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1 Introduction

Given a distributed computer ring network Cn with n computers, each computer (processor)
has a unique ID, we want that each processor choose a color, so that, there is no two adjacent
processors with the same color.
Notice: If n is odd number the number of colors needed is 3.

Distributed Computing

In each step each processor can send and receive messages from it’s neighbors.

Simple solution

We give one of the processors a token, starting with color 0, this processor choose the
color of the token and pass the token to it’s right neighbor, with the opposite color, the
last processor choose the color 2, this solution would take θ(n). We will show a solution
that take log∗(n) + O(1) where log∗(n) = min{i| log(i) n ≤ 1}. Note that log(0) n = n and
log(i) n = log log(i−1) n (i.e., applying log iteratively i times).

2 Coloring in distributed computers

The algorithm works in steps.
In step k each processor has a color between [0, . . . , lk − 1].
Init: C(x) = ID(x).
At the beginning of step k+1 there is a legal coloring with lk colors at the the end of step,
there is a legal coloring with lk+1 colors.
Step k: each processor X looks at the color of its right neighbor Y. Consider the binary
representation of Ck(X) and Ck(Y ).
Ck(X) = (xr, . . . , x0)
Ck(Y ) = (yr, . . . , y0)
let i be the minimal index that this color are different i = min{i|xi 6= yi}
The new color or X would be Ck+1(X) = (i, xi) = 2 · i+ xi.
The number of colors descends from r to dlog2 re+ 1.

Claim: if Ck(X) 6= Ck(Y ) then Ck+1(X) 6= Ck+1(Y )

• Case 1: ix 6= iy then (ix, xix) 6= (iy, yiy).

• Case 2: ix = iy, by definition xix 6= yiy hence (ix, xix) 6= (iy, yiy).
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Let rk be the number of bits in step k then rk+1 = dlog2 rke+ 1.
If rk ≥ 4 then rk descends.
If rk = 3 then in the next step there would be 6 colors.
Claim: If logk−1 n ≥ 3 then rk ≤ dlogk ne+ 2.
By induction: base r0 = n+ 1 because ID is n bits.
Inductive Step:
rk = dlog2(rk−1) + 1e ≤ dlog2(dlog(k−1)(n))e+ 2)e+ 1
≤ dlog2(log(k−1)(n) + 3)e+ 1 ≤ dlog2(2 · log(k−1)(n))e+ 1 ≤ dlog(k)(n)e+ 2

From 6 colors to 3 colors in 3 steps.

Each processor has one of the color (0...5), the algorithm works in 3 steps for 3 ≤ i ≤ 5.
Step i: each processor with color i, chooses a color between 0,1,2 that is different from its
neighbors.
Note that if a processor chooses a color, then the color of its neighbors do not change in
this iteration, and the processor can always choose a color different from its neighbors.

3 Lower bound for distributed ring coloring

Theorem: Any local algorithm for coloring with constant number of colors requires at
least 1

2 log∗ n− 1 steps.

Assume we got algorithm that colors the ring after t steps.
After t steps, the information that each processor has (xi−t, . . . , xi, . . . , xi+t), the length of
the vector is 2t+ 1 and all the xi are different.
Any algorithm is a function f from these vectors to the colors 0,1,2.
Consider two vertices:
v1 = (xi−t, . . . , xi, . . . , xi+t)
v2 = (xi−t+1, . . . , xi+1, . . . , xi+t+1)
We call v2 a legal 1-shift of v1 if v2 is a shift by 1 of v1 while all xi are different and
xi−t 6= xi+t+1.
Observation: if v2 is a legal 1-shift of v1, then f(v1) 6= f(v2)
Proof: v1 and v2 might be adjacent on the ring so they must be colored differently.

Let us build a graph Gt(V,E) its vertices would be 2t + 1 length vectors with different
integer number (even between 0 to n).
Two vertices are connected if one is a legal 1-shift of the other.
The f function yields a legal coloring of the graph Gt with 3 colors.
Let χ(G) be the coloring number of G.
We prove that if t < 1

2 log∗ n− 1 then χ(Gt) > 3. We will actually show that it is true even
for a subgraph of Gt. Specifically, there is H ⊆ Gt such that χ(H) > 3.
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Line Graph

Let G = (V,E) be a directed graph, we will define LG(G) as follows

• The edges of G are the vertices of LG.

• Two vertices in LG ei = (vi1 , vi2), ej = (vj1 , vj2), are connected if vj1 = vi2

Claim: for our G χ(G) ≤ 2χ(LG)

Prove: assume we have a color of LGthat use k colors, we will show coloring of LG with 2k

colors. The coloring would be:
C(v) = (b0, b1, . . . , bk−1), bi = 1 if there exists edge (v,X) with color i.
The number of colors is 2k, now we will prove that it is a legal coloring.
Assume (X,Y ) ∈ E in LG the color of (X,Y ) is i, that mean in the coordinate i of C(X)
is 1, assume that also in the i coordinate of C(Y ) is 1, that mean that exist Z, so that
(Y,Z) ∈ E and its color is also i, ((X,Y ), (Y, Z)) ∈ E(LG) and (X,Y ), (Y,Z) has the same
color, contradiction that the coloring of LG is legal.

Lets define H0 graph with n vertices indexed from 0 to n− 1, and exist edge (i,j) if i < j,
χ(H0) = n (full graph).
H1 = LG(H0) - vertices (i, j) i < j, there exist edge between (i,j) and (j,k) if i < j < k. By
the claim χ(H1) ≥ log2(n).
H2 = LG(H1) - vertices (i, j, k), exist edge between (i,j,k) to (j,k,l) if i < j < k < l.
χ(H2) ≥ log2(log2(n)).
...
In general the vertices of Hk are (i0, i1, . . . , ik) while for i0 < i1 < . . . < ik there exist an
edge between (i0, i1, . . . , ik) to (i1, i1, . . . , ik+1) if ii < i1 < . . . < ik < ik+1.

By a simple induction we have χ(Hk) ≥ log(k)(n). Note that on H2t+1 subgraph of Gt

(we just add a requirement of sequence monotonicity). If 2t+ 1 < log∗ n then :
log(2t+1)(n) ≤ χ(H2t+1) ≤ χ(Gt) ≤ C (the constant number that the algorithm color G).
This implies that t ≥ 1

2 log∗ n− 1.
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