Lecture 9

We have already

- Established Turing Machines as the gold standard of computers and computability ...

Lecture 9

We have already

- Established Turing Machines as the gold standard of computers and computability ...
- seen examples of solvable problems ...

Lecture 9

We have already

- Established Turing Machines as the gold standard of computers and computability ...
- seen examples of solvable problems ...
- and saw one problem, A_{TM}, that is computationally unsolvable.

Lecture 9

We have already

- Established Turing Machines as the gold standard of computers and computability ...
- seen examples of solvable problems ...
- and saw one problem, A_{TM}, that is computationally unsolvable.

In this lecture, we look at other computationally unsolvable problems, and establish the technique of mapping reducibilities for prove that languages are undecidable/non-enumerable.

Reducibility

Example:

- Finding your way around a new city

Reducibility

Example:

- Finding your way around a new city
- reduces to ...

Reducibility

Example:

- Finding your way around a new city
- reduces to ...
- obtaining a city map.

Reducibility, In Our Context

 Always involves two problems, A and B.
Reducibility, In Our Context

Always involves two problems, A and B.
Desired Property: If A reduces to B, then any solution of B can be used to find a solution of A.

Reducibility, In Our Context

Always involves two problems, A and B.
Desired Property: If A reduces to B, then any solution of B can be used to find a solution of A.

Remark: This property says nothing about solving A by itself or B by itself.

Examples

Reductions:

- Traveling from Boshton to Paris ...

Examples

Reductions:

- Traveling from Boshton to Paris ...
- buying plane ticket ...

Examples

Reductions:

- Traveling from Boshton to Paris ...
- buying plane ticket...
- earning the money for that ticket ...

Examples

Reductions:

- Traveling from Boshton to Paris ...
- buying plane ticket...
- earning the money for that ticket ...
- finding a job
(or getting the $\$$ from mom and dad...)

Examples

Reductions:

- Measuring area of rectangle ...

Examples

Reductions:

- Measuring area of rectangle ...
- measuring lengths of sides.

Examples

Reductions:

- Measuring area of rectangle ...
- measuring lengths of sides.

Also:

Examples

Reductions:

- Measuring area of rectangle ...
- measuring lengths of sides.

Also:

- Solving a system of linear equations ...
- inverting a matrix.

Reducibility

If A is reducible to B, then

- A cannot be harder than B

Reducibility

If A is reducible to B, then

- A cannot be harder than B
- if B is decidable, so is A.

Reducibility

If A is reducible to B, then

- A cannot be harder than B
- if B is decidable, so is A.
- if A is undecidable and reducible to B, then B is undecidable.

Undecidable Problems

We have already established that A_{TM} is undecidable.
Here is a related problem.
$H_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M halts on input $w\}$

Clarification: How does H_{TM} differ from A_{TM} ?

Undecidable Problems

$H_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M halts on input $w\}$
Theorem: H_{TM} is undecidable.
Proof idea:

- By contradiction.

Undecidable Problems

$H_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M halts on input $w\}$
Theorem: H_{TM} is undecidable.
Proof idea:

- By contradiction.
- Assume H_{TM} is decidable.

Undecidable Problems

$H_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M halts on input $w\}$
Theorem: H_{TM} is undecidable.
Proof idea:

- By contradiction.
- Assume H_{TM} is decidable.
- Let R be a TM that decides H_{TM}.

Undecidable Problems

$H_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M halts on input $w\}$
Theorem: H_{TM} is undecidable.
Proof idea:

- By contradiction.
- Assume H_{TM} is decidable.
- Let R be a TM that decides H_{TM}.
- Use R to construct S, a TM that decides A_{TM}.

Undecidable Problems

$H_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M halts on input $w\}$
Theorem: H_{TM} is undecidable.
Proof idea:

- By contradiction.
- Assume H_{TM} is decidable.
- Let R be a TM that decides H_{TM}.
- Use R to construct S, a TM that decides A_{TM}.
- So A_{TM} is reduced to H_{TM}.

Undecidable Problems

$H_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M halts on input $w\}$
Theorem: H_{TM} is undecidable.
Proof idea:

- By contradiction.
- Assume H_{TM} is decidable.
- Let R be a TM that decides H_{TM}.
- Use R to construct S, a TM that decides A_{TM}.
- So A_{TM} is reduced to H_{TM}.
- Since A_{TM} is undecidable, so is H_{TM}.

Undecidable Problems

Theorem: H_{TM} is undecidable.

Proof: Assume, by way of contradiction, that TM R decides H_{TM}. Define a new TM, S, as follows:

- On input $\langle M, w\rangle$,

Undecidable Problems

Theorem: H_{TM} is undecidable.

Proof: Assume, by way of contradiction, that TM R decides H_{TM}. Define a new TM, S, as follows:

- On input $\langle M, w\rangle$,
- run R on $\langle M, w\rangle$.

Undecidable Problems

Theorem: H_{TM} is undecidable.
Proof: Assume, by way of contradiction, that TM R decides H_{TM}. Define a new TM, S, as follows:

- On input $\langle M, w\rangle$,
- run R on $\langle M, w\rangle$.
- If R rejects, reject.

Undecidable Problems

Theorem: H_{TM} is undecidable.
Proof: Assume, by way of contradiction, that TM R decides H_{TM}. Define a new TM, S, as follows:

- On input $\langle M, w\rangle$,
- run R on $\langle M, w\rangle$.
- If R rejects, reject.
- If R accepts (meaning M halts on w), simulate M on w until it halts.

Undecidable Problems

Theorem: H_{TM} is undecidable.
Proof: Assume, by way of contradiction, that TM R decides H_{TM}. Define a new TM, S, as follows:

- On input $\langle M, w\rangle$,
- run R on $\langle M, w\rangle$.
- If R rejects, reject.
- If R accepts (meaning M halts on w), simulate M on w until it halts.
- If M accepted, accept; otherwise reject.

Undecidable Problems (2)

Does a TM accept any string at all?

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M)=\emptyset\}
$$

Undecidable Problems (2)

Does a TM accept any string at all?

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M)=\emptyset\}
$$

Theorem: E_{TM} is undecidable.

Undecidable Problems (2)

Does a TM accept any string at all?

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M)=\emptyset\}
$$

Theorem: E_{TM} is undecidable.
Proof structure:

Undecidable Problems (2)

Does a TM accept any string at all?

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M)=\emptyset\}
$$

Theorem: E_{TM} is undecidable.
Proof structure:

- By contradiction.
- Assume E_{TM} is decidable.
- Let R be a TM that decides E_{TM}.
- Use R to construct S, a TM that decides A_{TM}.

Undecidable Problems (2)

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M)=\emptyset\}
$$

Undecidable Problems (2)

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M)=\emptyset\}
$$

First attempt: When S receives input $\langle M, w\rangle$, it calls R with input $\langle M\rangle$.

- If R accepts, then reject, because M does not accept any string, let alone w.
- But what if R rejects?

Undecidable Problems (2)

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M)=\emptyset\}
$$

First attempt: When S receives input $\langle M, w\rangle$, it calls R with input $\langle M\rangle$.

- If R accepts, then reject, because M does not accept any string, let alone w.
- But what if R rejects?

Second attempt: Let's modify M.

Undecidable Problems (2)

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M)=\emptyset\}
$$

Define M_{1} : on input x,

1. if $x \neq w$, reject.
2. if $x=w$, run M on w and accept if M does.

Undecidable Problems (2)

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a TM and } L(M)=\emptyset\}
$$

Define M_{1} : on input x,

1. if $x \neq w$, reject.
2. if $x=w$, run M on w and accept if M does.
M_{1} either

- accepts just w, or
- accepts nothing.

Undecidable Problems (2)

Machine M_{1} : on input x,

1. if $x \neq w$, reject.
2. if $x=w$, run M on w and accept if M does.

Undecidable Problems (2)

Machine M_{1} : on input x,

1. if $x \neq w$, reject.
2. if $x=w$, run M on w and accept if M does.

Question: Can a TM construct M_{1} from M ?

Undecidable Problems (2)

Machine M_{1} : on input x,

1. if $x \neq w$, reject.
2. if $x=w$, run M on w and accept if M does.

Question: Can a TM construct M_{1} from M ?
Answer: Yes, because we need only hardwire w, and add a few extra states to perform the " $x=w$?" test.

Undecidable Problems (2)

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M)=\emptyset\}
$$

Theorem: E_{TM} is undecidable.

Undecidable Problems (2)

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M)=\emptyset\}
$$

Theorem: E_{TM} is undecidable.
Define S as follows:
On input $\langle M, w\rangle$, where M is a TM and w a string,

Undecidable Problems (2)

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M)=\emptyset\}
$$

Theorem: E_{TM} is undecidable.
Define S as follows:
On input $\langle M, w\rangle$, where M is a TM and w a string,

- Construct M_{1} from M and w.
- Run R on input $\left\langle M_{1}\right\rangle$,
- if R accepts, reject; if R rejects, accept. \&

Undecidable Problems (3)

Does a TM accept a regular language?

$$
R_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M) \text { is regular }\}
$$

Undecidable Problems (3)

Does a TM accept a regular language?

$$
R_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M) \text { is regular }\}
$$

Theorem: R_{TM} is undecidable.

Undecidable Problems (3)

Does a TM accept a regular language?

$$
R_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M) \text { is regular }\}
$$

Theorem: R_{TM} is undecidable.
Skeleton of Proof:

- By contradiction.
- Assume R_{TM} is decidable.
- Let R be a TM that decides R_{TM}.
- Use R to construct S, a TM that decides A_{TM}.

Undecidable Problems (3)

Does a TM accept a regular language?

$$
R_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M) \text { is regular }\}
$$

Theorem: R_{TM} is undecidable.
Skeleton of Proof:

- By contradiction.
- Assume R_{TM} is decidable.
- Let R be a TM that decides R_{TM}.
- Use R to construct S, a TM that decides A_{TM}.

But how?

Undecidable Problems (3)

$$
R_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M) \text { is regular }\}
$$

Modify M so that the resulting TM accepts a regular language if and only if M accepts w.

Undecidable Problems (3)

$$
R_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M) \text { is regular }\}
$$

Modify M so that the resulting TM accepts a regular language if and only if M accepts w.

Design M_{2} so that

- if M does not accept w, then M_{2} accepts $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ (non-regular)
- if M accepts w, then M_{2} accepts Σ^{*} (regular).

Undecidable Problems (3)

From M and w, define M_{2} :

Undecidable Problems (3)

From M and w, define M_{2} :
On input x,

1. If x has the form $0^{n} 1^{n}$, accept it.
2. Otherwise, run M on input w and accept x if M accepts w.

Undecidable Problems (3)

From M and w, define M_{2} :
On input x,

1. If x has the form $0^{n} 1^{n}$, accept it.
2. Otherwise, run M on input w and accept x if M accepts w.

Claim:

- If M does not accept w, then M_{2} accepts $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
- If M accepts w, then M_{2} accepts Σ^{*}.

Undecidable Problems (3)

$$
R_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M) \text { is regular }\}
$$

Theorem: R_{TM} is undecidable.

Undecidable Problems (3)

$$
R_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a } \mathrm{TM} \text { and } L(M) \text { is regular }\}
$$

Theorem: R_{TM} is undecidable.
Define S :
On input $\langle M, w\rangle$,

1. Construct M_{2} from M and w.
2. Run R on input $\left\langle M_{2}\right\rangle$.
3. If R accepts, accept; if R rejects, reject.

Undecidable Problems (4)

Are two TMs equivalent?

$$
\begin{aligned}
\mathrm{EQ}_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \quad \mid\right. & M_{1}, M_{2} \text { are TMs and } \\
& \left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
\end{aligned}
$$

Theorem: $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable.

Undecidable Problems (4)

Are two TMs equivalent?

$$
\begin{aligned}
\mathrm{EQ}_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \quad \mid\right. & M_{1}, M_{2} \text { are TMs and } \\
& \left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
\end{aligned}
$$

Theorem: $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable.
We are getting tired of reducing A_{TM} to everything.

Undecidable Problems (4)

Are two TMs equivalent?

$$
\begin{aligned}
\mathrm{EQ}_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \quad \mid\right. & M_{1}, M_{2} \text { are TMs and } \\
& \left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
\end{aligned}
$$

Theorem: $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable.
We are getting tired of reducing A_{TM} to everything.
Let's try instead a reduction from E_{TM} to $\mathrm{EQ}_{\mathrm{TM}}$.

Undecidable Problems (4)

$$
\begin{aligned}
\mathrm{EQ}_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \quad\right. & M_{1}, M_{2} \text { are TMs and } \\
& \left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
\end{aligned}
$$

Theorem: $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable. Idea:

- E_{TM} is the problem of testing whether a TM language is empty.

Undecidable Problems (4)

$$
\begin{aligned}
\mathrm{EQ}_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \quad \mid\right. & M_{1}, M_{2} \text { are TMs and } \\
& \left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
\end{aligned}
$$

Theorem: $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable. Idea:

- E_{TM} is the problem of testing whether a TM language is empty.
- $\mathrm{EQ}_{\mathrm{TM}}$ is the problem of testing whether two TM languages are the same.

Undecidable Problems (4)

$$
\begin{aligned}
\mathrm{EQ}_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \quad \mid\right. & M_{1}, M_{2} \text { are TMs and } \\
& \left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
\end{aligned}
$$

Theorem: $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable. Idea:

- E_{TM} is the problem of testing whether a TM language is empty.
- $\mathrm{EQ}_{\mathrm{TM}}$ is the problem of testing whether two TM languages are the same.
- If one of these two TM languages happens to be empty, then we are back to E_{TM}.

Undecidable Problems (4)

$$
\begin{aligned}
\mathrm{EQ}_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \quad\right. & M_{1}, M_{2} \text { are TMs and } \\
& \left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
\end{aligned}
$$

Theorem: $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable. Idea:

- E_{TM} is the problem of testing whether a TM language is empty.
- $\mathrm{EQ}_{\mathrm{TM}}$ is the problem of testing whether two TM languages are the same.
- If one of these two TM languages happens to be empty, then we are back to E_{TM}.
- So E_{TM} is a special case of $\mathrm{EQ}_{\mathrm{TM}}$.

Undecidable Problems (4)

$$
\begin{aligned}
\mathrm{EQ}_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \quad\right. & M_{1}, M_{2} \text { are TMs and } \\
& \left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
\end{aligned}
$$

Theorem: $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable.
Let M_{NO} be the TM: On input x, reject.
Let R decide $\mathrm{EQ}_{\mathrm{TM}}$.

Undecidable Problems (4)

$$
\begin{aligned}
\mathrm{EQ}_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \quad\right. & M_{1}, M_{2} \text { are TMs and } \\
& \left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
\end{aligned}
$$

Theorem: $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable.
Let M_{NO} be the TM: On input x, reject.
Let R decide $\mathrm{EQ}_{\mathrm{TM}}$.
Let S be: On input $\langle M\rangle$:

1. Run R on input $\left\langle M, M_{\mathrm{NO}}\right\rangle$.
2. If R accepts, accept; if R rejects, reject.

Undecidable Problems (4)

$$
\begin{aligned}
\mathrm{EQ}_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \quad\right. & M_{1}, M_{2} \text { are TMs and } \\
& \left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
\end{aligned}
$$

Theorem: $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable.
Let M_{NO} be the TM: On input x, reject.
Let R decide $\mathrm{EQ}_{\mathrm{TM}}$.
Let S be: On input $\langle M\rangle$:

1. Run R on input $\left\langle M, M_{\mathrm{NO}}\right\rangle$.
2. If R accepts, accept; if R rejects, reject.

If R decides $\mathrm{EQ}_{\mathrm{TM}}$, then S decides E_{TM}.

Bucket of Undecidable Problems Same techniques prove undecidability of

- Does a TM accept a decidable language?

Bucket of Undecidable Problems Same techniques prove undecidability of

- Does a TM accept a decidable language?
- Does a TM accept a enumerable language?

Bucket of Undecidable Problems

 Same techniques prove undecidability of- Does a TM accept a decidable language?
- Does a TM accept a enumerable language?
- Does a TM accept a context-free language?

Bucket of Undecidable Problems

 Same techniques prove undecidability of- Does a TM accept a decidable language?
- Does a TM accept a enumerable language?
- Does a TM accept a context-free language?
- Does a TM accept a finite language?

Bucket of Undecidable Problems

 Same techniques prove undecidability of- Does a TM accept a decidable language?
- Does a TM accept a enumerable language?
- Does a TM accept a context-free language?
- Does a TM accept a finite language?
- Does a TM halt on all inputs?

Bucket of Undecidable Problems

 Same techniques prove undecidability of- Does a TM accept a decidable language?
- Does a TM accept a enumerable language?
- Does a TM accept a context-free language?
- Does a TM accept a finite language?
- Does a TM halt on all inputs?
- Is there an input string that causes a TM to traverse all its states?

By now, some of you may have become cynical and embittered.

- Like, been there, done that, bought the T-shirt.

Rice's Theorem

By now, some of you may have become cynical and embittered.

- Like, been there, done that, bought the T-shirt.
- Looks like any non-trivial property of TMs is undecidable.

Rice's Theorem

By now, some of you may have become cynical and embittered.

- Like, been there, done that, bought the T-shirt.
- Looks like any non-trivial property of TMs is undecidable.

That is correct.

Rice's Theorem

Theorem: If \mathcal{C} is a proper non-empty subset of the set of enumerable languages, then it is undecidable whether for a given $\mathrm{TM}, M, L(M)$ is in \mathcal{C}.

Rice's Theorem

Theorem: If \mathcal{C} is a proper non-empty subset of the set of enumerable languages, then it is undecidable whether for a given $\mathrm{TM}, M, L(M)$ is in \mathcal{C}.

Proof by reduction from H_{TM} (does M halt on input x ?).

Rice's Theorem

Theorem: If \mathcal{C} is a proper non-empty subset of the set of enumerable languages, then it is undecidable whether for a given TM, $M, L(M)$ is in \mathcal{C}.

Proof by reduction from H_{TM} (does M halt on input x ?).

- Assume R decides if $L(M) \in \mathcal{C}$.
- Use R to implement S, which decides H_{TM}.

Further details of proof not given at the moment ...

Reducibility

So far, we have seen many examples of reductions from one language to another, but the notion was neither defined nor treated formally.

Reductions play an important role in

- decidability theory
- complexity theory (to come)

Time to get formal.

Computable Functions

A TM computes a function

$$
f: \Sigma^{*} \longrightarrow \Sigma^{*}
$$

if the TM

Computable Functions

A TM computes a function

$$
f: \Sigma^{*} \longrightarrow \Sigma^{*}
$$

if the TM

- starts with input w, and

Computable Functions

A TM computes a function

$$
f: \Sigma^{*} \longrightarrow \Sigma^{*}
$$

if the TM

- starts with input w, and
- halts with only $f(w)$ on tape.

Computable Functions

Claim: All the usual arithmetic functions on integers are computable.

Computable Functions

Claim: All the usual arithmetic functions on integers are computable.

These include addition, subtraction, multiplication, division (quotient and remainder), exponentiation, roots (to a specified precision).

Computable Functions

Claim: All the usual arithmetic functions on integers are computable.
These include addition, subtraction, multiplication, division (quotient and remainder), exponentiation, roots (to a specified precision).
Even non-arithmetic functions, like logarithms and trigonometric functions, can be computed (to a specified precision), using Taylor expansion or other numeric mathematic techniques.

Computable Functions

Claim: All the usual arithmetic functions on integers are computable.

These include addition, subtraction, multiplication, division (quotient and remainder), exponentiation, roots (to a specified precision).
Even non-arithmetic functions, like logarithms and trigonometric functions, can be computed (to a specified precision), using Taylor expansion or other numeric mathematic techniques.

Exercise: Design a TM that on input $\langle m, n\rangle$, halts with $\langle m+n\rangle$ on tape.

Computable Functions

A useful class of functions modifies TM descriptions. For example:

On input w :

- if $w=\langle M\rangle$ for some TM,

Computable Functions

A useful class of functions modifies TM descriptions. For example:

On input w :

- if $w=\langle M\rangle$ for some TM,
- construct $\left\langle M^{\prime}\right\rangle$, where

Computable Functions

A useful class of functions modifies TM descriptions. For example:

On input w :

- if $w=\langle M\rangle$ for some TM,
- construct $\left\langle M^{\prime}\right\rangle$, where
- $L\left(M^{\prime}\right)=L(M)$, but

Computable Functions

A useful class of functions modifies TM descriptions. For example:

On input w :

- if $w=\langle M\rangle$ for some TM,
- construct $\left\langle M^{\prime}\right\rangle$, where
- $L\left(M^{\prime}\right)=L(M)$, but
- M^{\prime} never tries to move off LHS of tape.

Computable Functions

A useful class of functions modifies TM descriptions. For example:

On input w :

- if $w=\langle M\rangle$ for some TM,
- construct $\left\langle M^{\prime}\right\rangle$, where
- $L\left(M^{\prime}\right)=L(M)$, but
- M^{\prime} never tries to move off LHS of tape.
- otherwise write ε and halt.

Computable Functions

A useful class of functions modifies TM descriptions. For example:

On input w :

- if $w=\langle M\rangle$ for some TM,
- construct $\left\langle M^{\prime}\right\rangle$, where
- $L\left(M^{\prime}\right)=L(M)$, but
- M^{\prime} never tries to move off LHS of tape.
- otherwise write ε and halt.

Left as an exercise.

Mapping Reductions

Definition: Let A and B be two languages. We say that there is a mapping reduction from A to B, and denote

$$
A \leq_{m} B
$$

Mapping Reductions

Definition: Let A and B be two languages. We say that there is a mapping reduction from A to B, and denote

$$
A \leq_{m} B
$$

if there is a computable function

$$
f: \Sigma^{*} \longrightarrow \Sigma^{*}
$$

such that, for every w,

Mapping Reductions

Definition: Let A and B be two languages. We say that there is a mapping reduction from A to B, and denote

$$
A \leq_{m} B
$$

if there is a computable function

$$
f: \Sigma^{*} \longrightarrow \Sigma^{*}
$$

such that, for every w,

$$
w \in A \Longleftrightarrow f(w) \in B
$$

The function f is called the reduction from A to B.

Mapping Reductions

Mapping Reductions

A mapping reduction converts questions about membership in A to membership in B

Mapping Reductions

Theorem: If $A \leq_{m} B$ and B is decidable, then A is decidable.

Mapping Reductions

Theorem: If $A \leq_{m} B$ and B is decidable, then A is decidable.

Proof: Let

- M be the decider for B, and
- f the reduction from A to B.

Mapping Reductions

Theorem: If $A \leq_{m} B$ and B is decidable, then A is decidable.

Proof: Let

- M be the decider for B, and
- f the reduction from A to B.

Define N : On input w

1. compute $f(w)$
2. run M on input $f(w)$ and output whatever M outputs.

Mapping Reductions

Corollary: If $A \leq_{m} B$ and A is undecidable, then B is undecidable.

Mapping Reductions

Corollary: If $A \leq_{m} B$ and A is undecidable, then B is undecidable.

In fact, this has been our principal tool for proving undecidability of languages other than A_{TM}.

Example: Halting

Recall that

$$
\begin{aligned}
& A_{\mathrm{TM}}=\{\langle M, w\rangle \mid \mathrm{TM} M \text { accepts input } w\} \\
& H_{\mathrm{TM}}=\{\langle M, w\rangle \mid \mathrm{TM} M \text { halts on input } w\}
\end{aligned}
$$

Example: Halting

Recall that

$$
\begin{aligned}
& A_{\mathrm{TM}}=\{\langle M, w\rangle \mid \mathrm{TM} M \text { accepts input } w\} \\
& H_{\mathrm{TM}}=\{\langle M, w\rangle \mid \mathrm{TM} M \text { halts on input } w\}
\end{aligned}
$$

Earlier we proved that

- H_{TM} undecidable
- by (de facto) reduction from A_{TM}.

Let's reformulate this.

Example: Halting

Define a computable function, f :

- input of form $\langle M, w\rangle$

Example: Halting

Define a computable function, f :

- input of form $\langle M, w\rangle$
- output of form $\left\langle M^{\prime}, w^{\prime}\right\rangle$

Example: Halting

Define a computable function, f :

- input of form $\langle M, w\rangle$
- output of form $\left\langle M^{\prime}, w^{\prime}\right\rangle$
- where $\langle M, w\rangle \in A_{\mathrm{TM}} \Longleftrightarrow\left\langle M^{\prime}, w^{\prime}\right\rangle \in H_{\mathrm{TM}}$.

Example: Halting

The following machine computes this function f. $F=$ on input $\langle M, w\rangle$:

- Construct the following machine M^{\prime}. M^{\prime} : on input x

Example: Halting

The following machine computes this function f. $F=$ on input $\langle M, w\rangle$:

- Construct the following machine M^{\prime}. M^{\prime} : on input x
. run M on x

Example: Halting

The following machine computes this function f. $F=$ on input $\langle M, w\rangle$:

- Construct the following machine M^{\prime}. M^{\prime} : on input x
- run M on x
- If M accepts, accept.

Example: Halting

The following machine computes this function f. $F=$ on input $\langle M, w\rangle$:

- Construct the following machine M^{\prime}. M^{\prime} : on input x
- run M on x
- If M accepts, accept.
- if M rejects, enter a loop.

Example: Halting

The following machine computes this function f. $F=$ on input $\langle M, w\rangle$:

- Construct the following machine M^{\prime}. M^{\prime} : on input x
- run M on x
- If M accepts, accept.
- if M rejects, enter a loop.
- output $\left\langle M^{\prime}, w\right\rangle$

Enumerability

Theorem: If $A \leq_{m} B$ and B is enumerable, then A is enumerable.

Proof is same as before, using accepters instead of deciders.

Enumerability

Corollary: If $A \leq_{m} B$ and A is not enumerable, then B is not enumerable.

TM Equality

> Theorem: Both $\mathrm{EQ}_{\mathrm{TM}}$ and its complement, $\overline{\mathrm{EQ}_{\mathrm{TM}}}$, are not enumerable. Stated differently, $\mathrm{EQ}_{\mathrm{TM}}$ is neither enumerable nor co-enumerable.

TM Equality

Theorem: Both $\mathrm{EQ}_{\mathrm{TM}}$ and its complement, $\overline{\mathrm{EQ}_{\mathrm{TM}}}$, are not enumerable. Stated differently, $\mathrm{EQ}_{\mathrm{TM}}$ is neither enumerable nor co-enumerable.

- We show that A_{TM} is reducible to $\mathrm{EQ}_{\mathrm{TM}}$. The same function is also a mapping reduction from $\overline{A_{\mathrm{TM}}}$ to $\overline{\mathrm{EQ}_{\mathrm{TM}}}$, and thus $\overline{\mathrm{EQ}_{\mathrm{TM}}}$ is not enumerable.

TM Equality

Theorem: Both $\mathrm{EQ}_{\mathrm{TM}}$ and its complement, $\overline{\mathrm{EQ}_{\mathrm{TM}}}$, are not enumerable. Stated differently, $\mathrm{EQ}_{\mathrm{TM}}$ is neither enumerable nor co-enumerable.

- We show that A_{TM} is reducible to $\mathrm{EQ}_{\mathrm{TM}}$. The same function is also a mapping reduction from $\overline{A_{\mathrm{TM}}}$ to $\overline{\mathrm{EQ}_{\mathrm{TM}}}$, and thus $\overline{\mathrm{EQ}_{\mathrm{TM}}}$ is not enumerable.
- We then show that A_{TM} is reducible to $\overline{\mathrm{EQ}_{\mathrm{TM}}}$. The new function is also a mapping reduction from $\overline{A_{\mathrm{TM}}}$ to $\mathrm{EQ}_{\mathrm{TM}}$, and thus $\mathrm{EQ}_{\mathrm{TM}}$ is not enumerable.

TM Equality

Claim: A_{TM} is reducible to $\overline{\mathrm{EQ}_{\mathrm{TM}}}$. $f: A_{\mathrm{TM}} \longrightarrow \overline{\mathrm{EQ}_{\mathrm{TM}}}$ works as follows: F : On input $\langle M, w\rangle$

- Construct machine M_{1} : on any input, reject.

TM Equality

Claim: A_{TM} is reducible to $\overline{\mathrm{EQ}_{\mathrm{TM}}}$.
$f: A_{\mathrm{TM}} \longrightarrow \overline{\mathrm{EQ}_{\mathrm{TM}}}$ works as follows:
F : On input $\langle M, w\rangle$

- Construct machine M_{1} : on any input, reject.
- Construct machine M_{2} : on input x, run M on w. If it accepts, accept.

TM Equality

Claim: A_{TM} is reducible to $\overline{\mathrm{EQ}_{\mathrm{TM}}}$.
$f: A_{\mathrm{TM}} \longrightarrow \overline{\mathrm{EQ}_{\mathrm{TM}}}$ works as follows:
F : On input $\langle M, w\rangle$

- Construct machine M_{1} : on any input, reject.
- Construct machine M_{2} : on input x, run M on w. If it accepts, accept.
- Output $\left\langle M_{1}, M_{2}\right\rangle$.

TM Equality

F : On input $\langle M, w\rangle$

- Construct machine M_{1} : on any input, reject.
- Construct machine M_{2} : on any input x, run M on w. If it accepts, accept x.
- Output $\left\langle M_{1}, M_{2}\right\rangle$.

Note

- M_{1} accepts nothing

TM Equality

F : On input $\langle M, w\rangle$

- Construct machine M_{1} : on any input, reject.
- Construct machine M_{2} : on any input x, run M on w. If it accepts, accept x.
- Output $\left\langle M_{1}, M_{2}\right\rangle$.

Note

- M_{1} accepts nothing
- if M accepts w then M_{2} accepts everything, and otherwise nothing.

TM Equality

F : On input $\langle M, w\rangle$

- Construct machine M_{1} : on any input, reject.
- Construct machine M_{2} : on any input x, run M on w. If it accepts, accept x.
- Output $\left\langle M_{1}, M_{2}\right\rangle$.

Note

- M_{1} accepts nothing
- if M accepts w then M_{2} accepts everything, and otherwise nothing.
- $\operatorname{so}\langle M, w\rangle \in A_{\mathrm{TM}} \Longleftrightarrow\left\langle M_{1}, M_{2}\right\rangle \in \overline{\mathrm{EQ}_{\mathrm{TM}}}$

TM Equality

Claim: A_{TM} is reducible to $\mathrm{EQ}_{\mathrm{TM}}$.

$f: A_{\mathrm{TM}} \longrightarrow \mathrm{EQ}_{\mathrm{TM}}$ works as follows:
F : On input $\langle M, w\rangle$

- Construct machine M_{1} : on any input, accept.

TM Equality

Claim: A_{TM} is reducible to $\mathrm{EQ}_{\mathrm{TM}}$.

$f: A_{\mathrm{TM}} \longrightarrow \mathrm{EQ}_{\mathrm{TM}}$ works as follows:
F : On input $\langle M, w\rangle$

- Construct machine M_{1} : on any input, accept.
- Construct machine M_{2} : on any input x, run M on w.

If it accepts, accept.

TM Equality

Claim: A_{TM} is reducible to $\mathrm{EQ}_{\mathrm{TM}}$.

$f: A_{\mathrm{TM}} \longrightarrow \mathrm{EQ}_{\mathrm{TM}}$ works as follows:
F : On input $\langle M, w\rangle$

- Construct machine M_{1} : on any input, accept.
- Construct machine M_{2} : on any input x, run M on w.

If it accepts, accept.

- Output $\left\langle M_{1}, M_{2}\right\rangle$.

TM Equality

F : On input $\langle M, w\rangle$

- Construct machine M_{1} : on any input, accept.
- Construct machine M_{2} : on any input x, run M on w. If it accepts, accept.
- Output $\left\langle M_{1}, M_{2}\right\rangle$.

Note

- M_{1} accepts everything

TM Equality

F : On input $\langle M, w\rangle$

- Construct machine M_{1} : on any input, accept.
- Construct machine M_{2} : on any input x, run M on w. If it accepts, accept.
- Output $\left\langle M_{1}, M_{2}\right\rangle$.

Note

- M_{1} accepts everything
- if M accepts w, then M_{2} accepts everything, and otherwise nothing.

TM Equality

F : On input $\langle M, w\rangle$

- Construct machine M_{1} : on any input, accept.
- Construct machine M_{2} : on any input x, run M on w. If it accepts, accept.
- Output $\left\langle M_{1}, M_{2}\right\rangle$.

Note

- M_{1} accepts everything
- if M accepts w, then M_{2} accepts everything, and otherwise nothing.
- $\langle M, w\rangle \in A_{\mathrm{TM}} \Longleftrightarrow\left\langle M_{1}, M_{2}\right\rangle \in \mathrm{EQ}_{\mathrm{TM}}$.

Recursive Inseparability

Two disjoint languages L_{1} and L_{2} are recursively inseparable if there is no decidable language D such that

- $L_{1} \cap D=\emptyset$, and

Recursive Inseparability

Two disjoint languages L_{1} and L_{2} are recursively inseparable if there is no decidable language D such that

- $L_{1} \cap D=\emptyset$, and
- $L_{2} \subset D$.

Recursive Inseparability

Two disjoint languages L_{1} and L_{2} are recursively inseparable if there is no decidable language D such that

- $L_{1} \cap D=\emptyset$, and
- $L_{2} \subset D$.

Example of recursively separable languages:

Recursive Inseparability

A_{TM} and $\overline{A_{\mathrm{TM}}}$ are a trivial example.

Recursive Inseparability

A_{TM} and $\overline{A_{\mathrm{TM}}}$ are a trivial example.

Why?

Recursive Inseparability

A_{TM} and $\overline{A_{\mathrm{TM}}}$ are a trivial example.
Why?
Are there non-trivial examples?

Recursive Inseparability

Define

$$
A_{\text {yes }}=\{\langle M\rangle \mid M \text { is a TM that accepts }\langle M\rangle\}
$$

and
$A_{\text {no }}=\{\langle M\rangle \mid M$ is a TM that halts and rejects $\langle M\rangle\}$

Theorem: $A_{\text {yes }}$ and $A_{\text {no }}$ are recursively inseparable.

Proof by Contradiction

- Let D be a decidable language that separates them.

Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text {no }} \subset D$ and $D \cap A_{\text {yes }}=\emptyset$.

Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text {no }} \subset D$ and $D \cap A_{\text {yes }}=\emptyset$.
- Let M_{D} be the TM that decides D

Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text {no }} \subset D$ and $D \cap A_{\text {yes }}=\emptyset$.
- Let M_{D} be the TM that decides D
- What does M_{D} do with input $\left\langle M_{D}\right\rangle$?

Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text {no }} \subset D$ and $D \cap A_{\text {yes }}=\emptyset$.
- Let M_{D} be the TM that decides D
- What does M_{D} do with input $\left\langle M_{D}\right\rangle$?
- It must halt. (why?)

Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text {no }} \subset D$ and $D \cap A_{\text {yes }}=\emptyset$.
- Let M_{D} be the TM that decides D
- What does M_{D} do with input $\left\langle M_{D}\right\rangle$?
- It must halt. (why?)
- If M_{D} accepts $\left\langle M_{D}\right\rangle$:

Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text {no }} \subset D$ and $D \cap A_{\text {yes }}=\emptyset$.
- Let M_{D} be the TM that decides D
- What does M_{D} do with input $\left\langle M_{D}\right\rangle$?
- It must halt. (why?)
- If M_{D} accepts $\left\langle M_{D}\right\rangle$:
- $\left\langle M_{D}\right\rangle \in A_{\text {yes }}$

Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text {no }} \subset D$ and $D \cap A_{\text {yes }}=\emptyset$.
- Let M_{D} be the TM that decides D
- What does M_{D} do with input $\left\langle M_{D}\right\rangle$?
- It must halt. (why?)
- If M_{D} accepts $\left\langle M_{D}\right\rangle$:
- $\left\langle M_{D}\right\rangle \in A_{\text {yes }}$
- $\left\langle M_{D}\right\rangle \notin D$

Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text {no }} \subset D$ and $D \cap A_{\text {yes }}=\emptyset$.
- Let M_{D} be the TM that decides D
- What does M_{D} do with input $\left\langle M_{D}\right\rangle$?
- It must halt. (why?)
- If M_{D} accepts $\left\langle M_{D}\right\rangle$:
- $\left\langle M_{D}\right\rangle \in A_{\text {yes }}$
- $\left\langle M_{D}\right\rangle \notin D$
- so M_{D} rejects $\left\langle M_{D}\right\rangle$.

Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text {no }} \subset D$ and $D \cap A_{\text {yes }}=\emptyset$.
- Let M_{D} be the TM that decides D
- What does M_{D} do with input $\left\langle M_{D}\right\rangle$?
- It must halt. (why?)
- If M_{D} accepts $\left\langle M_{D}\right\rangle$:
- $\left\langle M_{D}\right\rangle \in A_{\text {yes }}$
- $\left\langle M_{D}\right\rangle \notin D$
- so M_{D} rejects $\left\langle M_{D}\right\rangle$.
- If M_{D} rejects $\left\langle M_{D}\right\rangle$:

Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text {no }} \subset D$ and $D \cap A_{\text {yes }}=\emptyset$.
- Let M_{D} be the TM that decides D
- What does M_{D} do with input $\left\langle M_{D}\right\rangle$?
- It must halt. (why?)
- If M_{D} accepts $\left\langle M_{D}\right\rangle$:
- $\left\langle M_{D}\right\rangle \in A_{\text {yes }}$
- $\left\langle M_{D}\right\rangle \notin D$
- so M_{D} rejects $\left\langle M_{D}\right\rangle$.
- If M_{D} rejects $\left\langle M_{D}\right\rangle$:
- $\left\langle M_{D}\right\rangle \in A_{\mathrm{no}}$

Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text {no }} \subset D$ and $D \cap A_{\text {yes }}=\emptyset$.
- Let M_{D} be the TM that decides D
- What does M_{D} do with input $\left\langle M_{D}\right\rangle$?
- It must halt. (why?)
- If M_{D} accepts $\left\langle M_{D}\right\rangle$:
- $\left\langle M_{D}\right\rangle \in A_{\text {yes }}$
- $\left\langle M_{D}\right\rangle \notin D$
- so M_{D} rejects $\left\langle M_{D}\right\rangle$.
- If M_{D} rejects $\left\langle M_{D}\right\rangle$:
- $\left\langle M_{D}\right\rangle \in A_{\text {no }}$
- $\left\langle M_{D}\right\rangle \in D$

Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text {no }} \subset D$ and $D \cap A_{\text {yes }}=\emptyset$.
- Let M_{D} be the TM that decides D
- What does M_{D} do with input $\left\langle M_{D}\right\rangle$?
- It must halt. (why?)
- If M_{D} accepts $\left\langle M_{D}\right\rangle$:
- $\left\langle M_{D}\right\rangle \in A_{\text {yes }}$
- $\left\langle M_{D}\right\rangle \notin D$
- so M_{D} rejects $\left\langle M_{D}\right\rangle$.
- If M_{D} rejects $\left\langle M_{D}\right\rangle$:
- $\left\langle M_{D}\right\rangle \in A_{\text {no }}$
- $\left\langle M_{D}\right\rangle \in D$
- so M_{D} accepts $\left\langle M_{D}\right\rangle$.

Recursive Inseparability

Define

$$
\text { Byes }=\{\langle M\rangle \mid M \text { is a TM that accepts } \varepsilon\}
$$

and

$$
B_{\mathrm{no}}=\{\langle M\rangle \mid M \text { is a TM that halts and rejects } \varepsilon\}
$$

Theorem: $B_{\text {yes }}$ and $B_{\text {no }}$ are recursively inseparable.

Proof by reduction and contradiction.

Recursive Inseparability

Theorem: Byes and $B_{\text {no }}$ are recursively inseparable.
By reduction and contradiction.

- Assume Byes and $B_{\text {no }}$ can be separated by E, decided by TM M_{E}.

Recursive Inseparability

Theorem: Byes and $B_{\text {no }}$ are recursively inseparable.
By reduction and contradiction.

- Assume Byes and $B_{\text {no }}$ can be separated by E, decided by TM M_{E}.
- For TM M, define M^{\prime} : On any input,

Recursive Inseparability

Theorem: Byes and $B_{\text {no }}$ are recursively inseparable.
By reduction and contradiction.

- Assume $B_{\text {yes }}$ and $B_{\text {no }}$ can be separated by E, decided by TM M_{E}.
- For TM M, define M^{\prime} : On any input, 1. run M on input $\langle M\rangle$.

Recursive Inseparability

Theorem: Byes and $B_{\text {no }}$ are recursively inseparable.
By reduction and contradiction.

- Assume Byes and $B_{\text {no }}$ can be separated by E, decided by TM M_{E}.
- For TM M, define M^{\prime} : On any input, 1. run M on input $\langle M\rangle$.

2. if M accepts, accept; if M rejects, reject;

Proof (Concluded)

- Define N : On input $\langle M\rangle$,

Proof (Concluded)

- Define N : On input $\langle M\rangle$, 1. construct description of M^{\prime}.

Proof (Concluded)

- Define N : On input $\langle M\rangle$, 1. construct description of M^{\prime}.

2. run M_{E} on $\left\langle M^{\prime}\right\rangle$.

Proof (Concluded)

- Define N : On input $\langle M\rangle$,

1. construct description of M^{\prime}.
2. run M_{E} on $\left\langle M^{\prime}\right\rangle$.
3. if M_{E} accepts, accept; if M_{E} rejects, reject;

Proof (Concluded)

- Define N : On input $\langle M\rangle$,

1. construct description of M^{\prime}.
2. run M_{E} on $\left\langle M^{\prime}\right\rangle$.
3. if M_{E} accepts, accept; if M_{E} rejects, reject;

- Claim:

Proof (Concluded)

- Define N : On input $\langle M\rangle$,

1. construct description of M^{\prime}.
2. run M_{E} on $\left\langle M^{\prime}\right\rangle$.
3. if M_{E} accepts, accept; if M_{E} rejects, reject;

- Claim:
- N is a decider. (why?)

Proof (Concluded)

- Define N : On input $\langle M\rangle$,

1. construct description of M^{\prime}.
2. run M_{E} on $\left\langle M^{\prime}\right\rangle$.
3. if M_{E} accepts, accept; if M_{E} rejects, reject;

- Claim:
- N is a decider. (why?)
- So N decides a language D.

Proof (Concluded)

- Define N : On input $\langle M\rangle$,

1. construct description of M^{\prime}.
2. run M_{E} on $\left\langle M^{\prime}\right\rangle$.
3. if M_{E} accepts, accept; if M_{E} rejects, reject;

- Claim:
- N is a decider. (why?)
- So N decides a language D.
- D separates $A_{\text {yes }}$ and $A_{\text {no }}$, contradiction. \&

