Lecture Notes 9: Symmetry breaking in distributed networks
$\qquad$

## 1 Introduction

Given a distributed computer ring network $C_{n}$ with n computers, each computer (processor) has a unique ID, we want that each processor choose a color, so that, there is no two adjacent processors with the same color.
Notice: If n is odd number the number of colors needed is 3 .

## Distributed Computing

In each step each processor can send and receive messages from it's neighbors.

## Simple solution

We give one of the processors a token, starting with color 0 , this processor choose the color of the token and pass the token to it's right neighbor, with the opposite color, the last processor choose the color 2 , this solution would take $\theta(n)$. We will show a solution that take $\log ^{*}(n)+O(1)$ where $\log ^{*}(n)=\min \left\{i \mid \log ^{(i)} n \leq 1\right\}$. Note that $\log ^{(0)} n=n$ and $\log ^{(i)} n=\log \log ^{(i-1)} n$ (i.e., applying log iteratively $i$ times).

## 2 Coloring in distributed computers

The algorithm works in steps.
In step k each processor has a color between $\left[0, \ldots, l_{k}-1\right]$.
Init: $\mathrm{C}(\mathrm{x})=\mathrm{ID}(\mathrm{x})$.
At the beginning of step $\mathrm{k}+1$ there is a legal coloring with $l_{k}$ colors at the the end of step, there is a legal coloring with $l_{k+1}$ colors.
Step k: each processor X looks at the color of its right neighbor Y. Consider the binary representation of $C_{k}(X)$ and $C_{k}(Y)$.
$C_{k}(X)=\left(x_{r}, \ldots, x_{0}\right)$
$C_{k}(Y)=\left(y_{r}, \ldots, y_{0}\right)$
let i be the minimal index that this color are different $i=\min \left\{i \mid x_{i} \neq y_{i}\right\}$
The new color or X would be $C_{k+1}(X)=\left(i, x_{i}\right)=2 \cdot i+x_{i}$.
The number of colors descends from r to $\left\lceil\log _{2} r\right\rceil+1$.
Claim: if $C_{k}(X) \neq C_{k}(Y)$ then $C_{k+1}(X) \neq C_{k+1}(Y)$

- Case 1: $i_{x} \neq i_{y}$ then $\left(i_{x}, x_{i_{x}}\right) \neq\left(i_{y}, y_{i_{y}}\right)$.
- Case 2: $i_{x}=i_{y}$, by definition $x_{i_{x}} \neq y_{i_{y}}$ hence $\left(i_{x}, x_{i_{x}}\right) \neq\left(i_{y}, y_{i_{y}}\right)$.

Let $r_{k}$ be the number of bits in step k then $r_{k+1}=\left\lceil\log _{2} r_{k}\right\rceil+1$.
If $r_{k} \geq 4$ then $r_{k}$ descends.
If $r_{k}=3$ then in the next step there would be 6 colors.
Claim: If $\log ^{k-1} n \geq 3$ then $r_{k} \leq\left\lceil\log ^{k} n\right\rceil+2$.
By induction: base $r_{0}=n+1$ because ID is n bits.
Inductive Step:
$\left.r_{k}=\left\lceil\log _{2}\left(r_{k-1}\right)+1\right\rceil \leq\left\lceil\log _{2}\left(\left\lceil\log ^{(k-1)}(n)\right)\right\rceil+2\right)\right\rceil+1$
$\leq\left\lceil\log _{2}\left(\log ^{(k-1)}(n)+3\right)\right\rceil+1 \leq\left\lceil\log _{2}\left(2 \cdot \log ^{(k-1)}(n)\right)\right\rceil+1 \leq\left\lceil\log ^{(k)}(n)\right\rceil+2$

## From 6 colors to 3 colors in 3 steps.

Each processor has one of the color ( $0 \ldots 5$ ), the algorithm works in 3 steps for $3 \leq i \leq 5$.
Step i: each processor with color i, chooses a color between $0,1,2$ that is different from its neighbors.
Note that if a processor chooses a color, then the color of its neighbors do not change in this iteration, and the processor can always choose a color different from its neighbors.

## 3 Lower bound for distributed ring coloring

Theorem: Any local algorithm for coloring with constant number of colors requires at least $\frac{1}{2} \log ^{*} n-1$ steps.

Assume we got algorithm that colors the ring after t steps.
After t steps, the information that each processor has $\left(x_{i-t}, \ldots, x_{i}, \ldots, x_{i+t}\right)$, the length of the vector is $2 t+1$ and all the $x_{i}$ are different.
Any algorithm is a function $f$ from these vectors to the colors $0,1,2$.
Consider two vertices:
$v_{1}=\left(x_{i-t}, \ldots, x_{i}, \ldots, x_{i+t}\right)$
$v_{2}=\left(x_{i-t+1}, \ldots, x_{i+1}, \ldots, x_{i+t+1}\right)$
We call $v_{2}$ a legal 1 -shift of $v_{1}$ if $v_{2}$ is a shift by 1 of $v_{1}$ while all $x_{i}$ are different and $x_{i-t} \neq x_{i+t+1}$.
Observation: if $v_{2}$ is a legal 1 -shift of $v_{1}$, then $f\left(v_{1}\right) \neq f\left(v_{2}\right)$
Proof: $v_{1}$ and $v_{2}$ might be adjacent on the ring so they must be colored differently.
Let us build a graph $G^{t}(V, E)$ its vertices would be $2 t+1$ length vectors with different integer number (even between 0 to $n$ ).
Two vertices are connected if one is a legal 1-shift of the other.
The $f$ function yields a legal coloring of the graph $G^{t}$ with 3 colors.
Let $\chi(G)$ be the coloring number of $G$.
We prove that if $t<\frac{1}{2} \log ^{*} n-1$ then $\chi\left(G^{t}\right)>3$. We will actually show that it is true even for a subgraph of $G^{t}$. Specifically, there is $H \subseteq G^{t}$ such that $\chi(H)>3$.

## Line Graph

Let $G=(V, E)$ be a directed graph, we will define $L G(G)$ as follows

- The edges of G are the vertices of $L G$.
- Two vertices in $L G e_{i}=\left(v_{i_{1}}, v_{i_{2}}\right), e_{j}=\left(v_{j_{1}}, v_{j_{2}}\right)$, are connected if $v_{j_{1}}=v_{i_{2}}$

Claim: for our G $\chi(G) \leq 2^{\chi(L G)}$
Prove: assume we have a color of $L G$ that use $k$ colors, we will show coloring of $L G$ with $2^{k}$ colors. The coloring would be:
$C(v)=\left(b_{0}, b_{1}, \ldots, b_{k-1}\right), b_{i}=1$ if there exists edge $(v, X)$ with color $i$.
The number of colors is $2^{k}$, now we will prove that it is a legal coloring.
Assume $(X, Y) \in E$ in $L G$ the color of $(X, Y)$ is i , that mean in the coordinate $i$ of $C(X)$ is 1 , assume that also in the $i$ coordinate of $C(Y)$ is 1 , that mean that exist $Z$, so that $(Y, Z) \in E$ and its color is also $i,((X, Y),(Y, Z)) \in E(L G)$ and $(X, Y),(Y, Z)$ has the same color, contradiction that the coloring of $L G$ is legal.

Lets define $H_{0}$ graph with n vertices indexed from 0 to $n-1$, and exist edge ( $\mathrm{i}, \mathrm{j}$ ) if $i<j$, $\chi\left(H_{0}\right)=n$ (full graph).
$H_{1}=L G\left(H_{0}\right)-$ vertices $(i, j) i<j$, there exist edge between ( $\mathrm{i}, \mathrm{j}$ ) and $(\mathrm{j}, \mathrm{k})$ if $i<j<k$. By the claim $\chi\left(H_{1}\right) \geq \log _{2}(n)$.
$H_{2}=L G\left(H_{1}\right)-\operatorname{vertices}(i, j, k)$, exist edge between (i,j,k) to ( $\left.\mathrm{j}, \mathrm{k}, \mathrm{l}\right)$ if $i<j<k<l$. $\chi\left(H_{2}\right) \geq \log _{2}\left(\log _{2}(n)\right)$.

In general the vertices of $H_{k}$ are $\left(i_{0}, i_{1}, \ldots, i_{k}\right)$ while for $i_{0}<i_{1}<\ldots<i_{k}$ there exist an edge between $\left(i_{0}, i_{1}, \ldots, i_{k}\right)$ to $\left(i_{1}, i_{1}, \ldots, i_{k+1}\right)$ if $i_{i}<i_{1}<\ldots<i_{k}<i_{k+1}$.

By a simple induction we have $\chi\left(H_{k}\right) \geq \log ^{(k)}(n)$. Note that on $H_{2 t+1}$ subgraph of $G^{t}$ (we just add a requirement of sequence monotonicity). If $2 t+1<\log ^{*} n$ then :
$\log ^{(2 t+1)}(n) \leq \chi\left(H_{2 t+1}\right) \leq \chi\left(G^{t}\right) \leq C$ (the constant number that the algorithm color $\left.G\right)$. This implies that $t \geq \frac{1}{2} \log ^{*} n-1$.

