We have already

 Established Turing Machines as the gold standard of computers and computability ...

We have already

- Established Turing Machines as the gold standard of computers and computability ...
- seen examples of solvable problems ...

We have already

- Established Turing Machines as the gold standard of computers and computability ...
- seen examples of solvable problems ...
- and saw one problem, A_{TM} , that is computationally unsolvable.

We have already

- Established Turing Machines as the gold standard of computers and computability ...
- seen examples of solvable problems ...
- and saw one problem, A_{TM} , that is computationally unsolvable.

In this lecture, we look at other computationally unsolvable problems, and establish the technique of mapping reducibilities for prove that languages are undecidable/non-enumerable.

Example:

Finding your way around a new city

Example:

- Finding your way around a new city
- reduces to ...

Example:

- Finding your way around a new city
- reduces to ...
- obtaining a city map.

Reducibility, In Our Context

Always involves two problems, A and B.

Reducibility, In Our Context

Always involves two problems, A and B.

Desired Property: If A reduces to B, then any solution of B can be used to find a solution of A.

Reducibility, In Our Context

Always involves two problems, A and B.

Desired Property: If A reduces to B, then any solution of B can be used to find a solution of A.

Remark: This property says nothing about solving A by itself or B by itself.

Reductions:

Traveling from Boshton to Paris ...

- Traveling from Boshton to Paris ...
- buying plane ticket . . .

- Traveling from Boshton to Paris ...
- buying plane ticket ...
- earning the money for that ticket ...

- Traveling from Boshton to Paris ...
- buying plane ticket ...
- earning the money for that ticket . . .
- finding a job
 - (or getting the \$s from mom and dad...)

Reductions:

Measuring area of rectangle ...

- Measuring area of rectangle ...
- measuring lengths of sides.

Reductions:

- Measuring area of rectangle ...
- measuring lengths of sides.

Also:

Reductions:

- Measuring area of rectangle . . .
- measuring lengths of sides.

Also:

- Solving a system of linear equations ...
- inverting a matrix.

If A is reducible to B, then

• A cannot be harder than B

If A is reducible to B, then

- A cannot be harder than B
- if B is decidable, so is A.

If A is reducible to B, then

- A cannot be harder than B
- if B is decidable, so is A.
- if A is undecidable and reducible to B, then B is undecidable.

We have already established that A_{TM} is undecidable.

Here is a related problem.

 $H_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Clarification: How does H_{TM} differ from A_{TM} ?

 $H_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: H_{TM} is undecidable.

Proof idea:

By contradiction.

 $H_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: H_{TM} is undecidable.

- By contradiction.
- Assume H_{TM} is decidable.

 $H_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: H_{TM} is undecidable.

- By contradiction.
- Assume H_{TM} is decidable.
- Let R be a TM that decides H_{TM} .

 $H_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: H_{TM} is undecidable.

- By contradiction.
- Assume H_{TM} is decidable.
- Let R be a TM that decides H_{TM} .
- Use *R* to construct *S*, a TM that decides A_{TM} .

 $H_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: H_{TM} is undecidable.

- By contradiction.
- Assume H_{TM} is decidable.
- Let R be a TM that decides H_{TM} .
- Use *R* to construct *S*, a TM that decides A_{TM} .
- So A_{TM} is reduced to H_{TM} .

 $H_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: H_{TM} is undecidable.

- By contradiction.
- Assume H_{TM} is decidable.
- Let R be a TM that decides H_{TM} .
- Use *R* to construct *S*, a TM that decides A_{TM} .
- So A_{TM} is reduced to H_{TM} .
- Since A_{TM} is undecidable, so is H_{TM} .

Theorem: H_{TM} is undecidable.

Proof: Assume, by way of contradiction, that TM R decides H_{TM} . Define a new TM, S, as follows:

• On input $\langle M, w \rangle$,

Theorem: H_{TM} is undecidable.

Proof: Assume, by way of contradiction, that TM R decides H_{TM} . Define a new TM, S, as follows:

• On input $\langle M, w \rangle$,

• run R on $\langle M, w \rangle$.

Theorem: H_{TM} is undecidable.

Proof: Assume, by way of contradiction, that TM R decides H_{TM} . Define a new TM, S, as follows:

- On input $\langle M, w \rangle$,
- run R on $\langle M, w \rangle$.
- If R rejects, reject.

Theorem: H_{TM} is undecidable.

Proof: Assume, by way of contradiction, that TM R decides H_{TM} . Define a new TM, S, as follows:

- On input $\langle M, w \rangle$,
- run R on $\langle M, w \rangle$.
- If R rejects, reject.
- If *R* accepts (meaning *M* halts on *w*), simulate *M* on *w* until it halts.

Theorem: H_{TM} is undecidable.

Proof: Assume, by way of contradiction, that TM R decides H_{TM} . Define a new TM, S, as follows:

- On input $\langle M, w \rangle$,
- run R on $\langle M, w \rangle$.
- If R rejects, reject.
- If R accepts (meaning M halts on w), simulate M on w until it halts.
- If M accepted, accept; otherwise reject.

Does a TM accept any string at all?

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Does a TM accept any string at all?

 $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E_{TM} is undecidable.

Undecidable Problems (2) Does a TM accept any string at all?

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E_{TM} is undecidable.

Proof structure:
Does a TM accept any string at all?

 $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E_{TM} is undecidable.

Proof structure:

- By contradiction.
- Assume E_{TM} is decidable.
- Let R be a TM that decides E_{TM} .
- Use *R* to construct *S*, a TM that decides A_{TM} .

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

 $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

First attempt: When S receives input $\langle M, w \rangle$, it calls R with input $\langle M \rangle$.

- If R accepts, then reject, because M does not accept any string, let alone w.
- **•** But what if *R* rejects?

 $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

First attempt: When S receives input $\langle M, w \rangle$, it calls R with input $\langle M \rangle$.

- If R accepts, then reject, because M does not accept any string, let alone w.
- But what if *R* rejects?

Second attempt: Let's modify M.

 $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Define M₁: on input x,
1. if x ≠ w, reject.
2. if x = w, run M on w and accept if M does.

 $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Define M₁: on input x,
1. if x ≠ w, reject.
2. if x = w, run M on w and accept if M does.

M_1 either

- accepts just w, or
- accepts nothing.

Machine M_1 : on input x,

- 1. if $x \neq w$, reject.
- 2. if x = w, run M on w and accept if M does.

Machine M_1 : on input x,

- 1. if $x \neq w$, reject.
- 2. if x = w, run M on w and accept if M does.

Question: Can a TM construct M_1 from M?

Machine M_1 : on input x,

- 1. if $x \neq w$, reject.
- 2. if x = w, run M on w and accept if M does.

Question: Can a TM construct M_1 from M?

Answer: Yes, because we need only hardwire w, and add a few extra states to perform the "x = w?" test.

 $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E_{TM} is undecidable.

 $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E_{TM} is undecidable.

Define S as follows: On input $\langle M, w \rangle$, where M is a TM and w a string,

 $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E_{TM} is undecidable.

Define *S* as follows:

On input $\langle M, w \rangle$, where M is a TM and w a string,

- Construct M_1 from M and w.
- Run R on input $\langle M_1 \rangle$,
- if R accepts, reject; if R rejects, accept.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.

Does a TM accept a regular language?

 $R_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Does a TM accept a regular language?

 $R_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: R_{TM} is undecidable.

Does a TM accept a regular language?

 $R_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: R_{TM} is undecidable.

Skeleton of Proof:

- By contradiction.
- Assume R_{TM} is decidable.
- Let R be a TM that decides R_{TM} .
- Use *R* to construct *S*, a TM that decides A_{TM} .

Does a TM accept a regular language?

 $R_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: R_{TM} is undecidable.

Skeleton of Proof:

- By contradiction.
- Assume R_{TM} is decidable.
- Let R be a TM that decides R_{TM} .
- Use R to construct S, a TM that decides A_{TM} .

But how?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.

 $R_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Modify M so that the resulting TM accepts a regular language if and only if M accepts w.

 $R_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Modify M so that the resulting TM accepts a regular language if and only if M accepts w.

Design M_2 so that

- if M does not accept w, then M_2 accepts $\{0^n 1^n | n \ge 0\}$ (non-regular)
- if M accepts w, then M_2 accepts Σ^* (regular).

From M and w, define M_2 :

From M and w, define M_2 :

On input *x*,

- 1. If x has the form $0^n 1^n$, accept it.
- 2. Otherwise, run M on input w and accept x if M accepts w.

From M and w, define M_2 :

On input *x*,

- 1. If x has the form $0^n 1^n$, accept it.
- 2. Otherwise, run M on input w and accept x if M accepts w.

Claim:

- If M does not accept w, then M_2 accepts $\{0^n 1^n | n \ge 0\}.$
- If M accepts w, then M_2 accepts Σ^* .

$R_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: R_{TM} is undecidable.

 $R_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$

Theorem: R_{TM} is undecidable.

Define S:

On input $\langle M, w \rangle$,

- 1. Construct M_2 from M and w.
- 2. Run *R* on input $\langle M_2 \rangle$.
- 3. If R accepts, accept; if R rejects, reject.

Are two TMs equivalent?

 $\mathbf{EQ_{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and} \\ L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable.

Are two TMs equivalent?

 $\mathbf{EQ_{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and} \\ L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable.

We are getting tired of reducing A_{TM} to everything.

Are two TMs equivalent?

 $\mathbf{EQ_{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and} \\ L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable.

We are getting tired of reducing A_{TM} to everything.

Let's try instead a reduction from E_{TM} to EQ_{TM} .

 $\mathbf{EQ_{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and} \\ L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable. Idea:

• E_{TM} is the problem of testing whether a TM language is empty.

 $\mathbf{EQ_{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and} \\ L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable. Idea:

- E_{TM} is the problem of testing whether a TM language is empty.
- EQ_{TM} is the problem of testing whether two TM languages are the same.

 $\mathbf{EQ_{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and} \\ L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable. Idea:

- E_{TM} is the problem of testing whether a TM language is empty.
- EQ_{TM} is the problem of testing whether two TM languages are the same.
- If one of these two TM languages happens to be empty, then we are back to E_{TM} .

 $\mathbf{EQ_{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and} \\ L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable. Idea:

- E_{TM} is the problem of testing whether a TM language is empty.
- EQ_{TM} is the problem of testing whether two TM languages are the same.
- If one of these two TM languages happens to be empty, then we are back to E_{TM} .
- So E_{TM} is a special case of EQ_{TM}.

The rest is easy.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.

 $\mathbf{EQ_{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and} \\ L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable.

Let M_{NO} be the TM: On input x, reject. Let R decide EQ_{TM}.

 $\mathbf{EQ_{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and} \\ L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable.

Let M_{NO} be the TM: On input x, reject. Let R decide EQ_{TM}.

Let S be: On input $\langle M \rangle$:

- 1. Run *R* on input $\langle M, M_{NO} \rangle$.
- 2. If *R* accepts, accept; if *R* rejects, reject.

 $\mathbf{EQ_{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and} \\ L(M_1) = L(M_2) \}$

Theorem: EQ_{TM} is undecidable.

Let M_{NO} be the TM: On input x, reject. Let R decide EQ_{TM}.

Let S be: On input $\langle M \rangle$:

1. Run *R* on input $\langle M, M_{NO} \rangle$.

2. If *R* accepts, accept; if *R* rejects, reject.

If *R* decides EQ_{TM} , then *S* decides E_{TM} .

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.

Bucket of Undecidable Problems Same techniques prove undecidability of

Does a TM accept a decidable language?

Bucket of Undecidable Problems Same techniques prove undecidability of

- Does a TM accept a decidable language?
- Does a TM accept a enumerable language?

Bucket of Undecidable Problems Same techniques prove undecidability of

- Does a TM accept a decidable language?
- Does a TM accept a enumerable language?
- Does a TM accept a context-free language?
Bucket of Undecidable Problems Same techniques prove undecidability of

- Does a TM accept a decidable language?
- Does a TM accept a enumerable language?
- Does a TM accept a context-free language?
- Does a TM accept a finite language?

Bucket of Undecidable Problems Same techniques prove undecidability of

- Does a TM accept a decidable language?
- Does a TM accept a enumerable language?
- Does a TM accept a context-free language?
- Does a TM accept a finite language?
- Does a TM halt on all inputs?

Bucket of Undecidable Problems Same techniques prove undecidability of

- Does a TM accept a decidable language?
- Does a TM accept a enumerable language?
- Does a TM accept a context-free language?
- Does a TM accept a finite language?
- Does a TM halt on all inputs?
- Is there an input string that causes a TM to traverse all its states?

By now, some of you may have become cynical and embittered.

● Like, been there, done that, bought the T-shirt.

By now, some of you may have become cynical and embittered.

- Like, been there, done that, bought the T-shirt.
- Looks like any non-trivial property of TMs is undecidable.

By now, some of you may have become cynical and embittered.

- Like, been there, done that, bought the T-shirt.
- Looks like any non-trivial property of TMs is undecidable.

That is correct.

Theorem: If C is a proper non-empty subset of the set of enumerable languages, then it is undecidable whether for a given TM, M, L(M) is in C.

Theorem: If C is a proper non-empty subset of the set of enumerable languages, then it is undecidable whether for a given TM, M, L(M) is in C.

Proof by reduction from H_{TM} (does *M* halt on input *x*?).

Theorem: If C is a proper non-empty subset of the set of enumerable languages, then it is undecidable whether for a given TM, M, L(M) is in C.

Proof by reduction from H_{TM} (does *M* halt on input *x*?).

- Assume *R* decides if $L(M) \in \mathcal{C}$.
- Use *R* to implement *S*, which decides H_{TM} .

Further details of proof not given at the moment ...

Reducibility

So far, we have seen many examples of reductions from one language to another, but the notion was neither defined nor treated formally.

Reductions play an important role in

- decidability theory
- complexity theory (to come)

Time to get formal.

A TM computes a function

 $f: \Sigma^* \longrightarrow \Sigma^*$

if the TM

A TM computes a function

 $f: \Sigma^* \longrightarrow \Sigma^*$

if the TM

• starts with input w, and

A TM computes a function

 $f: \Sigma^* \longrightarrow \Sigma^*$

if the TM

- starts with input w, and
- halts with only f(w) on tape.

Claim: All the usual arithmetic functions on integers are computable.

Claim: All the usual arithmetic functions on integers are computable.

These include addition, subtraction, multiplication, division (quotient and remainder), exponentiation, roots (to a specified precision).

Claim: All the usual arithmetic functions on integers are computable.

These include addition, subtraction, multiplication, division (quotient and remainder), exponentiation, roots (to a specified precision).

Even non-arithmetic functions, like logarithms and trigonometric functions, can be computed (to a specified precision), using Taylor expansion or other numeric mathematic techniques.

Claim: All the usual arithmetic functions on integers are computable.

These include addition, subtraction, multiplication, division (quotient and remainder), exponentiation, roots (to a specified precision).

Even non-arithmetic functions, like logarithms and trigonometric functions, can be computed (to a specified precision), using Taylor expansion or other numeric mathematic techniques.

Exercise: Design a TM that on input $\langle m, n \rangle$, halts with $\langle m + n \rangle$ on tape.

A useful class of functions modifies TM descriptions. For example:

On input *w*:

• if $w = \langle M \rangle$ for some TM,

A useful class of functions modifies TM descriptions. For example:

- if $w = \langle M \rangle$ for some TM,
 - construct $\langle M' \rangle$, where

A useful class of functions modifies TM descriptions. For example:

- if $w = \langle M \rangle$ for some TM,
 - construct $\langle M' \rangle$, where
 - L(M') = L(M), but

A useful class of functions modifies TM descriptions. For example:

- if $w = \langle M \rangle$ for some TM,
 - construct $\langle M' \rangle$, where
 - L(M') = L(M), but
 - M' never tries to move off LHS of tape.

A useful class of functions modifies TM descriptions. For example:

- if $w = \langle M \rangle$ for some TM,
 - construct $\langle M' \rangle$, where
 - L(M') = L(M), but
 - M' never tries to move off LHS of tape.
- otherwise write ε and halt.

A useful class of functions modifies TM descriptions. For example:

On input *w*:

- if $w = \langle M \rangle$ for some TM,
 - construct $\langle M' \rangle$, where
 - L(M') = L(M), but
 - M' never tries to move off LHS of tape.
- otherwise write ε and halt.

Left as an exercise.

Definition: Let A and B be two languages. We say that there is a mapping reduction from A to B, and denote

 $A \leq_m B$

Definition: Let A and B be two languages. We say that there is a mapping reduction from A to B, and denote

 $A \leq_m B$

if there is a computable function

$$f: \Sigma^* \longrightarrow \Sigma^*$$

such that, for every *w*,

Definition: Let A and B be two languages. We say that there is a mapping reduction from A to B, and denote

 $A \leq_m B$

if there is a computable function

$$f: \Sigma^* \longrightarrow \Sigma^*$$

such that, for every *w*,

$$w \in A \Longleftrightarrow f(w) \in B.$$

The function f is called the reduction from A to B.

A mapping reduction converts questions about membership in A to membership in B

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable.

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: Let

- M be the decider for B, and
- f the reduction from A to B.

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: Let

- M be the decider for B, and
- f the reduction from A to B.

Define N: On input w

- 1. compute f(w)
- 2. run M on input f(w) and output whatever M outputs.

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable.

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable.

In fact, this has been our principal tool for proving undecidability of languages other than A_{TM} .

Example: Halting

Recall that

 $A_{\text{TM}} = \{ \langle M, w \rangle | \text{TM } M \text{ accepts input } w \}$ $H_{\text{TM}} = \{ \langle M, w \rangle | \text{TM } M \text{ halts on input } w \}$

Example: Halting

Recall that

 $A_{\text{TM}} = \{ \langle M, w \rangle | \text{TM } M \text{ accepts input } w \}$ $H_{\text{TM}} = \{ \langle M, w \rangle | \text{TM } M \text{ halts on input } w \}$

Earlier we proved that

- H_{TM} undecidable
- by (de facto) reduction from A_{TM} .

Let's reformulate this.

Example: Halting

Define a computable function, f:

• input of form $\langle M, w \rangle$
Define a computable function, f:

- input of form $\langle M, w \rangle$
- output of form $\langle M', w' \rangle$

Define a computable function, f:

- input of form $\langle M, w \rangle$
- output of form $\langle M', w' \rangle$
- where $\langle M, w \rangle \in A_{TM} \iff \langle M', w' \rangle \in H_{TM}$.

The following machine computes this function f. F = on input $\langle M, w \rangle$:

• Construct the following machine M'. M': on input x

- Construct the following machine M'. M': on input x
 - run M on x

- Construct the following machine M'. M': on input x
 - run M on x
 - If M accepts, *accept*.

- Construct the following machine M'. M': on input x
 - run M on x
 - If M accepts, *accept*.
 - if M rejects, enter a loop.

- Construct the following machine M'. M': on input x
 - run M on x
 - If M accepts, *accept*.
 - if M rejects, enter a loop.
- output $\langle M', w \rangle$

Enumerability

Theorem: If $A \leq_m B$ and B is enumerable, then A is enumerable.

Proof is same as before, using accepters instead of deciders.

Enumerability

Corollary: If $A \leq_m B$ and A is not enumerable, then *B* is not enumerable.

Theorem: Both EQ_{TM} and its complement, EQ_{TM} , are not enumerable. Stated differently, EQ_{TM} is neither enumerable nor co-enumerable.

Theorem: Both EQ_{TM} and its complement, EQ_{TM} , are not enumerable. Stated differently, EQ_{TM} is neither enumerable nor co-enumerable.

• We show that A_{TM} is reducible to EQ_{TM}. The same function is also a mapping reduction from $\overline{A_{TM}}$ to $\overline{EQ_{TM}}$, and thus $\overline{EQ_{TM}}$ is not enumerable.

Theorem: Both EQ_{TM} and its complement, EQ_{TM} , are not enumerable. Stated differently, EQ_{TM} is neither enumerable nor co-enumerable.

- We show that A_{TM} is reducible to EQ_{TM}. The same function is also a mapping reduction from $\overline{A_{TM}}$ to $\overline{EQ_{TM}}$, and thus $\overline{EQ_{TM}}$ is not enumerable.
- We then show that A_{TM} is reducible to $\overline{EQ_{TM}}$. The new function is also a mapping reduction from $\overline{A_{TM}}$ to EQ_{TM} , and thus EQ_{TM} is not enumerable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.

Claim: A_{TM} is reducible to $\overline{\text{EQ}_{\text{TM}}}$.

- $f : A_{\text{TM}} \longrightarrow \overline{\text{EQ}_{\text{TM}}}$ works as follows:
- *F*: On input $\langle M, w \rangle$
 - Construct machine M_1 : on any input, reject.

- **Claim:** A_{TM} is reducible to $\overline{\text{EQ}_{\text{TM}}}$.
- $f : A_{TM} \longrightarrow \overline{EQ_{TM}}$ works as follows:
- *F*: On input $\langle M, w \rangle$
 - Construct machine M_1 : on any input, reject.
 - Construct machine M_2 : on input x, run M on w. If it accepts, accept.

- **Claim:** A_{TM} is reducible to $\overline{\text{EQ}_{\text{TM}}}$.
- $f : A_{TM} \longrightarrow \overline{EQ_{TM}}$ works as follows:
- *F*: On input $\langle M, w \rangle$
 - Construct machine M_1 : on any input, reject.
 - Construct machine M_2 : on input x, run M on w. If it accepts, accept.
 - Output $\langle M_1, M_2 \rangle$.

- **F**: On input $\langle M, w \rangle$
 - Construct machine M_1 : on any input, reject.
 - Construct machine M_2 : on any input x, run M on w. If it accepts, accept x.
 - Output $\langle M_1, M_2 \rangle$.

Note

• M_1 accepts nothing

- **F**: On input $\langle M, w \rangle$
 - Construct machine M_1 : on any input, reject.
 - Construct machine M_2 : on any input x, run M on w.
 If it accepts, accept x.
 - Output $\langle M_1, M_2 \rangle$.

Note

- M_1 accepts nothing
- if M accepts w then M_2 accepts everything, and otherwise nothing.

- **F**: On input $\langle M, w \rangle$
 - Construct machine M_1 : on any input, reject.
 - Construct machine M_2 : on any input x, run M on w.
 If it accepts, accept x.
 - Output $\langle M_1, M_2 \rangle$.

Note

- M_1 accepts nothing
- if M accepts w then M_2 accepts everything, and otherwise nothing.

• so $\langle M, w \rangle \in A_{\text{TM}} \iff \langle M_1, M_2 \rangle \in \overline{\text{EQ}_{\text{TM}}}$

Claim: A_{TM} is reducible to EQ_{TM}.

- $f : A_{TM} \longrightarrow EQ_{TM}$ works as follows:
- *F*: On input $\langle M, w \rangle$
 - Construct machine M_1 : on any input, *accept*.

Claim: A_{TM} is reducible to EQ_{TM}.

- $f : A_{TM} \longrightarrow EQ_{TM}$ works as follows:
- *F*: On input $\langle M, w \rangle$
 - Construct machine M_1 : on any input, *accept*.
 - Construct machine M_2 : on any input x, run M on w.

If it accepts, *accept*.

Claim: A_{TM} is reducible to EQ_{TM}.

- $f : A_{TM} \longrightarrow EQ_{TM}$ works as follows:
- *F*: On input $\langle M, w \rangle$
 - Construct machine M_1 : on any input, *accept*.
 - Construct machine M_2 : on any input x, run M on w.

If it accepts, *accept*.

• Output $\langle M_1, M_2 \rangle$.

- **F**: On input $\langle M, w \rangle$
 - Construct machine M_1 : on any input, accept.
 - Construct machine M_2 : on any input x, run M on w. If it accepts, accept.
 - Output $\langle M_1, M_2 \rangle$.

Note

• M_1 accepts everything

- **F**: On input $\langle M, w \rangle$
 - Construct machine M_1 : on any input, accept.
 - Construct machine M_2 : on any input x, run M on w. If it accepts, accept.
 - Output $\langle M_1, M_2 \rangle$.

Note

- M_1 accepts everything
- if M accepts w, then M_2 accepts everything, and otherwise nothing.

- **F**: On input $\langle M, w \rangle$
 - Construct machine M_1 : on any input, accept.
 - Construct machine M_2 : on any input x, run M on w. If it accepts, accept.
 - Output $\langle M_1, M_2 \rangle$.

Note

- M_1 accepts everything
- if M accepts w, then M_2 accepts everything, and otherwise nothing.
- $\langle M, w \rangle \in A_{\mathsf{TM}} \iff \langle M_1, M_2 \rangle \in \mathsf{EQ}_{\mathsf{TM}}.$

Two disjoint languages L_1 and L_2 are recursively inseparable if there is no decidable language D such that

• $L_1 \cap D = \emptyset$, and

Two disjoint languages L_1 and L_2 are recursively inseparable if there is no decidable language D such that

- $L_1 \cap D = \emptyset$, and
- $L_2 \subset D$.

Two disjoint languages L_1 and L_2 are recursively inseparable if there is no decidable language D such that

- $L_1 \cap D = \emptyset$, and
- $L_2 \subset D$.

Example of recursively separable languages:

 A_{TM} and $\overline{A_{\text{TM}}}$ are a trivial example.

 A_{TM} and $\overline{A_{\text{TM}}}$ are a trivial example. Why?

 A_{TM} and $\overline{A_{\text{TM}}}$ are a trivial example. Why?

Are there non-trivial examples?

Define

 $A_{\text{yes}} = \{ \langle M \rangle | M \text{ is a TM that accepts } \langle M \rangle \}$

and

 $A_{no} = \{ \langle M \rangle | M \text{ is a TM that halts and rejects } \langle M \rangle \}$

Theorem: A_{yes} and A_{no} are recursively inseparable.

 \checkmark Let D be a decidable language that separates them.

- \checkmark Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.

- \checkmark Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D

- \checkmark Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?

- \checkmark Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:

- Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{\text{yes}}$

- Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{\text{yes}}$
 - $\langle M_D \rangle \not\in D$

- Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{\text{yes}}$
 - $\langle M_D \rangle \not\in D$
 - so M_D rejects $\langle M_D \rangle$.

- Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{\text{yes}}$
 - $\ \, \bullet \quad \langle M_D \rangle \not\in D$
 - so M_D rejects $\langle M_D \rangle$.
- If M_D rejects $\langle M_D \rangle$:

- Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{\text{yes}}$
 - $\ \, \bullet \quad \langle M_D \rangle \not\in D$
 - so M_D rejects $\langle M_D \rangle$.
- If M_D rejects $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{\mathbf{no}}$

- Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{\text{yes}}$
 - $\ \, \bullet \quad \langle M_D \rangle \not\in D$
 - so M_D rejects $\langle M_D \rangle$.
- If M_D rejects $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{\mathbf{no}}$
 - $\langle M_D \rangle \in D$

- Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{\text{yes}}$
 - $\ \, \bullet \quad \langle M_D \rangle \not\in D$
 - so M_D rejects $\langle M_D \rangle$.
- If M_D rejects $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{\mathbf{no}}$
 - $\langle M_D \rangle \in D$
 - so M_D accepts $\langle M_D \rangle$.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.

Define

 $B_{\text{yes}} = \{ \langle M \rangle | M \text{ is a TM that accepts } \varepsilon \}$

and

 $B_{no} = \{ \langle M \rangle | M \text{ is a TM that halts and rejects } \varepsilon \}$

Theorem: B_{yes} and B_{no} are recursively inseparable.

Proof by reduction and contradiction.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.

Theorem: B_{yes} and B_{no} are recursively inseparable. By reduction and contradiction.

• Assume B_{yes} and B_{no} can be separated by E, decided by TM M_E .

Theorem: B_{yes} and B_{no} are recursively inseparable. By reduction and contradiction.

- Assume B_{yes} and B_{no} can be separated by E, decided by TM M_E .
- For TM M, define M': On any input,

Theorem: B_{yes} and B_{no} are recursively inseparable. By reduction and contradiction.

- Assume B_{yes} and B_{no} can be separated by E, decided by TM M_E .
- For TM M, define M': On any input, 1. run M on input $\langle M \rangle$.

Theorem: B_{yes} and B_{no} are recursively inseparable. By reduction and contradiction.

- Assume B_{yes} and B_{no} can be separated by E, decided by TM M_E .
- For TM M, define M': On any input,
 - 1. run M on input $\langle M \rangle$.
 - 2. if *M* accepts, accept; if *M* rejects, reject;

• Define N: On input $\langle M \rangle$,

- Define N: On input $\langle M \rangle$,
 - 1. construct description of M'.

- Define N: On input $\langle M \rangle$,
 - 1. construct description of M'.
 - 2. run M_E on $\langle M' \rangle$.

- Define N: On input $\langle M \rangle$,
 - 1. construct description of M'.
 - 2. run M_E on $\langle M' \rangle$.
 - 3. if M_E accepts, accept; if M_E rejects, reject;

- Define N: On input $\langle M \rangle$,
 - 1. construct description of M'.
 - 2. run M_E on $\langle M' \rangle$.
 - 3. if M_E accepts, accept; if M_E rejects, reject;
- Claim:

- Define N: On input $\langle M \rangle$,
 - 1. construct description of M'.
 - 2. run M_E on $\langle M' \rangle$.
 - 3. if M_E accepts, accept; if M_E rejects, reject;
- Claim:
 - N is a decider. (why?)

- Define N: On input $\langle M \rangle$,
 - 1. construct description of M'.
 - 2. run M_E on $\langle M' \rangle$.
 - 3. if M_E accepts, accept; if M_E rejects, reject;
- Claim:
 - N is a decider. (why?)
 - So N decides a language D.

- Define N: On input $\langle M \rangle$,
 - 1. construct description of M'.
 - 2. run M_E on $\langle M' \rangle$.
 - 3. if M_E accepts, accept; if M_E rejects, reject;
- Claim:
 - N is a decider. (why?)
 - So N decides a language D.
 - *D* separates A_{yes} and A_{no} , contradiction.