Computational Models

Inroduction to the Theory of Computing

Instructor: Prof. [Benny](http://www.cs.tau.ac.il/~bchor) Chor $\;$ (benny at ${\bf cs}$ dot tau dot ac dot il)

Teaching Assistant: <mark>Mr. Rani Hod</mark> (ranihod at tau dot ac dot il)

Tel-Aviv University

Spring Semester, 2009. Mondays, 13–16.

[http://www](http://www.cs.tau.ac.il/~bchor/CM09/compute.html).[cs](http://www.cs.tau.ac.il/~bchor/CM09/compute.html).[tau](http://www.cs.tau.ac.il/~bchor/CM09/compute.html).[ac](http://www.cs.tau.ac.il/~bchor/CM09/compute.html).[il/](http://www.cs.tau.ac.il/~bchor/CM09/compute.html)∼bchor/CM09/compute.html

Site is our sole means of disseminating messages (no mailing list or forum).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. $-$ p. 1

AdministraTrivia

Course Requirements:

- 6 problem sets (10% of grade, best 5-out-of-6).
	- Readable, concise, correct answers expected.
- **Late submition will not be accepted.**
- Assignments are 10% of grade, and are required. Solving assignments independently is highly recommended.
- Final exam is 90% of grade. Midterm exam (10% of midterm grade <mark>added</mark> to weighted average of final exam and homework).

AdministraTrivia II

- Midterm tentatively scheduled to <mark>Tue., April 7, 2009.</mark>
- Second final exam (Moed B): Same material and sameaveraging applies. Format may differ (e.g. proportion of closed/open problems).
- **Prerequisites:**
	- Extended introduction to computer science
	- Discrete mathematics course.
	- Students from other disciplines with mathematical background encouraged to contact the instructor.
- Textbook (extensively used, highly recommended):
	- Michael Sipser, Introduction to the theory of computation, 1st or 2nd edition.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. $-$ p. 3

Why Study Theory?

- Basic Computer Science Issues
	- What is ^a computation?
	- **Are computers omnipotent?**
	- What are the fundemental capabilities and limitationsof computers?
- **Pragmatic Reasons**
	- Avoid intractable or impossible problems.
	- Apply efficient algorithms when possible.
	- Learn to tell the difference.

Course Topics

- Automata Theory: What is ^a computer?
- Computability Theory: What can computers do?
- Complexity Theory: What makes some problemscomputationally hard and others easy?
- **Coping with intractability:**
	- **Approximation.**
	- Randomization.
	- Fixed parameter algorithms.
	- **C** Heuristics.

Automata Theory - Simple Models

Finite automata.

- **Related to controllers and hardware design.**
- **Useful in text processing and finding patterns in** strings.
- **Probabilistic (Markov) versions useful in modeling** various natural phenomena (e.g. speechrecognition).
- **Push down automata.**
	- Titely related to ^a family of languages known ascontext free languages.
	- **Play important role in compilers, design of** programming languages, and studies of natural languages.

Computability Theory

In the first half of the 20th century, mathematicians such asKurt Göedel, Alan Turing, and Alonzo Church discoveredthat some fundemental problems cannot be solved bycomputers.

- Proof verication of statements can be automated.
- It is natural to expect that determining validity can alsobe done by ^a computer.
- Theorem: A computer cannot determine if mathematical statement true or false.
- **Results needed theoretical models for computers.**
- **•** These theoretical models helped lead to the construction of real computers.

Computability Theory

^a simplicial complex

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. $-$ p. 8

Paths and Loops

a <mark>path</mark> is a sequence of vertices connected by edges

a <mark>loop</mark> is a path that ends and ends at the same vertex

Paths and Loops can be Deformed

 $(v_0,v_1) \Leftrightarrow (v_0,v_2,v_1)$ $(v_0,v_0) \Leftrightarrow (v_0)$

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 10

Contractibility

No algorithm can determine whether an arbitrary loop in \bullet an arbitrary finite complex is contractible.

Some Other Undecidable Problems

- Does ^a program run forever?
- Is a program correct?
- **Are two programs equivalent?**
- Is a program optimal?
- **•** Does an equation with one or more variables and integer coefficients ($5x + 15y = 12$) have an integer solution (Hilbert's 10th problem).
- Is a finitely-presented group trivial?
- Given a string, x , how compressible is it?

Complexity Theory

Key notion: tractab<mark>l</mark>e vs. <mark>intractable</mark> problems.

- A problem is ^a general computational question:
	- **description of parameters**
	- **description of solution**
- An a<mark>lgorithm</mark> is a step-by-step procedure
	- ^a recipe
	- ^a computer program
	- ^a mathematical object
- We want the most efficient algorithms
	- fastest (usually)
	- most economical with memory (sometimes)
	- expressed as ^a function of problem size

Example: Traveling Salesman Problem

Input:

Set of cities

set of inter-city distances

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. $-$ p. 14

Example: Traveling Salesman Problem

Goal:

- want the shortest tour through the cities
	- $\,$ example: $\,$ a, $\,$ b, $\,$ d, $\,$ c, $\,$ a has length 27.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 15

Problem Size

What is an appropriate measure of problem size?m nodes?

- $m(m+1)/2$ distances?
- Use an encoding of the problem
	- alphabet of symbols
	- $\textsf{strings:}\ \textup{a}/\textup{b}/\textup{c}/\textup{d}//10/5/9//6/9//3.}$
- **J** Measures
	- **Problem Size: length of encoding (here: 23 ascii** characters).
	- Time Complexity: how long an algorithm runs, as function of problem size?

Time Complexity - What is tractable?

- We say that a function $f(n)$ is $O(g(n))$ if there is a S_{α} S_{α} constant c such that for large enough $n,$ $|f(n)| \leq c \cdot |g(n)|$.
- A polynomial-time algorithm is one whose time
complexity is $O(n(n))$ for some polynomial $n(n)$ complexity is $O(p(n))$ for some polynomial $p(n)$, where n - I 2 denotes the length of the input.
- An exponential-time algorithm is one whose time
complexity cannot be bounded by a polynomial (complexity cannot be bounded by ^a polynomial (e.g., $n^{\log n}$).

Tractability – Basic distinction:

- \bullet Polynomial time= tractable. =
- Exponential time= intractable. \bullet =

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. $-$ p. 18

Effect of Speed-Ups

Let's wait for faster hardware! Consider maximum problemsize you can solve in an hour.

NP-Completeness / NP-Hardness

Your boss says:

"Get me an efficient traveling-salesmanalgorithm, or else..."

What are you going to do?

"Yes Ma'am, expect it this afternoon!"

Problem is

- All known algorithms (essentially) check all possiblepaths.
- Exhaustive checking is exponential.
- Good luck!

"Hah! I will prove that no such algorithm is possible"

Problem is, proving intractability is very hard.

Many important problems have

- no known tractable algorithms
- no known proof of intractability. \bullet

"I can't find an efficient algorithm. I guess I'm just ^a pathetic loser. "

● Bad for job security.

"The problem is NP-hard. I can't find an efficient algorithm, but neither can anyof these famous people . . . "

Advantage is:

- The problem is "just as hard" as other problems smart people can't solve efficiently.
- So it would do your boss no good to fire you and hire a Technion/Hebrew Univ./MIT graduate.

"Would you settle for ^a pretty good, but not the best, algorithm?"

Intractability isn't everything.

- Find an approximate solution (is ^a solution within 10%of optimum good enough, ma'am?).
- Use randomization.
- Fixed parameter algorithms may be applicable.
- Heuristics can also help.
- Approximation, randomization, etc. are among the hottest areas in complexity theory and algorithmicresearch today.

Next Subject

A Very Short Math Review

- Graphs
- Strings and languages
- Mathematical proofs \bullet
- Mathematical notations (sets, sequences, \ldots) $\sqrt{}$ \bullet
- Functions and predicates $\sqrt{}$
- $\sqrt{\ }$ = will be done in recitation.

Graphs

- $G=(V,E)$, where
- V is set of nodes or vertices, and
- E is set of edges
- <mark>degree</mark> of a vertex is number of edges

Graphs

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. $-$ p. 29

Directed Graphs

Directed Graph and its Adjacency Matrix

Which directed graph is represented by the following 6-by-6 matrix?

$$
\left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right)
$$

Strings and Languages

- an <mark>alphabet</mark> is a finite set of symbols
- a string over an alphabet is ^a finite sequence of symbols from that alphabet.
- the <mark>length</mark> of a string is the number of symbols
- the empty string ε
- reverse: $abcd$ reversed is $dcba$.
- substring: xyz in $xyzzy$.
- concatenation of xyz and zy is $xyzzy$.
- $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$ k is $x\cdots x$, k times.
- a <mark>language</mark> L is a set of strings.

Proofs

We will use the following basic kinds of proofs.

- **•** by construction
- **o** by contradiction
- **by induction**
- **o** by reduction
- we will often mix them.

Proof by Construction

A graph is k -regular if every node has degree $k.$

Theorem: For every even $n > 2$, there exists a 3-regular graph with n nodes.

Proof by Construction

Proof: Construct $G=(V,E)$, where $\;V=$ $\{0,1,\ldots,n$ −1}and

$$
E = \{ \{i, i+1\} \mid \text{for } 0 \le i \le n-2 \} \cup \{n-1, 0\}
$$

$$
\cup \{ \{i, i+n/2\} \mid \text{for } 0 \le i \le n/2-1 \}.
$$

Note: A picture is helpful, but it is *not* a proof!

Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Proof: Suppose not. Then $\sqrt{2} = \frac{m}{n}$ $\, n$ $\frac{m}{n}$, where m and n are relatively prime.

$$
n\sqrt{2} = m
$$

$$
2n^2 = m^2
$$

Proof by Contradiction (cont.)

So m 2 is even, and so is $m = 2k$.

$$
2n^2 = (2k)^2
$$

$$
= 4k^2
$$

$$
n^2 = 2k^2
$$

Thus n 2 is even, and so is $n.$

Therefore both m and n are even, and not relatively prime!
Poductio ad absurdam Reductio ad absurdam.

Proof by Induction

Prove properties of elements of an infinite set.

$$
\mathcal{N} = \{1, 2, 3, \ldots\}
$$

To prove that \wp holds for each element, show:

- *base step:* show that $\wp(1)$ is true.
- induction step: show that if $\wp(i)$ is true (the induction hypothesis), then so is $\wp(i+1)$.

Induction Example

Theorem: All cows are the same color. **Base step:** A single-cow set is definitely the same color. *Induction Step*: Assume all sets of i cows are the same color. Divide the set $\{1,\ldots,i+1\}$ into $U=\{1,\ldots,i\},$ and $V = \{2, ..., i + 1\}$.

All cows in U are the same color by the induction
bestective in hypothesis.

All cows in V are the same color by the induction hypothesis.

All cows in $U\cap V$ are the same color by the induction
bestective: hypothesis.

Induction Example (cont.)

Ergo, all cows are the same color.

Quod Erat Demonstrandum (QED).

(cows' images courtesy of www.crawforddirect.com/ cows.htm)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.

Proof by Reduction

We can sometime solve problem A by reducing it to
problem B, whose solution we already know problem B, whose solution we already know.
.

Example: Maximal matching in bipartite graphs:

Proof by Reduction

Reducing bipartite matching to MAX FLOW:

Reduction: Put capacity ¹ on each edge.

Maximum flow corresponds to maximum matching. So if we
have an algorithm that produces may flow we see assily. have an algorithm that produces max flow, we can easilyderive ^a maximum bipartite matching from it.