
Lecture 9
We have already

Established Turing Machines as the gold standard
of computers and computability . . .

seen examples of solvable problems . . .

and saw one problem, ATM, that is
computationally unsolvable.

In this lecture, we look at other computationally
unsolvable problems, and establish the technique of
mapping reducibilities for prove that languages are
undecidable/non-enumerable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.1

Lecture 9
We have already

Established Turing Machines as the gold standard
of computers and computability . . .

seen examples of solvable problems . . .

and saw one problem, ATM, that is
computationally unsolvable.

In this lecture, we look at other computationally
unsolvable problems, and establish the technique of
mapping reducibilities for prove that languages are
undecidable/non-enumerable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.1

Lecture 9
We have already

Established Turing Machines as the gold standard
of computers and computability . . .

seen examples of solvable problems . . .

and saw one problem, ATM, that is
computationally unsolvable.

In this lecture, we look at other computationally
unsolvable problems, and establish the technique of
mapping reducibilities for prove that languages are
undecidable/non-enumerable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.1

Lecture 9
We have already

Established Turing Machines as the gold standard
of computers and computability . . .

seen examples of solvable problems . . .

and saw one problem, ATM, that is
computationally unsolvable.

In this lecture, we look at other computationally
unsolvable problems, and establish the technique of
mapping reducibilities for prove that languages are
undecidable/non-enumerable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.1

Reducibility

Example:

Finding your way around a new city

reduces to . . .

obtaining a city map.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.2

Reducibility

Example:

Finding your way around a new city

reduces to . . .

obtaining a city map.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.2

Reducibility

Example:

Finding your way around a new city

reduces to . . .

obtaining a city map.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.2

Reducibility, In Our Context

Always involves two problems, A and B.

Desired Property: If A reduces to B, then any solution
of B can be used to find a solution of A.

Remark: This property says nothing about solving A
by itself or B by itself.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.3

Reducibility, In Our Context

Always involves two problems, A and B.

Desired Property: If A reduces to B, then any solution
of B can be used to find a solution of A.

Remark: This property says nothing about solving A
by itself or B by itself.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.3

Reducibility, In Our Context

Always involves two problems, A and B.

Desired Property: If A reduces to B, then any solution
of B can be used to find a solution of A.

Remark: This property says nothing about solving A
by itself or B by itself.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.3

Examples

Reductions:

Traveling from Boshton to Paris . . .

buying plane ticket . . .

earning the money for that ticket . . .

finding a job
(or getting the $s from mom and dad. . .)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.4

Examples

Reductions:

Traveling from Boshton to Paris . . .

buying plane ticket . . .

earning the money for that ticket . . .

finding a job
(or getting the $s from mom and dad. . .)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.4

Examples

Reductions:

Traveling from Boshton to Paris . . .

buying plane ticket . . .

earning the money for that ticket . . .

finding a job
(or getting the $s from mom and dad. . .)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.4

Examples

Reductions:

Traveling from Boshton to Paris . . .

buying plane ticket . . .

earning the money for that ticket . . .

finding a job
(or getting the $s from mom and dad. . .)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.4

Examples

Reductions:

Measuring area of rectangle . . .

measuring lengths of sides.

Also:

Solving a system of linear equations . . .

inverting a matrix.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.5

Examples

Reductions:

Measuring area of rectangle . . .

measuring lengths of sides.

Also:

Solving a system of linear equations . . .

inverting a matrix.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.5

Examples

Reductions:

Measuring area of rectangle . . .

measuring lengths of sides.

Also:

Solving a system of linear equations . . .

inverting a matrix.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.5

Examples

Reductions:

Measuring area of rectangle . . .

measuring lengths of sides.

Also:

Solving a system of linear equations . . .

inverting a matrix.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.5

Reducibility

If A is reducible to B, then

A cannot be harder than B

if B is decidable, so is A.

if A is undecidable and reducible to B,
then B is undecidable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.6

Reducibility

If A is reducible to B, then

A cannot be harder than B

if B is decidable, so is A.

if A is undecidable and reducible to B,
then B is undecidable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.6

Reducibility

If A is reducible to B, then

A cannot be harder than B

if B is decidable, so is A.

if A is undecidable and reducible to B,
then B is undecidable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.6

Undecidable Problems
We have already established that ATM is undecidable.

Here is a related problem.

HTM = {〈M,w〉|M is a TM and M halts on input w}

Clarification: How does HTM differ from ATM?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.7

Undecidable Problems

HTM = {〈M,w〉|M is a TM and M halts on input w}

Theorem: HTM is undecidable.

Proof idea:

By contradiction.

Assume HTM is decidable.

Let R be a TM that decides HTM.

Use R to construct S, a TM that decides ATM.

So ATM is reduced to HTM.

Since ATM is undecidable, so is HTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.8

Undecidable Problems

HTM = {〈M,w〉|M is a TM and M halts on input w}

Theorem: HTM is undecidable.

Proof idea:

By contradiction.

Assume HTM is decidable.

Let R be a TM that decides HTM.

Use R to construct S, a TM that decides ATM.

So ATM is reduced to HTM.

Since ATM is undecidable, so is HTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.8

Undecidable Problems

HTM = {〈M,w〉|M is a TM and M halts on input w}

Theorem: HTM is undecidable.

Proof idea:

By contradiction.

Assume HTM is decidable.

Let R be a TM that decides HTM.

Use R to construct S, a TM that decides ATM.

So ATM is reduced to HTM.

Since ATM is undecidable, so is HTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.8

Undecidable Problems

HTM = {〈M,w〉|M is a TM and M halts on input w}

Theorem: HTM is undecidable.

Proof idea:

By contradiction.

Assume HTM is decidable.

Let R be a TM that decides HTM.

Use R to construct S, a TM that decides ATM.

So ATM is reduced to HTM.

Since ATM is undecidable, so is HTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.8

Undecidable Problems

HTM = {〈M,w〉|M is a TM and M halts on input w}

Theorem: HTM is undecidable.

Proof idea:

By contradiction.

Assume HTM is decidable.

Let R be a TM that decides HTM.

Use R to construct S, a TM that decides ATM.

So ATM is reduced to HTM.

Since ATM is undecidable, so is HTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.8

Undecidable Problems

HTM = {〈M,w〉|M is a TM and M halts on input w}

Theorem: HTM is undecidable.

Proof idea:

By contradiction.

Assume HTM is decidable.

Let R be a TM that decides HTM.

Use R to construct S, a TM that decides ATM.

So ATM is reduced to HTM.

Since ATM is undecidable, so is HTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.8

Undecidable Problems
Theorem: HTM is undecidable.

Proof: Assume, by way of contradiction, that TM R
decides HTM. Define a new TM, S, as follows:

On input 〈M,w〉,

run R on 〈M,w〉.

If R rejects, reject.

If R accepts (meaning M halts on w), simulate
M on w until it halts.

If M accepted, accept; otherwise reject. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.9

Undecidable Problems
Theorem: HTM is undecidable.

Proof: Assume, by way of contradiction, that TM R
decides HTM. Define a new TM, S, as follows:

On input 〈M,w〉,

run R on 〈M,w〉.

If R rejects, reject.

If R accepts (meaning M halts on w), simulate
M on w until it halts.

If M accepted, accept; otherwise reject. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.9

Undecidable Problems
Theorem: HTM is undecidable.

Proof: Assume, by way of contradiction, that TM R
decides HTM. Define a new TM, S, as follows:

On input 〈M,w〉,

run R on 〈M,w〉.

If R rejects, reject.

If R accepts (meaning M halts on w), simulate
M on w until it halts.

If M accepted, accept; otherwise reject. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.9

Undecidable Problems
Theorem: HTM is undecidable.

Proof: Assume, by way of contradiction, that TM R
decides HTM. Define a new TM, S, as follows:

On input 〈M,w〉,

run R on 〈M,w〉.

If R rejects, reject.

If R accepts (meaning M halts on w), simulate
M on w until it halts.

If M accepted, accept; otherwise reject. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.9

Undecidable Problems
Theorem: HTM is undecidable.

Proof: Assume, by way of contradiction, that TM R
decides HTM. Define a new TM, S, as follows:

On input 〈M,w〉,

run R on 〈M,w〉.

If R rejects, reject.

If R accepts (meaning M halts on w), simulate
M on w until it halts.

If M accepted, accept; otherwise reject. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.9

Undecidable Problems (2)

Does a TM accept any string at all?

ETM = {〈M〉|M is a TM and L(M) = ∅}

Theorem: ETM is undecidable.

Proof structure:

By contradiction.

Assume ETM is decidable.

Let R be a TM that decides ETM.

Use R to construct S, a TM that decides ATM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.10

Undecidable Problems (2)

Does a TM accept any string at all?

ETM = {〈M〉|M is a TM and L(M) = ∅}

Theorem: ETM is undecidable.

Proof structure:

By contradiction.

Assume ETM is decidable.

Let R be a TM that decides ETM.

Use R to construct S, a TM that decides ATM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.10

Undecidable Problems (2)

Does a TM accept any string at all?

ETM = {〈M〉|M is a TM and L(M) = ∅}

Theorem: ETM is undecidable.

Proof structure:

By contradiction.

Assume ETM is decidable.

Let R be a TM that decides ETM.

Use R to construct S, a TM that decides ATM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.10

Undecidable Problems (2)

Does a TM accept any string at all?

ETM = {〈M〉|M is a TM and L(M) = ∅}

Theorem: ETM is undecidable.

Proof structure:

By contradiction.

Assume ETM is decidable.

Let R be a TM that decides ETM.

Use R to construct S, a TM that decides ATM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.10

Undecidable Problems (2)

ETM = {〈M〉|M is a TM and L(M) = ∅}

First attempt: When S receives input 〈M,w〉, it calls
R with input 〈M〉.

If R accepts, then reject, because M does not
accept any string, let alone w.

But what if R rejects?

Second attempt: Let’s modify M .

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.11

Undecidable Problems (2)

ETM = {〈M〉|M is a TM and L(M) = ∅}

First attempt: When S receives input 〈M,w〉, it calls
R with input 〈M〉.

If R accepts, then reject, because M does not
accept any string, let alone w.

But what if R rejects?

Second attempt: Let’s modify M .

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.11

Undecidable Problems (2)

ETM = {〈M〉|M is a TM and L(M) = ∅}

First attempt: When S receives input 〈M,w〉, it calls
R with input 〈M〉.

If R accepts, then reject, because M does not
accept any string, let alone w.

But what if R rejects?

Second attempt: Let’s modify M .

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.11

Undecidable Problems (2)

ETM = {〈M〉|M is a TM and L(M) = ∅}

Define M1: on input x,

1. if x 6= w, reject.

2. if x = w, run M on w and accept if M does.

M1 either

accepts just w, or

accepts nothing.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.12

Undecidable Problems (2)

ETM = {〈M〉|M is a TM and L(M) = ∅}

Define M1: on input x,

1. if x 6= w, reject.

2. if x = w, run M on w and accept if M does.

M1 either

accepts just w, or

accepts nothing.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.12

Undecidable Problems (2)

Machine M1: on input x,

1. if x 6= w, reject.

2. if x = w, run M on w and accept if M does.

Question: Can a TM construct M1 from M?

Answer: Yes, because we need only hardwire w, and
add a few extra states to perform the “x = w?′′ test.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.13

Undecidable Problems (2)

Machine M1: on input x,

1. if x 6= w, reject.

2. if x = w, run M on w and accept if M does.

Question: Can a TM construct M1 from M?

Answer: Yes, because we need only hardwire w, and
add a few extra states to perform the “x = w?′′ test.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.13

Undecidable Problems (2)

Machine M1: on input x,

1. if x 6= w, reject.

2. if x = w, run M on w and accept if M does.

Question: Can a TM construct M1 from M?

Answer: Yes, because we need only hardwire w, and
add a few extra states to perform the “x = w?′′ test.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.13

Undecidable Problems (2)

ETM = {〈M〉|M is a TM and L(M) = ∅}

Theorem: ETM is undecidable.

Define S as follows:

On input 〈M,w〉, where M is a TM and w a string,

Construct M1 from M and w.

Run R on input 〈M1〉,

if R accepts, reject; if R rejects, accept. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.14

Undecidable Problems (2)

ETM = {〈M〉|M is a TM and L(M) = ∅}

Theorem: ETM is undecidable.

Define S as follows:

On input 〈M,w〉, where M is a TM and w a string,

Construct M1 from M and w.

Run R on input 〈M1〉,

if R accepts, reject; if R rejects, accept. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.14

Undecidable Problems (2)

ETM = {〈M〉|M is a TM and L(M) = ∅}

Theorem: ETM is undecidable.

Define S as follows:

On input 〈M,w〉, where M is a TM and w a string,

Construct M1 from M and w.

Run R on input 〈M1〉,

if R accepts, reject; if R rejects, accept. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.14

Undecidable Problems (3)

Does a TM accept a regular language?

RTM = {〈M〉|M is a TM and L(M) is regular}

Theorem: RTM is undecidable.

Skeleton of Proof:

By contradiction.

Assume RTM is decidable.

Let R be a TM that decides RTM.

Use R to construct S, a TM that decides ATM.

But how?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.15

Undecidable Problems (3)

Does a TM accept a regular language?

RTM = {〈M〉|M is a TM and L(M) is regular}

Theorem: RTM is undecidable.

Skeleton of Proof:

By contradiction.

Assume RTM is decidable.

Let R be a TM that decides RTM.

Use R to construct S, a TM that decides ATM.

But how?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.15

Undecidable Problems (3)

Does a TM accept a regular language?

RTM = {〈M〉|M is a TM and L(M) is regular}

Theorem: RTM is undecidable.

Skeleton of Proof:

By contradiction.

Assume RTM is decidable.

Let R be a TM that decides RTM.

Use R to construct S, a TM that decides ATM.

But how?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.15

Undecidable Problems (3)

Does a TM accept a regular language?

RTM = {〈M〉|M is a TM and L(M) is regular}

Theorem: RTM is undecidable.

Skeleton of Proof:

By contradiction.

Assume RTM is decidable.

Let R be a TM that decides RTM.

Use R to construct S, a TM that decides ATM.

But how?
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.15

Undecidable Problems (3)

RTM = {〈M〉|M is a TM and L(M) is regular}

Modify M so that the resulting TM accepts a regular
language if and only if M accepts w.

Design M2 so that

if M does not accept w, then M2 accepts
{0n1n|n ≥ 0} (non-regular)

if M accepts w, then M2 accepts Σ∗ (regular).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.16

Undecidable Problems (3)

RTM = {〈M〉|M is a TM and L(M) is regular}

Modify M so that the resulting TM accepts a regular
language if and only if M accepts w.

Design M2 so that

if M does not accept w, then M2 accepts
{0n1n|n ≥ 0} (non-regular)

if M accepts w, then M2 accepts Σ∗ (regular).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.16

Undecidable Problems (3)

From M and w, define M2:

On input x,

1. If x has the form 0n1n, accept it.

2. Otherwise, run M on input w and accept x if M
accepts w.

Claim:

If M does not accept w, then M2 accepts
{0n1n|n ≥ 0}.

If M accepts w, then M2 accepts Σ∗.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.17

Undecidable Problems (3)

From M and w, define M2:

On input x,

1. If x has the form 0n1n, accept it.

2. Otherwise, run M on input w and accept x if M
accepts w.

Claim:

If M does not accept w, then M2 accepts
{0n1n|n ≥ 0}.

If M accepts w, then M2 accepts Σ∗.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.17

Undecidable Problems (3)

From M and w, define M2:

On input x,

1. If x has the form 0n1n, accept it.

2. Otherwise, run M on input w and accept x if M
accepts w.

Claim:

If M does not accept w, then M2 accepts
{0n1n|n ≥ 0}.

If M accepts w, then M2 accepts Σ∗.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.17

Undecidable Problems (3)

RTM = {〈M〉|M is a TM and L(M) is regular}

Theorem: RTM is undecidable.

Define S:

On input 〈M,w〉,

1. Construct M2 from M and w.

2. Run R on input 〈M2〉.

3. If R accepts, accept; if R rejects, reject. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.18

Undecidable Problems (3)

RTM = {〈M〉|M is a TM and L(M) is regular}

Theorem: RTM is undecidable.

Define S:

On input 〈M,w〉,

1. Construct M2 from M and w.

2. Run R on input 〈M2〉.

3. If R accepts, accept; if R rejects, reject. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.18

Undecidable Problems (4)

Are two TMs equivalent?

EQTM = {〈M1,M2〉 | M1,M2 are TMs and

L(M1) = L(M2)}

Theorem: EQTM is undecidable.

We are getting tired of reducing ATM to everything.

Let’s try instead a reduction from ETM to EQTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.19

Undecidable Problems (4)

Are two TMs equivalent?

EQTM = {〈M1,M2〉 | M1,M2 are TMs and

L(M1) = L(M2)}

Theorem: EQTM is undecidable.

We are getting tired of reducing ATM to everything.

Let’s try instead a reduction from ETM to EQTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.19

Undecidable Problems (4)

Are two TMs equivalent?

EQTM = {〈M1,M2〉 | M1,M2 are TMs and

L(M1) = L(M2)}

Theorem: EQTM is undecidable.

We are getting tired of reducing ATM to everything.

Let’s try instead a reduction from ETM to EQTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.19

Undecidable Problems (4)

EQTM = {〈M1,M2〉 | M1,M2 are TMs and

L(M1) = L(M2)}

Theorem: EQTM is undecidable.
Idea:

ETM is the problem of testing whether a TM
language is empty.

EQTM is the problem of testing whether two
TM languages are the same.
If one of these two TM languages happens to be
empty, then we are back to ETM.
So ETM is a special case of EQTM.

The rest is easy.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.20

Undecidable Problems (4)

EQTM = {〈M1,M2〉 | M1,M2 are TMs and

L(M1) = L(M2)}

Theorem: EQTM is undecidable.
Idea:

ETM is the problem of testing whether a TM
language is empty.
EQTM is the problem of testing whether two

TM languages are the same.

If one of these two TM languages happens to be
empty, then we are back to ETM.
So ETM is a special case of EQTM.

The rest is easy.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.20

Undecidable Problems (4)

EQTM = {〈M1,M2〉 | M1,M2 are TMs and

L(M1) = L(M2)}

Theorem: EQTM is undecidable.
Idea:

ETM is the problem of testing whether a TM
language is empty.
EQTM is the problem of testing whether two

TM languages are the same.
If one of these two TM languages happens to be
empty, then we are back to ETM.

So ETM is a special case of EQTM.

The rest is easy.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.20

Undecidable Problems (4)

EQTM = {〈M1,M2〉 | M1,M2 are TMs and

L(M1) = L(M2)}

Theorem: EQTM is undecidable.
Idea:

ETM is the problem of testing whether a TM
language is empty.
EQTM is the problem of testing whether two

TM languages are the same.
If one of these two TM languages happens to be
empty, then we are back to ETM.
So ETM is a special case of EQTM.

The rest is easy.
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.20

Undecidable Problems (4)

EQTM = {〈M1,M2〉 | M1,M2 are TMs and

L(M1) = L(M2)}

Theorem: EQTM is undecidable.

Let MNO be the TM: On input x, reject.

Let R decide EQTM.

Let S be: On input 〈M〉:

1. Run R on input 〈M,MNO〉.

2. If R accepts, accept; if R rejects, reject.

If R decides EQTM, then S decides ETM. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.21

Undecidable Problems (4)

EQTM = {〈M1,M2〉 | M1,M2 are TMs and

L(M1) = L(M2)}

Theorem: EQTM is undecidable.

Let MNO be the TM: On input x, reject.

Let R decide EQTM.

Let S be: On input 〈M〉:

1. Run R on input 〈M,MNO〉.

2. If R accepts, accept; if R rejects, reject.

If R decides EQTM, then S decides ETM. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.21

Undecidable Problems (4)

EQTM = {〈M1,M2〉 | M1,M2 are TMs and

L(M1) = L(M2)}

Theorem: EQTM is undecidable.

Let MNO be the TM: On input x, reject.

Let R decide EQTM.

Let S be: On input 〈M〉:

1. Run R on input 〈M,MNO〉.

2. If R accepts, accept; if R rejects, reject.

If R decides EQTM, then S decides ETM. ♣
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.21

Bucket of Undecidable Problems
Same techniques prove undecidability of

Does a TM accept a decidable language?

Does a TM accept a enumerable language?

Does a TM accept a context-free language?

Does a TM accept a finite language?

Does a TM halt on all inputs?

Is there an input string that causes a TM to
traverse all its states?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.22

Bucket of Undecidable Problems
Same techniques prove undecidability of

Does a TM accept a decidable language?

Does a TM accept a enumerable language?

Does a TM accept a context-free language?

Does a TM accept a finite language?

Does a TM halt on all inputs?

Is there an input string that causes a TM to
traverse all its states?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.22

Bucket of Undecidable Problems
Same techniques prove undecidability of

Does a TM accept a decidable language?

Does a TM accept a enumerable language?

Does a TM accept a context-free language?

Does a TM accept a finite language?

Does a TM halt on all inputs?

Is there an input string that causes a TM to
traverse all its states?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.22

Bucket of Undecidable Problems
Same techniques prove undecidability of

Does a TM accept a decidable language?

Does a TM accept a enumerable language?

Does a TM accept a context-free language?

Does a TM accept a finite language?

Does a TM halt on all inputs?

Is there an input string that causes a TM to
traverse all its states?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.22

Bucket of Undecidable Problems
Same techniques prove undecidability of

Does a TM accept a decidable language?

Does a TM accept a enumerable language?

Does a TM accept a context-free language?

Does a TM accept a finite language?

Does a TM halt on all inputs?

Is there an input string that causes a TM to
traverse all its states?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.22

Bucket of Undecidable Problems
Same techniques prove undecidability of

Does a TM accept a decidable language?

Does a TM accept a enumerable language?

Does a TM accept a context-free language?

Does a TM accept a finite language?

Does a TM halt on all inputs?

Is there an input string that causes a TM to
traverse all its states?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.22

Rice’s Theorem
By now, some of you may have become cynical and
embittered.

Like, been there, done that, bought the T-shirt.

Looks like any non-trivial property of TMs is
undecidable.

That is correct.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.23

Rice’s Theorem
By now, some of you may have become cynical and
embittered.

Like, been there, done that, bought the T-shirt.

Looks like any non-trivial property of TMs is
undecidable.

That is correct.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.23

Rice’s Theorem
By now, some of you may have become cynical and
embittered.

Like, been there, done that, bought the T-shirt.

Looks like any non-trivial property of TMs is
undecidable.

That is correct.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.23

Rice’s Theorem
Theorem: If C is a proper non-empty subset of the
set of enumerable languages, then it is undecidable
whether for a given TM, M , L(M) is in C.

Proof by reduction from HTM
(does M halt on input x?).

Assume R decides if L(M) ∈ C.

Use R to implement S, which decides HTM.

Further details of proof not given at the moment . . .

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.24

Rice’s Theorem
Theorem: If C is a proper non-empty subset of the
set of enumerable languages, then it is undecidable
whether for a given TM, M , L(M) is in C.

Proof by reduction from HTM
(does M halt on input x?).

Assume R decides if L(M) ∈ C.

Use R to implement S, which decides HTM.

Further details of proof not given at the moment . . .

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.24

Rice’s Theorem
Theorem: If C is a proper non-empty subset of the
set of enumerable languages, then it is undecidable
whether for a given TM, M , L(M) is in C.

Proof by reduction from HTM
(does M halt on input x?).

Assume R decides if L(M) ∈ C.

Use R to implement S, which decides HTM.

Further details of proof not given at the moment . . .

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.24

Reducibility

So far, we have seen many examples of reductions
from one language to another, but the notion was
neither defined nor treated formally.

Reductions play an important role in

decidability theory

complexity theory (to come)

Time to get formal.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.25

Computable Functions

A TM computes a function

f : Σ∗ −→ Σ∗

if the TM

starts with input w, and

halts with only f(w) on tape.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.26

Computable Functions

A TM computes a function

f : Σ∗ −→ Σ∗

if the TM

starts with input w, and

halts with only f(w) on tape.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.26

Computable Functions

A TM computes a function

f : Σ∗ −→ Σ∗

if the TM

starts with input w, and

halts with only f(w) on tape.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.26

Computable Functions

Claim: All the usual arithmetic functions on integers
are computable.

These include addition, subtraction, multiplication,
division (quotient and remainder), exponentiation,
roots (to a specified precision).

Even non-arithmetic functions, like logarithms and
trigonometric functions, can be computed (to a
specified precision), using Taylor expansion or other
numeric mathematic techniques.

Exercise: Design a TM that on input 〈m,n〉, halts
with 〈m + n〉 on tape.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.27

Computable Functions

Claim: All the usual arithmetic functions on integers
are computable.

These include addition, subtraction, multiplication,
division (quotient and remainder), exponentiation,
roots (to a specified precision).

Even non-arithmetic functions, like logarithms and
trigonometric functions, can be computed (to a
specified precision), using Taylor expansion or other
numeric mathematic techniques.

Exercise: Design a TM that on input 〈m,n〉, halts
with 〈m + n〉 on tape.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.27

Computable Functions

Claim: All the usual arithmetic functions on integers
are computable.

These include addition, subtraction, multiplication,
division (quotient and remainder), exponentiation,
roots (to a specified precision).

Even non-arithmetic functions, like logarithms and
trigonometric functions, can be computed (to a
specified precision), using Taylor expansion or other
numeric mathematic techniques.

Exercise: Design a TM that on input 〈m,n〉, halts
with 〈m + n〉 on tape.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.27

Computable Functions

Claim: All the usual arithmetic functions on integers
are computable.

These include addition, subtraction, multiplication,
division (quotient and remainder), exponentiation,
roots (to a specified precision).

Even non-arithmetic functions, like logarithms and
trigonometric functions, can be computed (to a
specified precision), using Taylor expansion or other
numeric mathematic techniques.

Exercise: Design a TM that on input 〈m,n〉, halts
with 〈m + n〉 on tape.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.27

Computable Functions

A useful class of functions modifies TM descriptions.
For example:

On input w:

if w = 〈M〉 for some TM,

construct 〈M ′〉, where
L(M ′) = L(M), but
M ′ never tries to move off LHS of tape.

otherwise write ε and halt.

Left as an exercise.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.28

Computable Functions

A useful class of functions modifies TM descriptions.
For example:

On input w:

if w = 〈M〉 for some TM,
construct 〈M ′〉, where

L(M ′) = L(M), but
M ′ never tries to move off LHS of tape.

otherwise write ε and halt.

Left as an exercise.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.28

Computable Functions

A useful class of functions modifies TM descriptions.
For example:

On input w:

if w = 〈M〉 for some TM,
construct 〈M ′〉, where
L(M ′) = L(M), but

M ′ never tries to move off LHS of tape.

otherwise write ε and halt.

Left as an exercise.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.28

Computable Functions

A useful class of functions modifies TM descriptions.
For example:

On input w:

if w = 〈M〉 for some TM,
construct 〈M ′〉, where
L(M ′) = L(M), but
M ′ never tries to move off LHS of tape.

otherwise write ε and halt.

Left as an exercise.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.28

Computable Functions

A useful class of functions modifies TM descriptions.
For example:

On input w:

if w = 〈M〉 for some TM,
construct 〈M ′〉, where
L(M ′) = L(M), but
M ′ never tries to move off LHS of tape.

otherwise write ε and halt.

Left as an exercise.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.28

Computable Functions

A useful class of functions modifies TM descriptions.
For example:

On input w:

if w = 〈M〉 for some TM,
construct 〈M ′〉, where
L(M ′) = L(M), but
M ′ never tries to move off LHS of tape.

otherwise write ε and halt.

Left as an exercise.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.28

Mapping Reductions

Definition: Let A and B be two languages. We say
that there is a mapping reduction from A to B, and
denote

A ≤m B

if there is a computable function

f : Σ∗ −→ Σ∗

such that, for every w,

w ∈ A⇐⇒f(w) ∈ B.

The function f is called the reduction from A to B.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.29

Mapping Reductions

Definition: Let A and B be two languages. We say
that there is a mapping reduction from A to B, and
denote

A ≤m B

if there is a computable function

f : Σ∗ −→ Σ∗

such that, for every w,

w ∈ A⇐⇒f(w) ∈ B.

The function f is called the reduction from A to B.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.29

Mapping Reductions

Definition: Let A and B be two languages. We say
that there is a mapping reduction from A to B, and
denote

A ≤m B

if there is a computable function

f : Σ∗ −→ Σ∗

such that, for every w,

w ∈ A⇐⇒f(w) ∈ B.

The function f is called the reduction from A to B.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.29

Mapping Reductions

f

f

A B

A mapping reduction converts questions about

membership in A to membership in B

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.30

Mapping Reductions

f

f

A B

A mapping reduction converts questions about

membership in A to membership in B

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.30

Mapping Reductions

Theorem: If A ≤mB and B is decidable, then A is
decidable.

Proof: Let

M be the decider for B, and

f the reduction from A to B.

Define N : On input w

1. compute f(w)

2. run M on input f(w) and output whatever M
outputs.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.31

Mapping Reductions

Theorem: If A ≤mB and B is decidable, then A is
decidable.

Proof: Let

M be the decider for B, and

f the reduction from A to B.

Define N : On input w

1. compute f(w)

2. run M on input f(w) and output whatever M
outputs.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.31

Mapping Reductions

Theorem: If A ≤mB and B is decidable, then A is
decidable.

Proof: Let

M be the decider for B, and

f the reduction from A to B.

Define N : On input w

1. compute f(w)

2. run M on input f(w) and output whatever M
outputs.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.31

Mapping Reductions

Corollary: If A ≤m B and A is undecidable, then B is
undecidable.

In fact, this has been our principal tool for proving un-

decidability of languages other than ATM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.32

Mapping Reductions

Corollary: If A ≤m B and A is undecidable, then B is
undecidable.

In fact, this has been our principal tool for proving un-

decidability of languages other than ATM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.32

Example: Halting

Recall that

ATM = {〈M,w〉|TM M accepts input w}

HTM = {〈M,w〉|TM M halts on input w}

Earlier we proved that

HTM undecidable

by (de facto) reduction from ATM.

Let’s reformulate this.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.33

Example: Halting

Recall that

ATM = {〈M,w〉|TM M accepts input w}

HTM = {〈M,w〉|TM M halts on input w}

Earlier we proved that

HTM undecidable

by (de facto) reduction from ATM.

Let’s reformulate this.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.33

Example: Halting

Define a computable function, f :

input of form 〈M,w〉

output of form 〈M ′, w′〉

where 〈M,w〉 ∈ ATM ⇐⇒ 〈M ′, w′〉 ∈ HTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.34

Example: Halting

Define a computable function, f :

input of form 〈M,w〉

output of form 〈M ′, w′〉

where 〈M,w〉 ∈ ATM ⇐⇒ 〈M ′, w′〉 ∈ HTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.34

Example: Halting

Define a computable function, f :

input of form 〈M,w〉

output of form 〈M ′, w′〉

where 〈M,w〉 ∈ ATM ⇐⇒ 〈M ′, w′〉 ∈ HTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.34

Example: Halting

The following machine computes this function f .
F = on input 〈M,w〉:

Construct the following machine M ′.
M ′: on input x

run M on x

If M accepts, accept.
if M rejects, enter a loop.

output 〈M ′, w〉

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.35

Example: Halting

The following machine computes this function f .
F = on input 〈M,w〉:

Construct the following machine M ′.
M ′: on input x

run M on x

If M accepts, accept.
if M rejects, enter a loop.

output 〈M ′, w〉

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.35

Example: Halting

The following machine computes this function f .
F = on input 〈M,w〉:

Construct the following machine M ′.
M ′: on input x

run M on x

If M accepts, accept.

if M rejects, enter a loop.

output 〈M ′, w〉

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.35

Example: Halting

The following machine computes this function f .
F = on input 〈M,w〉:

Construct the following machine M ′.
M ′: on input x

run M on x

If M accepts, accept.
if M rejects, enter a loop.

output 〈M ′, w〉

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.35

Example: Halting

The following machine computes this function f .
F = on input 〈M,w〉:

Construct the following machine M ′.
M ′: on input x

run M on x

If M accepts, accept.
if M rejects, enter a loop.

output 〈M ′, w〉

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.35

Enumerability

Theorem: If A ≤m B and B is enumerable, then A
is enumerable.

Proof is same as before, using accepters instead of
deciders.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.36

Enumerability

Corollary: If A ≤m B and A is not enumerable, then
B is not enumerable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.37

TM Equality

Theorem: Both EQTM and its complement, EQTM,
are not enumerable. Stated differently, EQTM is
neither enumerable nor co-enumerable.

We show that ATM is reducible to EQTM. The
same function is also a mapping reduction from
ATM to EQTM, and thus EQTM is not
enumerable.

We then show that ATM is reducible to EQTM.
The new function is also a mapping reduction
from ATM to EQTM, and thus EQTM is not
enumerable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.38

TM Equality

Theorem: Both EQTM and its complement, EQTM,
are not enumerable. Stated differently, EQTM is
neither enumerable nor co-enumerable.

We show that ATM is reducible to EQTM. The
same function is also a mapping reduction from
ATM to EQTM, and thus EQTM is not
enumerable.

We then show that ATM is reducible to EQTM.
The new function is also a mapping reduction
from ATM to EQTM, and thus EQTM is not
enumerable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.38

TM Equality

Theorem: Both EQTM and its complement, EQTM,
are not enumerable. Stated differently, EQTM is
neither enumerable nor co-enumerable.

We show that ATM is reducible to EQTM. The
same function is also a mapping reduction from
ATM to EQTM, and thus EQTM is not
enumerable.

We then show that ATM is reducible to EQTM.
The new function is also a mapping reduction
from ATM to EQTM, and thus EQTM is not
enumerable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.38

TM Equality

Claim: ATM is reducible to EQTM.

f : ATM −→ EQTM works as follows:

F : On input 〈M,w〉

Construct machine M1: on any input, reject.

Construct machine M2: on input x, run M on w.
If it accepts, accept.

Output 〈M1,M2〉.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.39

TM Equality

Claim: ATM is reducible to EQTM.

f : ATM −→ EQTM works as follows:

F : On input 〈M,w〉

Construct machine M1: on any input, reject.

Construct machine M2: on input x, run M on w.
If it accepts, accept.

Output 〈M1,M2〉.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.39

TM Equality

Claim: ATM is reducible to EQTM.

f : ATM −→ EQTM works as follows:

F : On input 〈M,w〉

Construct machine M1: on any input, reject.

Construct machine M2: on input x, run M on w.
If it accepts, accept.

Output 〈M1,M2〉.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.39

TM Equality

F : On input 〈M,w〉

Construct machine M1: on any input, reject.

Construct machine M2: on any input x, run M on w.

If it accepts, accept x.

Output 〈M1,M2〉.

Note

M1 accepts nothing

if M accepts w then M2 accepts everything,
and otherwise nothing.

so 〈M,w〉 ∈ ATM ⇐⇒ 〈M1,M2〉 ∈ EQTM

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.40

TM Equality

F : On input 〈M,w〉

Construct machine M1: on any input, reject.

Construct machine M2: on any input x, run M on w.

If it accepts, accept x.

Output 〈M1,M2〉.

Note

M1 accepts nothing

if M accepts w then M2 accepts everything,
and otherwise nothing.

so 〈M,w〉 ∈ ATM ⇐⇒ 〈M1,M2〉 ∈ EQTM

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.40

TM Equality

F : On input 〈M,w〉

Construct machine M1: on any input, reject.

Construct machine M2: on any input x, run M on w.

If it accepts, accept x.

Output 〈M1,M2〉.

Note

M1 accepts nothing

if M accepts w then M2 accepts everything,
and otherwise nothing.

so 〈M,w〉 ∈ ATM ⇐⇒ 〈M1,M2〉 ∈ EQTM

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.40

TM Equality

Claim: ATM is reducible to EQTM.

f : ATM −→ EQTM works as follows:

F : On input 〈M,w〉

Construct machine M1: on any input, accept.

Construct machine M2: on any input x, run M on
w.

If it accepts, accept.

Output 〈M1,M2〉.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.41

TM Equality

Claim: ATM is reducible to EQTM.

f : ATM −→ EQTM works as follows:

F : On input 〈M,w〉

Construct machine M1: on any input, accept.

Construct machine M2: on any input x, run M on
w.

If it accepts, accept.

Output 〈M1,M2〉.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.41

TM Equality

Claim: ATM is reducible to EQTM.

f : ATM −→ EQTM works as follows:

F : On input 〈M,w〉

Construct machine M1: on any input, accept.

Construct machine M2: on any input x, run M on
w.

If it accepts, accept.

Output 〈M1,M2〉.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.41

TM Equality

F : On input 〈M,w〉

Construct machine M1: on any input, accept.

Construct machine M2: on any input x, run M on w.

If it accepts, accept.

Output 〈M1,M2〉.

Note

M1 accepts everything

if M accepts w, then M2 accepts everything,
and otherwise nothing.

〈M,w〉 ∈ ATM ⇐⇒ 〈M1,M2〉 ∈ EQTM.
♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.42

TM Equality

F : On input 〈M,w〉

Construct machine M1: on any input, accept.

Construct machine M2: on any input x, run M on w.

If it accepts, accept.

Output 〈M1,M2〉.

Note

M1 accepts everything

if M accepts w, then M2 accepts everything,
and otherwise nothing.

〈M,w〉 ∈ ATM ⇐⇒ 〈M1,M2〉 ∈ EQTM.
♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.42

TM Equality

F : On input 〈M,w〉

Construct machine M1: on any input, accept.

Construct machine M2: on any input x, run M on w.

If it accepts, accept.

Output 〈M1,M2〉.

Note

M1 accepts everything

if M accepts w, then M2 accepts everything,
and otherwise nothing.

〈M,w〉 ∈ ATM ⇐⇒ 〈M1,M2〉 ∈ EQTM.
♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.42

Recursive Inseparability

Two disjoint languages L1 and L2 are recursively
inseparable if there is no decidable language D such
that

L1 ∩D = ∅, and

L2 ⊂ D.

Example of recursively separable languages:

D

L12L

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.43

Recursive Inseparability

Two disjoint languages L1 and L2 are recursively
inseparable if there is no decidable language D such
that

L1 ∩D = ∅, and

L2 ⊂ D.

Example of recursively separable languages:

D

L12L

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.43

Recursive Inseparability

Two disjoint languages L1 and L2 are recursively
inseparable if there is no decidable language D such
that

L1 ∩D = ∅, and

L2 ⊂ D.

Example of recursively separable languages:

D

L12L

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.43

Recursive Inseparability

ATM and ATM are a trivial example.

Why?

Are there non-trivial examples?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.44

Recursive Inseparability

ATM and ATM are a trivial example.

Why?

Are there non-trivial examples?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.44

Recursive Inseparability

ATM and ATM are a trivial example.

Why?

Are there non-trivial examples?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.44

Recursive Inseparability

Define

Ayes = {〈M〉|M is a TM that accepts 〈M〉}

and

Ano = {〈M〉|M is a TM that halts and rejects 〈M〉}

Theorem: Ayes and Ano are recursively
inseparable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.45

Proof by Contradiction
Let D be a decidable language that separates them.

Assume Ano ⊂ D and D ∩Ayes = ∅.

Let MD be the TM that decides D

What does MD do with input 〈MD〉?

It must halt. (why?)

If MD accepts 〈MD〉:

〈MD〉 ∈ Ayes
〈MD〉 6∈ D

so MD rejects 〈MD〉.

If MD rejects 〈MD〉:

〈MD〉 ∈ Ano
〈MD〉 ∈ D

so MD accepts 〈MD〉. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46

Proof by Contradiction
Let D be a decidable language that separates them.

Assume Ano ⊂ D and D ∩Ayes = ∅.

Let MD be the TM that decides D

What does MD do with input 〈MD〉?

It must halt. (why?)

If MD accepts 〈MD〉:

〈MD〉 ∈ Ayes
〈MD〉 6∈ D

so MD rejects 〈MD〉.

If MD rejects 〈MD〉:

〈MD〉 ∈ Ano
〈MD〉 ∈ D

so MD accepts 〈MD〉. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46

Proof by Contradiction
Let D be a decidable language that separates them.

Assume Ano ⊂ D and D ∩Ayes = ∅.

Let MD be the TM that decides D

What does MD do with input 〈MD〉?

It must halt. (why?)

If MD accepts 〈MD〉:

〈MD〉 ∈ Ayes
〈MD〉 6∈ D

so MD rejects 〈MD〉.

If MD rejects 〈MD〉:

〈MD〉 ∈ Ano
〈MD〉 ∈ D

so MD accepts 〈MD〉. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46

Proof by Contradiction
Let D be a decidable language that separates them.

Assume Ano ⊂ D and D ∩Ayes = ∅.

Let MD be the TM that decides D

What does MD do with input 〈MD〉?

It must halt. (why?)

If MD accepts 〈MD〉:

〈MD〉 ∈ Ayes
〈MD〉 6∈ D

so MD rejects 〈MD〉.

If MD rejects 〈MD〉:

〈MD〉 ∈ Ano
〈MD〉 ∈ D

so MD accepts 〈MD〉. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46

Proof by Contradiction
Let D be a decidable language that separates them.

Assume Ano ⊂ D and D ∩Ayes = ∅.

Let MD be the TM that decides D

What does MD do with input 〈MD〉?

It must halt. (why?)

If MD accepts 〈MD〉:

〈MD〉 ∈ Ayes
〈MD〉 6∈ D

so MD rejects 〈MD〉.

If MD rejects 〈MD〉:

〈MD〉 ∈ Ano
〈MD〉 ∈ D

so MD accepts 〈MD〉. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46

Proof by Contradiction
Let D be a decidable language that separates them.

Assume Ano ⊂ D and D ∩Ayes = ∅.

Let MD be the TM that decides D

What does MD do with input 〈MD〉?

It must halt. (why?)

If MD accepts 〈MD〉:

〈MD〉 ∈ Ayes
〈MD〉 6∈ D

so MD rejects 〈MD〉.

If MD rejects 〈MD〉:

〈MD〉 ∈ Ano
〈MD〉 ∈ D

so MD accepts 〈MD〉. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46

Proof by Contradiction
Let D be a decidable language that separates them.

Assume Ano ⊂ D and D ∩Ayes = ∅.

Let MD be the TM that decides D

What does MD do with input 〈MD〉?

It must halt. (why?)

If MD accepts 〈MD〉:

〈MD〉 ∈ Ayes

〈MD〉 6∈ D

so MD rejects 〈MD〉.

If MD rejects 〈MD〉:

〈MD〉 ∈ Ano
〈MD〉 ∈ D

so MD accepts 〈MD〉. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46

Proof by Contradiction
Let D be a decidable language that separates them.

Assume Ano ⊂ D and D ∩Ayes = ∅.

Let MD be the TM that decides D

What does MD do with input 〈MD〉?

It must halt. (why?)

If MD accepts 〈MD〉:

〈MD〉 ∈ Ayes
〈MD〉 6∈ D

so MD rejects 〈MD〉.

If MD rejects 〈MD〉:

〈MD〉 ∈ Ano
〈MD〉 ∈ D

so MD accepts 〈MD〉. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46

Proof by Contradiction
Let D be a decidable language that separates them.

Assume Ano ⊂ D and D ∩Ayes = ∅.

Let MD be the TM that decides D

What does MD do with input 〈MD〉?

It must halt. (why?)

If MD accepts 〈MD〉:

〈MD〉 ∈ Ayes
〈MD〉 6∈ D

so MD rejects 〈MD〉.

If MD rejects 〈MD〉:

〈MD〉 ∈ Ano
〈MD〉 ∈ D

so MD accepts 〈MD〉. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46

Proof by Contradiction
Let D be a decidable language that separates them.

Assume Ano ⊂ D and D ∩Ayes = ∅.

Let MD be the TM that decides D

What does MD do with input 〈MD〉?

It must halt. (why?)

If MD accepts 〈MD〉:

〈MD〉 ∈ Ayes
〈MD〉 6∈ D

so MD rejects 〈MD〉.

If MD rejects 〈MD〉:

〈MD〉 ∈ Ano
〈MD〉 ∈ D

so MD accepts 〈MD〉. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46

Proof by Contradiction
Let D be a decidable language that separates them.

Assume Ano ⊂ D and D ∩Ayes = ∅.

Let MD be the TM that decides D

What does MD do with input 〈MD〉?

It must halt. (why?)

If MD accepts 〈MD〉:

〈MD〉 ∈ Ayes
〈MD〉 6∈ D

so MD rejects 〈MD〉.

If MD rejects 〈MD〉:

〈MD〉 ∈ Ano

〈MD〉 ∈ D

so MD accepts 〈MD〉. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46

Proof by Contradiction
Let D be a decidable language that separates them.

Assume Ano ⊂ D and D ∩Ayes = ∅.

Let MD be the TM that decides D

What does MD do with input 〈MD〉?

It must halt. (why?)

If MD accepts 〈MD〉:

〈MD〉 ∈ Ayes
〈MD〉 6∈ D

so MD rejects 〈MD〉.

If MD rejects 〈MD〉:

〈MD〉 ∈ Ano
〈MD〉 ∈ D

so MD accepts 〈MD〉. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46

Proof by Contradiction
Let D be a decidable language that separates them.

Assume Ano ⊂ D and D ∩Ayes = ∅.

Let MD be the TM that decides D

What does MD do with input 〈MD〉?

It must halt. (why?)

If MD accepts 〈MD〉:

〈MD〉 ∈ Ayes
〈MD〉 6∈ D

so MD rejects 〈MD〉.

If MD rejects 〈MD〉:

〈MD〉 ∈ Ano
〈MD〉 ∈ D

so MD accepts 〈MD〉. ♣
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.46

Recursive Inseparability

Define

Byes = {〈M〉|M is a TM that accepts ε}

and

Bno = {〈M〉|M is a TM that halts and rejects ε}

Theorem: Byes and Bno are recursively
inseparable.

Proof by reduction and contradiction.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.47

Recursive Inseparability

Theorem: Byes and Bno are recursively
inseparable.
By reduction and contradiction.

Assume Byes and Bno can be separated by E,
decided by TM ME .

For TM M , define M ′: On any input,
1. run M on input 〈M〉.
2. if M accepts, accept; if M rejects, reject;

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.48

Recursive Inseparability

Theorem: Byes and Bno are recursively
inseparable.
By reduction and contradiction.

Assume Byes and Bno can be separated by E,
decided by TM ME .

For TM M , define M ′: On any input,

1. run M on input 〈M〉.
2. if M accepts, accept; if M rejects, reject;

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.48

Recursive Inseparability

Theorem: Byes and Bno are recursively
inseparable.
By reduction and contradiction.

Assume Byes and Bno can be separated by E,
decided by TM ME .

For TM M , define M ′: On any input,
1. run M on input 〈M〉.

2. if M accepts, accept; if M rejects, reject;

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.48

Recursive Inseparability

Theorem: Byes and Bno are recursively
inseparable.
By reduction and contradiction.

Assume Byes and Bno can be separated by E,
decided by TM ME .

For TM M , define M ′: On any input,
1. run M on input 〈M〉.
2. if M accepts, accept; if M rejects, reject;

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.48

Proof (Concluded)

Define N : On input 〈M〉,

1. construct description of M ′.
2. run ME on 〈M ′〉.
3. if ME accepts, accept; if ME rejects, reject;

Claim:
N is a decider. (why?)

So N decides a language D.
D separates Ayes and Ano, contradiction. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.49

Proof (Concluded)

Define N : On input 〈M〉,
1. construct description of M ′.

2. run ME on 〈M ′〉.
3. if ME accepts, accept; if ME rejects, reject;

Claim:
N is a decider. (why?)

So N decides a language D.
D separates Ayes and Ano, contradiction. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.49

Proof (Concluded)

Define N : On input 〈M〉,
1. construct description of M ′.
2. run ME on 〈M ′〉.

3. if ME accepts, accept; if ME rejects, reject;

Claim:
N is a decider. (why?)

So N decides a language D.
D separates Ayes and Ano, contradiction. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.49

Proof (Concluded)

Define N : On input 〈M〉,
1. construct description of M ′.
2. run ME on 〈M ′〉.
3. if ME accepts, accept; if ME rejects, reject;

Claim:
N is a decider. (why?)

So N decides a language D.
D separates Ayes and Ano, contradiction. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.49

Proof (Concluded)

Define N : On input 〈M〉,
1. construct description of M ′.
2. run ME on 〈M ′〉.
3. if ME accepts, accept; if ME rejects, reject;

Claim:

N is a decider. (why?)
So N decides a language D.
D separates Ayes and Ano, contradiction. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.49

Proof (Concluded)

Define N : On input 〈M〉,
1. construct description of M ′.
2. run ME on 〈M ′〉.
3. if ME accepts, accept; if ME rejects, reject;

Claim:
N is a decider. (why?)

So N decides a language D.
D separates Ayes and Ano, contradiction. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.49

Proof (Concluded)

Define N : On input 〈M〉,
1. construct description of M ′.
2. run ME on 〈M ′〉.
3. if ME accepts, accept; if ME rejects, reject;

Claim:
N is a decider. (why?)

So N decides a language D.

D separates Ayes and Ano, contradiction. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.49

Proof (Concluded)

Define N : On input 〈M〉,
1. construct description of M ′.
2. run ME on 〈M ′〉.
3. if ME accepts, accept; if ME rejects, reject;

Claim:
N is a decider. (why?)

So N decides a language D.
D separates Ayes and Ano, contradiction. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.49

	Lecture 9
	Reducibility
	Reducibility, In Our Context
	Examples
	Examples
	Reducibility
	Undecidable Problems
	Undecidable Problems
	Undecidable Problems
	Undecidable Problems (2)
	Undecidable Problems (2)
	Undecidable Problems (2)
	Undecidable Problems (2)
	Undecidable Problems (2)
	Undecidable Problems (3)
	Undecidable Problems (3)
	Undecidable Problems (3)
	Undecidable Problems (3)
	Undecidable Problems (4)
	Undecidable Problems (4)
	Undecidable Problems (4)
	Bucket of Undecidable Problems
	Rice's Theorem
	Rice's Theorem
	Reducibility
	Computable Functions
	Computable Functions
	Computable Functions
	Mapping Reductions
	Mapping Reductions
	Mapping Reductions
	Mapping Reductions
	Example: Halting
	Example: Halting
	Example: Halting
	Enumerability
	Enumerability
	TM Equality
	TM Equality
	TM Equality
	TM Equality
	TM Equality
	Recursive Inseparability
	Recursive Inseparability
	Recursive Inseparability
	Proof by Contradiction
	Recursive Inseparability
	Recursive Inseparability
	Proof (Concluded)

