
Computational Models
Inroduction to the Theory of Computing

Instructor: Prof. Benny Chor (benny at cs dot tau dot ac dot il)

Teaching Assistant: Mr. Rani Hod (ranihod at tau dot ac dot il)

Tel-Aviv University

Spring Semester, 2009. Mondays, 13–16.

http://www.cs.tau.ac.il/∼bchor/CM09/compute.html

Site is our sole means of disseminating messages (no mailing list or forum).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 1

http://www.cs.tau.ac.il/~bchor
http://www.cs.tau.ac.il/~bchor/CM09/compute.html

AdministraTrivia

Course Requirements:

6 problem sets (10% of grade, best 5-out-of-6).

Readable, concise, correct answers expected.

Late submition will not be accepted.

Assignments are 10% of grade, and are required. Solving
assignments independently is highly recommended.

Final exam is 90% of grade. Midterm exam (10% of
midterm grade added to weighted average of final exam
and homework).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 2

AdministraTrivia II

Midterm tentatively scheduled to Tue., April 7, 2009.

Second final exam (Moed B): Same material and same
averaging applies. Format may differ (e.g. proportion of
closed/open problems).

Prerequisites:

Extended introduction to computer science

Discrete mathematics course.

Students from other disciplines with mathematical
background encouraged to contact the instructor.

Textbook (extensively used, highly recommended):

Michael Sipser, Introduction to the theory of
computation, 1st or 2nd edition.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 3

Why Study Theory?

Basic Computer Science Issues
What is a computation?
Are computers omnipotent?
What are the fundemental capabilities and limitations
of computers?

Pragmatic Reasons
Avoid intractable or impossible problems.
Apply efficient algorithms when possible.
Learn to tell the difference.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 4

Course Topics

Automata Theory: What is a computer?

Computability Theory: What can computers do?

Complexity Theory: What makes some problems
computationally hard and others easy?

Coping with intractability:
Approximation.
Randomization.
Fixed parameter algorithms.
Heuristics.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 5

Automata Theory - Simple Models

Finite automata.
Related to controllers and hardware design.
Useful in text processing and finding patterns in
strings.
Probabilistic (Markov) versions useful in modeling
various natural phenomena (e.g. speech
recognition).

Push down automata.
Titely related to a family of languages known as
context free languages.
Play important role in compilers, design of
programming languages, and studies of natural
languages.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 6

Computability Theory

In the first half of the 20th century, mathematicians such as
Kurt Göedel, Alan Turing, and Alonzo Church discovered
that some fundemental problems cannot be solved by
computers.

Proof verication of statements can be automated.

It is natural to expect that determining validity can also
be done by a computer.

Theorem: A computer cannot determine if
mathematical statement true or false.

Results needed theoretical models for computers.

These theoretical models helped lead to the
construction of real computers.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 7

Computability Theory

a simplicial complex

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 8

Paths and Loops

a path is a sequence of vertices connected by edges

a loop is a path that ends and ends at the same vertex

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 9

Paths and Loops can be Deformed

(v0, v1) ⇔ (v0, v2, v1)

(v0, v0) ⇔ (v0)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 10

Contractibility

contractible

not
contractible

No algorithm can determine whether an arbitrary loop in
an arbitrary finite complex is contractible.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 11

Some Other Undecidable Problems

Does a program run forever?

Is a program correct?

Are two programs equivalent?

Is a program optimal?

Does an equation with one or more variables and
integer coefficients (5x + 15y = 12) have an integer
solution (Hilbert’s 10th problem).

Is a finitely-presented group trivial?

Given a string, x, how compressible is it?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 12

Complexity Theory

Key notion: tractable vs. intractable problems.

A problem is a general computational question:
description of parameters
description of solution

An algorithm is a step-by-step procedure
a recipe
a computer program
a mathematical object

We want the most efficient algorithms
fastest (usually)
most economical with memory (sometimes)
expressed as a function of problem size

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 13

Example: Traveling Salesman Problem

Input:

set of cities

set of inter-city distances
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 14

Example: Traveling Salesman Problem

Goal:

want the shortest tour through the cities

example: a, b, d, c, a has length 27.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 15

Problem Size

What is an appropriate measure of problem size?
m nodes?
m(m + 1)/2 distances?

Use an encoding of the problem
alphabet of symbols
strings: a/b/c/d//10/5/9//6/9//3.

Measures
Problem Size: length of encoding (here: 23 ascii
characters).
Time Complexity: how long an algorithm runs, as
function of problem size?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 16

Time Complexity - What is tractable?

We say that a function f(n) is O(g(n)) if there is a
constant c such that for large enough n,
|f(n)| ≤ c · |g(n)|.
A polynomial-time algorithm is one whose time
complexity is O(p(n)) for some polynomial p(n), where n
denotes the length of the input.

An exponential-time algorithm is one whose time
complexity cannot be bounded by a polynomial (e.g.,
nlog n).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 17

Tractability – Basic distinction:

Polynomial time = tractable.

Exponential time = intractable.

10 20 30 40 50 60

n .00001 .00002 .00003 .00004 .00005 .00006

second second second second second second

n
2

.00001 .00004 .00009 .00016 .00025 .00036

second second second second second second

n
3

.00001 .00008 .027 .064 .125 .216

second second second second second second

n
5

.1 3.2 24.3 1.7 5.2 13.0

second seconds seconds minute minutes minutes

2
n

.001 1.0 17.9 12.7 35.7 366

second second minutes days years centuries

3
n

.059 58 6.5 3855 2 · 108 1.3 · 1013

second minutes years centuries centuries centuries

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 18

Effect of Speed-Ups

Let’s wait for faster hardware! Consider maximum problem
size you can solve in an hour.

present 100 times faster 1000 times faster

n N1 100N1 1000N1

n
2

N2 10N2 31.6N2

n
3

N3 4.64N3 10N3

n
5

N4 2.5N4 3.98N4

2
n

N5 N5 + 6.64 N5 + 9.97

3
n

N6 N6 + 4.19 N6 + 6.29

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 19

NP-Completeness / NP-Hardness

Your boss says:

“Get me an efficient traveling-salesman
algorithm, or else...”

What are you going to do?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 20

Response

“Yes Ma’am, expect it this afternoon!”

Problem is

All known algorithms (essentially) check all possible
paths.

Exhaustive checking is exponential.

Good luck!

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 21

Response

“Hah! I will prove that no such algorithm is possible”

Problem is, proving intractability is very hard.

Many important problems have

no known tractable algorithms

no known proof of intractability.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 22

Response

“I can’t find an efficient algorithm.
I guess I’m just a pathetic loser. ”

Bad for job security.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 23

Response

“The problem is NP-hard. I can’t find
an efficient algorithm, but neither can any
of these famous people . . . ”

Advantage is:

The problem is “just as hard” as other problems smart
people can’t solve efficiently.

So it would do your boss no good to fire you and hire a
Technion/Hebrew Univ./MIT graduate.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 24

Response

“Would you settle for a pretty good, but not the best,
algorithm?”

Intractability isn’t everything.

Find an approximate solution (is a solution within 10%
of optimum good enough, ma’am?).

Use randomization.

Fixed parameter algorithms may be applicable.

Heuristics can also help.

Approximation, randomization, etc. are among the
hottest areas in complexity theory and algorithmic
research today.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 25

Next Subject

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 26

A Very Short Math Review

Graphs

Strings and languages

Mathematical proofs

Mathematical notations (sets, sequences, . . .)
√

Functions and predicates
√

√
= will be done in recitation.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 27

Graphs

1

2

3

4

5

1

234

G = (V,E), where

V is set of nodes or vertices, and

E is set of edges

degree of a vertex is number of edges

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 28

Graphs

2

3

5

1

4 subgraph

graph tree
root

2

3

5

1

4

cycle14

23

path

leaves

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 29

Directed Graphs

2

3

5

1

4

6

scissors

rockpaper

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 30

Directed Graph and its Adjacency Matrix

Which directed graph is represented by the following 6-by-6
matrix?

0 1 0 0 0 0

1 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 1

0 0 0 0 0 0

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 31

Strings and Languages

an alphabet is a finite set of symbols

a string over an alphabet is a finite sequence of
symbols from that alphabet.

the length of a string is the number of symbols

the empty string ε

reverse: abcd reversed is dcba.

substring: xyz in xyzzy.

concatenation of xyz and zy is xyzzy.

xk is x · · · x, k times.

a language L is a set of strings.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 32

Proofs

We will use the following basic kinds of proofs.

by construction

by contradiction

by induction

by reduction

we will often mix them.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 33

Proof by Construction

A graph is k-regular if every node has degree k.

Theorem: For every even n > 2, there exists a
3-regular graph with n nodes.

1

2

3

4

5

0

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 34

Proof by Construction

1

2

3

4

5

0

Proof: Construct G = (V,E), where V = {0, 1, . . . , n − 1}
and

E = {{i, i + 1} | for 0 ≤ i ≤ n − 2} ∪ {n − 1, 0}
∪ {{i, i + n/2} | for 0 ≤ i ≤ n/2 − 1} .

Note: A picture is helpful, but it is not a proof!

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 35

Proof by Contradiction

Theorem:
√

2 is irrational.

Proof: Suppose not. Then
√

2 = m

n
, where m and n are

relatively prime.

n
√

2 = m

2n2 = m2

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 36

Proof by Contradiction (cont.)

So m2 is even, and so is m = 2k.

2n2 = (2k)2

= 4k2

n2 = 2k2

Thus n2 is even, and so is n.

Therefore both m and n are even, and not relatively prime!
Reductio ad absurdam.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 37

Proof by Induction

Prove properties of elements of an infinite set.
N = {1, 2, 3, . . .}

To prove that ℘ holds for each element, show:

base step: show that ℘(1) is true.

induction step: show that if ℘(i) is true (the induction
hypothesis), then so is ℘(i + 1).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 38

Induction Example

Theorem: All cows are the same color.
Base step: A single-cow set is definitely the same color.
Induction Step: Assume all sets of i cows are the
same color. Divide the set {1, . . . , i + 1} into U = {1, . . . , i},
and V = {2, . . . , i + 1}.

All cows in U are the same color by the induction
hypothesis.
All cows in V are the same color by the induction
hypothesis.
All cows in U ∩ V are the same color by the induction
hypothesis.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 39

Induction Example (cont.)

Ergo, all cows are the same color.

Quod Erat Demonstrandum (QED).

(cows’ images courtesy of www.crawforddirect.com/ cows.htm)
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 40

Proof by Reduction

We can sometime solve problem A by reducing it to
problem B, whose solution we already know.

Example: Maximal matching in bipartite graphs:

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 41

Proof by Reduction

Reducing bipartite matching to MAX FLOW:

Reduction: Put capacity 1 on each edge.
Maximum flow corresponds to maximum matching. So if we
have an algorithm that produces max flow, we can easily
derive a maximum bipartite matching from it.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 42

	AdministraTrivia
	AdministraTrivia II
	Why Study Theory?
	Course Topics
	Automata Theory - Simple Models
	Computability Theory
	Computability Theory
	Paths and Loops
	Paths and Loops can be Deformed
	Contractibility
	Some Other Undecidable Problems
	Complexity Theory
	Example: Traveling Salesman Problem
	Example: Traveling Salesman Problem
	Problem Size
	Time Complexity - What is tractable?
	Tractability -- Basic distinction:
	Effect of Speed-Ups
	NP-Completeness / NP-Hardness
	Response
	Response
	Response
	Response
	Response
	Next Subject
	A {�lue Very} Short Math Review
	Graphs
	Graphs
	Directed Graphs
	Directed Graph and its Adjacency Matrix
	Strings and Languages
	Proofs
	Proof by Construction
	Proof by Construction
	Proof by Contradiction
	Proof by Contradiction (cont.)
	Proof by Induction
	Induction Example
	Induction Example (cont.)
	Proof by Reduction
	Proof by Reduction

