(π, σ) ∧ F(π) ∧ E(π, σ′)] >
1

3
.(B.6)

The probability that B− 6= Middle(π, σ) and B+ does not appear on the same side of
Middle as B− is

2m

2m+ 1
· m+ 1

2m
=

m

2m+ 1
≥ 2

3
,

where the inequality holds since m ≥ 1. By combining this with (B.6), we conclude
that with nonzero probability the following events take place simultaneously.

(a) Prefix(π, σ), Suffix(π, σ), Prefix(π, σ′), and Suffix(π, σ′) are all heavy;
(b) E1(π) and E2(π) are both light (i.e., have weight less than 2δ); and
(c) B− 6= Middle(π, σ), and B− and B+ do not appear on the same side of Middle.

We will show that this is impossible. Suppose (say) B− ∈ Prefix(π, σ). Then, from
the definition of σ′ and (a), we have

w(Prefix(π, σ′)) = w(Prefix(π, σ)) + w+ − w− >
1

2
− δ + w+ − w−.

Since Prefix(π, σ′) and Suffix(π, σ′) are heavy, we have

1 = w(Prefix(π, σ′)) + w(Middle(π, σ′)) + w(Suffix(π, σ′))

>

(
1

2
− δ + w+ − w−

)
+ w− +

(
1

2
− δ
)

= 1 + w+ − 2δ.

This is impossible, since, as we now show, w+ ≥ 2δ whenever (a) and (b) hold. For,
by (a) w(Prefix(π, σ)) > 1/2− δ, and by (b) w(E1(π)) < 2δ. Hence, one of the blocks
B1, B2 . . . , Bm, has weight more than

1

m

(
1

2
− 3δ

)
≥ k

`

(
1

2
− 3δ

)
≥ 4δ

1/2− δ
(

1

2
− 3δ

)
= 4δ

1− 6δ

1− 2δ
.
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Since δ ≤ 1/12, this is at least 2δ.

Appendix C. Existence of dispersers and extractors. In this section we
prove Theorem 1.10.

Dispersers. First, consider the part (a) of Theorem 1.10. Sipser [20] showed the
existence of disperser graphs with parameters (N = mlogm,M = m,K = m,D =
2 log2m, ε = 1/2); we use his argument and obtain disperser graphs with parameters
close to the lower bounds shown in section 2.

We construct a random graph G = (V1 = [N ], V2 = [M ], E) by choosing D
random neighbors for each v ∈ V1. Fix ε > 0 and let L = dεMe. If G is not a
(K, ε)-disperser, there is some subset of V2 of size L that misses some K vertices of
V1. Thus, Pr[G is not a (K, ε)-disperser] is at most(

N

K

)(
M

L

)
(1− L/M)KD

< (eN/K)K(eM/L)L(1− L/M)KD

≤ (eN/K)K(eM/L)L exp(−LKD/M)).(C.1)

(To justify the last inequality we use 1− x ≤ e−x.)
Plugging D we have (eN/K)K · (eM/L)K ≤ exp(LKD/M). Therefore, by (C.1),

we have

Pr[G is not a disperser] < 1.

So there is at least one instance of G that meets our requirements.
Extractors. We now consider part (b) of Theorem 1.10. Essentially the same

bounds were derived by Zuckerman [26]. We derive it again for completeness. We
will use Definition 1.7. We will obtain a bipartite graph G = (V1 = [N ], V2 = [M ], E)
where all vertices in V1 have the same degree D such that for every S ⊆ V1 of
cardinality K, and any R ⊆ V2,∣∣∣∣ |E(S,R)|

KD
− |R|
M

∣∣∣∣ < ε.(C.2)

We first observe that (C.2) can be replaced by a seemingly weaker condition.

Claim C.1. If for every S ⊆ V1 of size K, and any R ⊆ V2, |E(S,R)| < KD( |R|M +
ε), then G is a (K, ε)-extractor.

For, if there exist some S and R with |E(S,R)| ≤ KD( |R|M−ε ), then consider the

set R̄ = V2 \ R. We have |E(S, R̄)| > KD( |R̄|M + ε), contradicting the hypothesis of
the claim.

Now we prove the existence of extractors. Consider the random graph G = (V1 =
[N ], V2 = [M ], E) obtained by choosing D random neighbors with replacement for
each v ∈ V1.

Fix S ⊆ V1 of size K and R ⊆ V2. Let p = |R|
M . We wish to estimate the

probability (over the choices of the edges) that |E(S,R)| ≥ KD(p+ ε). The number
of edges between S and R is the sum of KD identically distributed independents

random variables X1, X2, . . . , XKD, each taking the value 1 with probability p = |R|
M

and the value 0 with probability 1−p. Thus, we can bound the probability of deviation
using standard estimates for the binomial distribution:

Pr[|E(S,R)| ≥ (p+ ε)KD] ≤ exp(−2ε2KD).
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(This version of Chernoff’s bounds appears in Chvátal [5] and Hoeffding [10].) Thus,
Pr[G is not a (K, ε)-extractor] is at most(

N

K

)
2M exp(−2ε2KD)

<

(
eN

K

)K
2M exp(−2ε2KD)

= (eK(1+ln(N/K)) · e−ε2KD) · (eM ln 2 · e−ε2KD).

Since D ≥ 1
ε2 (1 + ln(N/K)) the first factor is at most 1; similarly, since D ≥ M ln 2

ε2K
the second factor is at most 1. It follows that

Pr[G is not an extractor] < 1.

Hence, there is an instance of G that satisfies our requirements.
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