
Computational Models Lecture 8, Spring 2009

Encoding of TMs

Universal Turing Machines

The Halting/Acceptance problem

The Halting/Acceptance problems are undecidable

Diagonalization

Computable functions

The busy beaver function is not computable (not in
book)

Reductions

Reducing A to B by Mapping reductions

Sipser’s book, 4.1, 4.2, 5.1
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 1

Standard Encoding of Turing Machines (Slightly Modified)

This formulation slightly simplifies last week’s convention,
without sacrifying generality.

We assume that our TM, M , has one tape, Σ = {0, 1} and

Γ = {0, 1, $, }. For L ⊆ {0, 1}∗, this is not a restriction.

The encoding 〈M〉 of a TM, M , will use a binary alphabet.

Blocks of 0’s will be used as delimiters.

A set Q with m states will be indicated by m in unary.

By conventions states will be 1 through m.

By convention, q0 is indicated by state 1, qa = q2 by 11, and

qr = q3 by 111 (& delimiters!).

Finally, the transition function δ is encoded as a list of 5-tuples

with correct size and no duplications in q, γ entries.

Important (and Easy): An algorithm (TM) can check that a

given string is legal encoding of (any other) TM.
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 2

Universal Turing Machine

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 3

Universal Turing Machines

We now define the universal Turing machine, U .
On input 〈M,w〉, where M is a TM and a string w

1. Checks that 〈M,w〉 is a proper encoding of a TM,
followed by a string from Σ∗.

2. Simulates M on input w (some details in next slide)

3. If M on input w enters its accept state, U accept, and if
M on input w ever enters its reject state, U reject.

Notice that as a consequence, if M on input w enters an
infinite loop, so does U on input 〈M,w〉.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 4

Univeral Turing Machines: Some Simulation Details

The simulated TM, M , has one tape, has Σ = {0, 1} and
Γ = {0, 1, $, }.
To make life easier, the universal Turing machine, U , that
will simulate M , will have several tapes (say five), and a
larger work alphabet, Γ′.
On input 〈M,w〉, where M is a TM and w ∈ {0, 1, } is a string

Tape 2 of U is the "program tape". The contents of tape
2 will follow the contents of M ’s single tape, step by
step.

Tape 3 is the "simulation tape". Tape 4 is the "state
tape". Tape 5 is the "scratch tape".

U copies 〈M〉 to tape 2, and w to tape 3. It places the
tape 3 head on the leftmost character of w.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 5

Univeral Turing Machines: Some Simulation Details

U copies both the the state q (a string of 1s) from tape
4, and the letter it sees on tape 3, a ∈ Γ, to tape 5 (with
delimiters).

U compares q, a to the entries in the transition function
portion of tape 2.

Once U finds a match, it updates the state tape (tape
4), writes a letter in the simulation tape (tape 3), and
moves the head on tape 3 left/right accordingly.

If M on input w enters its accept state q2, U accepts
〈M,w〉, and if M on input w ever enters its reject state
q3, U rejects 〈M,w〉.

Notice that as a consequence, if M on input w enters an
infinite loop, so does U on input 〈M,w〉.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 6

Universal Turing Machines (4)

The universal machine U uses some extra dotting and
crossover marks (larger work alphabet) to facilitate
comparisons, copying, and erasing.

The universal machine U obviously has a fixed number
of states (100 should do) .

Despite this, it can simulate machines M with many
more states.

Universal machines inspired the development of
stored-program computers in the 40s and 50s.

Most of you have seen a universal machine, and have
even used one!

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 7

Universal Turing Machines (5)

For example, Dr. Scheme (interpreter) is a universal
Scheme machine.

It accepts a two part input: “Above the line” – the
program (corresponding to 〈M〉), and “below the line”
the input to run it on (corresponding to w).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 8

In case You Forgot (or Repressed)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 9

The Halting/Acceptance Problem

One of the most philosophically important theorems of the
theory of computation.

Acceptance Problem: Does a Turing machine accept an
input string?

ATM = {〈M,w〉|M is a TM that accepts w}

Halting Problem: Does a Turing machine halt on an input
string?

HTM = {〈M,w〉|M is a TM and M halts on input w}

Theorem: Both ATM and HTM are undecidable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 10

The Acceptance Problem

ATM = {〈M,w〉|M is a TM that accepts w}

Before approaching the proof of undecidability, we first
notice

Theorem: ATM is recursively enumerable (namely in RE).

Proof: The universal machine accepts ATM. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 11

The Halting Problem

HTM = {〈M,w〉|M is a TM that halts on the input string w}

Before approaching the proof of undecidability, we first note

Theorem: HTM is recursively enumerable (namely in RE).

Proof: A slight modification of the universal machine, where
the reject state is replaced by the accept state. The
modified machine accepts HTM. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 12

Acceptance, Again

We are now able to prove the undecidability of

ATM = {〈M,w〉|M is a TM that accepts w} .

Proof: By contradiction. Suppose a TM, H, is a decider for
ATM.

On input 〈M,w〉, where M is a TM and w is a string, H halts
and accepts if and only if M accepts w. Furthermore, H

halts and rejects if M fails to accept w.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 13

Acceptance (2)

On input 〈M,w〉, where M is a TM and w is a string, H halts
and accepts if and only if M accepts w. Furthermore, H

halts and rejects if M fails to accept w.

H(〈M,w〉) =

{

accept if M accepts w

reject if M does not accept w

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 14

Acceptance (3)

Now we construct a new TM, D, with H as a subroutine.

D does the following

Calls H to determine what TM, M , does when the input
to M is its own description, 〈M〉.

When D determines this, it does the opposite.

So D rejects if M accepts 〈M〉, and accepts if M does
not accept 〈M〉.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 15

Acceptance (4)

More precisely, D does the following:

Run H on input 〈M, 〈M〉〉.

Output the opposite of what H outputs:
If H accepts, reject, and
If H rejects, accept.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 16

Self Reference (4)

Don’t be confused by the notion of running a machine on its
own description!

Actually, you should get used to it.

Notion of self-reference comes up again and again in
diverse areas.

Read “Gödel, Escher, Bach, an Eternal Golden Braid”,
by Douglas Hofstadter.

This notion of self-reference is the basic idea behind
Gödel’s revolutionary result.

Compilers do this all the time

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 17

The Punch Line

So far we have,

D(〈M〉) =

{

reject if M accepts 〈M〉

accept if M does not accept 〈M〉

What happens if we run D on its own description?

D(〈D〉) =

{

reject if D accepts 〈D〉

accept if D does not accept 〈D〉

Oh, oh...
Or, more accurately, a contradiction (to what?) ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 18

Once Again

Assume that TM H decides ATM.

Then use H to build a TM, D, that when given 〈M〉,
accepts exactly when M does not accept.

Run D on its own description.

D does:
H accepts 〈M,w〉 when M accepts w.
D rejects 〈M〉 exactly when M accepts 〈M〉.
D rejects 〈D〉 exactly when D accepts 〈D〉.

Last step leads to contradiction.

Therefore neither TM D nor H can exist.

So ATM is undecidable!

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 19

A Non-enumerable Language

We already saw a non-decidable language: ATM.

Can we do better (i.e., worse)?

Mais, oui!

We now display a language that isn’t even recursively
enumerable

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 20

A Non-enumerable Language

Earlier we saw

Theorem: If L and L are both enumerable, then L is
decidable.

Corollary: If L is not decidable, then either L or L is not
enumerable.

Definition: A language is co-enumerable if it is the
complement of an enumerable language.

Reformulating theorem Theorem: A language is decidable if
and only if it is both enumerable and co-enumerable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 21

ATM is not Enumerable

Theorem: If L and L are both enumerable, then L is
decidable.

We proved that ATM is undecidable.

On the other hand, we saw that the universal TM, U ,
accepts ATM.

Therefore ATM is enumerable.

If ATM were also enumerable, then by theorem ATM
was decidable.

Therefore ATM is not enumerable. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 22

Languages

enumerableco-enumerable decidable

A TMA DFAA TM

???

Question: Are there any languages in the area marked ???
?

Answer: Yes, heaps (why?)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 23

The Acceptance Problem (again)

We saw

ATM = {〈M,w〉|M is a TM that accepts w}

Our proof that ATM is undecidable was actually a
diagonalization proof.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 24

The Real Numbers

Assume there is a correspondence between N and R.
Write it down:

n f(n)

1 3.14159. . .
2 55.55555. . .
3 40.18642. . .
4 15.20601. . .

We now show that there is a number x not in this list.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 25

Diagonalization

Pick 0 ≤ x ≤ 1, so its significant digits follow decimal point.
Will ensure x 6= f(n) for all n.

n f(n)

1 3.14159. . .
2 55.55555. . .
3 40.18643. . .
4 15.20607. . .

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 26

Diagonalization n f(n)

1 3.14159. . .

2 55.55555. . .

3 40.18643. . .

4 15.20607. . .

First fractional digit of f(1) is 1, so pick first fractional
digit of x to be something else (say, 2).

Second fractional digit of f(2) is 5, so pick second
fractional digit of x to be something else (say, 6).

and so on . . .

x = 0.2691 . . .

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 27

Diagonalization

A similar proof shows there are languages that are not
enumerable.

the set of Turing machines is countable, but
the set of languages is uncountable!

Ergo,
there exist languages that are not enumerable
(why?)
indeed, “most” languages are not enumerable
(explain)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 28

∃ Countably Many Turing Machines

Claim: The set of strings, Σ∗, is countable.

Proof: List strings of length 0, then length 1, then 2, and so
on. This exhausts all of Σ∗.
The union of countably many finite sets is countable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 29

∃ Countably Many Turing Machines (2)

Claim: The set of all Turing machines is countable.

Proof: Each TM M has an encoding as a string 〈M〉.
Therefore there is a one-to-one mapping from the set of all
TMs into (but not onto) Σ∗.

Since Σ∗ is countable, so is the set of all TMs.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 30

The Set of All Languages is Uncountable

Let B be the set of of infinite binary sequences.

Claim B is uncountable.

Proof Diagonalization argument, essentially identical to the
proof that R is uncountable.

(additional helpful clue: think of binary sequence as binary
expansion!)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 31

The Set of Languages is Uncountable (2)

Let L be the set of all languages over alphabet Σ.
Recall B is the set of of infinite binary sequences.
We give a correspondence

χ : L → B

called the language’s characteristic sequence.

Let Σ∗ = {s1, s2, s3, . . .} (in lexicographic order).

Each language L ∈ L is associated with a unique
sequence χ(L) ∈ B:

the i-th bit of χ(L) is 1 if and only if si ∈ L.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 32

The Set of Languages is Uncountable (3)

Each language L ∈ L has a unique sequence χ(L) ∈ B:
the i-th bit of χ(L) is 1 if and only if si ∈ L.

Example:

Σ∗ {ε, 0, 1, 00, 01, 10, 11, 000 . . .}

A { 0, 00, 01, 000 . . .}

χ(A) {0, 1, 0 1, 1, 0, 0, 1 . . .}

The map χ : L → B

is one-to-one and onto (why?),

and is hence a correspondence.

It follows that L is uncountable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 33

TMs vs. Languages

We saw that the set of all Turing machines is countable.

We saw that the set L of all languages over alphabet Σ is
uncountable.

Therefore there are languages that are not accepted by any
TM.

This is an existential proof – it does not explicitly show any
such language.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 34

Reflections on Diagonalization

This proof that the acceptance problem is undecidable is
actually diagonalization in transparent disguise.
To unveil this, let’s start by making a table.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 . . .
M1 accept accept
M2 accept accept accept accept
M3

M4 accept accept
...

Entry (i, j) is accept if Mi accepts 〈Mj〉, and
blank if Mi rejects or loops on 〈Mj〉.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 35

Diagonalization (2)

〈M1〉 〈M2〉 〈M3〉 〈M4〉 . . .

M1 accept accept
M2 accept accept accept accept
M3

M4 accept accept
...

Run H on on corresponding inputs. In new table,
entry (i, j) states whether H accepts 〈Mi, 〈Mj〉〉.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 . . .
M1 accept reject accept reject
M2 accept accept accept accept
M3 reject reject reject reject
M4 accept accept reject reject
...

...
...

...

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 36

Diagonalization (3)

Now we add D to the table.

By assumption, H is a TM, and therefore so is D.
D occurs on the list M1,M2, . . . of all TMs.
D computes the opposite of the diagonal entries.
At diagonal entry, D computes its own opposite!

〈M1〉 〈M2〉 〈M3〉 . . . 〈D〉

M1 accept reject accept
M2 accept accept accept
M3 reject reject reject
M4 accept accept reject
...

... . . .
D reject reject accept ???
...

... . . .

♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 37

Halting vs Acceptance Problem

We have already established that ATM is undecidable.

Halting is a closely related problem.

HTM = {〈M,w〉|M is a TM and M halts on input w}

Clarification: How does HTM differ from ATM?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 38

Undecidable Problems

HTM = {〈M,w〉|M is a TM and M halts on input w}

Theorem: HTM is undecidable.

Proof idea:

Again, proof by diagonalization.

Will do this on the blackboard.

Next week will prove this differently, by a reduction from
ATM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 39

Computable Functions

A TM computes a total function

f : Σ∗ −→ Σ∗

if the TM

when starting with an input w,

always halts with only f(w) written on tape.

The definition can be extended to functions of more than
one variable, where some special separator symbol
indicates end of one variable and beginning of next.
Sometimes we have a separate output tape where f(w) is
written. This is more convenient, but otherwise makes no
difference.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 40

Computable Functions

A TM computes a partial function

f : Σ∗ −→ (Σ∗ ∪ ⊥)

if the TM

when starting with an input w,

if f(w) is defined, TM halts with only f(w) on tape,

if f(w) is undefined, TM does not halt.

Computable functions are also called (total or partial)
recursive functions.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 41

Computable Functions

Claim: All the “usual” arithmetic functions on integers are
computable.

These include addition, subtraction, multiplication, division
(quotient and remainder), exponentiation, roots (to a
specified precision), modular exponentiation, greatest
common divisor.

Even non-arithmetic functions, like logarithms and
trigonometric functions, can be computed (to a specified
precision), using Taylor expansion or other numeric
mathematic techniques.

Exercise: Design a TM that on input 〈m,n〉, halts with
〈m + n〉 on tape.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 42

Computable Functions

A useful class of functions modifies TM descriptions.
For example:

On input w:

if w = 〈M〉 for some TM,
construct 〈M ′〉, where
L(M ′) = L(M), but
M ′ never tries to move off LHS of tape.

otherwise write ε and halt.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 43

A Non-Computable Function: The Busy Beaver

(taken from
http://www.saltine.org/joebeaver1.jpg)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 44

A Non-Computable Function: The Busy Beaver

We look at all one tape TMs with Σ = {0, 1} and
Γ = {0, 1, $, }.

Consider the set Sn of all such TMs that have n states
and halt on the empty input, ε.

The set Sn is clearly finite. By definition, if M ∈ Sn then
M on ε runs for finitely many steps.

Define BB(n) =maximum number of steps taken by
machines in Sn on the input ε.

By the discussion above, BB(n) is a well defined, total
function.

Theorem: The busy beaver function is not computable.
Proof: On board.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 45

Reducibility

Example:

Finding your way around a new city

reduces to . . .

obtaining a city map.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 46

Reducibility, In Our Context

Always involves two problems, A and B.

Desired Property: If A reduces to B, then any solution of B

can be used to find a solution of A.

Remark: This property says nothing about solving A by
itself or B by itself.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 47

Examples

Reductions:

Traveling from Boshton to Paris . . .

reduces to buying plane ticket . . .

which reduces to earning the money for that ticket . . .

which reduces to finding a job
(or getting the $s from mom and dad. . .)

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 48

Examples

Reductions:

Measuring area of rectangle . . .

reduces to measuring lengths of sides.

Also:

Solving a system of linear equations . . .

reduces to inverting a matrix.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 49

Reducibility

If A is reducible to B, then

A cannot be harder than B

if B is decidable, so is A.

if A is undecidable and reducible to B,
then B is undecidable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 50

Additional Undecidable Problems

We have already established that ATM is undecidable.

Here is a related problem – the original halting problem (of
Shoshana and Uri :-).

HTM = {〈M,w〉|M is a TM and M halts on input w}

Clarification: How does HTM differ from ATM?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 51

Undecidable Problems

HTM = {〈M,w〉|M is a TM and M halts on input w}

Theorem: HTM is undecidable.

Proof idea:

By contradiction.

Assume HTM is decidable.

Let R be a TM that decides HTM.

Use R to construct S, a TM that decides ATM.

So ATM is reduced to HTM.

Since ATM is undecidable, so is HTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 52

Undecidable Problems

Theorem: HTM is undecidable.

Proof: Assume, by way of contradiction, that TM R decides
HTM. Define a new TM, S, as follows:

On input 〈M,w〉,

run R on 〈M,w〉.

If R rejects, reject.

If R accepts (meaning M halts on w), simulate M on w

until it halts (namely run U on 〈M,w〉).

If M accepted, accept; otherwise reject.

TM S decides ATM, a contradiction ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 53

Undecidable Problems

HTM = {〈M,w〉|M is a TM and M halts on input w}

Theorem: HTM is undecidable.

What we actually did was a reduction
from ATM to HTM.

This will be formalized later.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 54

Undecidable Problems (2)

Does a TM accept any string at all?

EMPTYTM = {〈M〉|M is a TM and L(M) = ∅}

Theorem: EMPTYTM is undecidable.

Proof structure:

By contradiction.

Assume EMPTYTM is decidable.

Let R be a TM that decides EMPTYTM.

Use R to construct S, a TM that decides ATM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 55

Undecidable Problems (2)

EMPTYTM = {〈M〉|M is a TM and L(M) = ∅}

First attempt: When S receives input 〈M,w〉, it calls R with
input 〈M〉.

If R accepts, then reject, because M does not accept
any string, let alone w.

But what if R rejects?

Second attempt: Let’s modify M .

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 56

Undecidable Problems (2)

EMPTYTM = {〈M〉|M is a TM and L(M) = ∅}

Define M1: on input x,

1. if x 6= w, reject.

2. if x = w, run M on w and accept if M does.

M1 either

accepts just w, or

accepts nothing.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 57

Undecidable Problems (2)

Machine M1: on input x,

1. if x 6= w, reject.

2. if x = w, run M on w and accept if M does.

Question:
Can a TM construct M1 from M?

Answer:
Easily, because we need only hardwire w, and add a few
extra states to perform the “x = w?′′ test.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 58

Undecidable Problems (2)

EMPTYTM = {〈M〉|M is a TM and L(M) = ∅} .

Theorem: EMPTYTM is undecidable.

Define S as follows:

On input 〈M,w〉, where M is a TM and w a string,

Construct M1 from M and w.

Run R on input 〈M1〉,

if R accepts, reject; if R rejects, accept.

TM S decides ATM, a contradiction ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 59

Undecidable Problems (3)

Does a TM accept a regular language?

REGTM = {〈M〉|M is a TM and L(M) is regular}

Theorem:
REGTM is undecidable.

Skeleton of Proof:

By contradiction.

Assume REGTM is decidable.

Let R be a TM that decides REGTM.

Use R to construct S, a TM that decides ATM.

But how?
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 60

Undecidable Problems (3)

REGTM = {〈M〉|M is a TM and L(M) is regular}

Intuition: Modify M so that the resulting TM accepts a
regular language if and only if M accepts w.

Design M2 so that

if M does not accept w, then M2 accepts {0n1n|n ≥ 0}
(non-regular)

if M accepts w, then M2 accepts Σ∗ (regular).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 61

Undecidable Problems (3)

Given M and w, construct M2:

On input x,

1. If x has the form 0n1n, accept it.

2. Otherwise, run M on input w and accept x if M accepts
w.

Claim:

If M does not accept w, then M2 accepts {0n1n|n ≥ 0}.

If M accepts w, then M2 accepts Σ∗.

The function: On input 〈M,w〉, output 〈M2〉, is
computable.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 62

Undecidable Problems (3)

REGTM = {〈M〉|M is a TM and L(M) is regular}

Theorem: REGTM is undecidable.

Define S:

On input 〈M,w〉,

1. Construct M2 from M and w.

2. Run R on input 〈M2〉.

3. If R accepts, accept; if R rejects, reject.

TM S decides ATM, a contradiction ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 63

Undecidable Problems (4)

Are two TMs equivalent?

EQTM = {〈M1,M2〉 | M1,M2 are TMs and

L(M1) = L(M2)}

Theorem: EQTM is undecidable.

We are getting tired of reducing ATM to everything.

Let’s try instead a reduction from EMPTYTM to EQTM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 64

Undecidable Problems (4)

EQTM = {〈M1,M2〉 | M1,M2 are TMs and

L(M1) = L(M2)}

Theorem: EQTM is undecidable.
Idea:

EMPTYTM is the problem of testing whether a TM
language is empty.
EQTM is the problem of testing whether two TM
languages are the same.
If one of these two TM languages happens to be empty,
then we are back to EMPTYTM.
So EMPTYTM is a special case of EQTM.

The rest is easy.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 65

Undecidable Problems (4)

EQTM = {〈M1,M2〉 | M1,M2 are TMs and

L(M1) = L(M2)}

Theorem: EQTM is undecidable.

Let MNO be this TM: On input x, reject.

Let R decide EQTM.

Let S be: On input 〈M〉:

1. Run R on input 〈M,MNO〉.

2. If R accepts, accept; if R rejects, reject.

If R decides EQTM, then S decides EMPTYTM. ♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 66

Bucket of Undecidable Problems

Same techniques prove undecidability of

Does a TM accept a decidable language?

Does a TM accept a context-free language?

Does a TM accept a finite language?

Does a TM halt on all inputs?

Is there an input string that causes a TM to traverse all
its states?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 67

Reducibility

So far, we have seen many examples of reductions from
one language to another, but the notion was neither defined
nor treated formally.

Reductions play an important role in

decidability theory (here and now)

complexity theory (to come)

Time to get formal.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 68

Mapping Reductions

Definition: Let A and B be two languages. We say that
there is a mapping reduction from A to B, and denote

A ≤m B

if there is a computable function

f : Σ∗ −→ Σ∗

such that, for every w,

w ∈ A⇐⇒f(w) ∈ B.

The function f is called the reduction from A to B.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 69

Mapping Reductions

Missing Figure Here
A mapping reduction converts questions about
membership in A to membership in B

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 70

Mapping Reductions

Theorem:
If A ≤mB and B is decidable, then A is decidable.

Proof: Let

M be the decider for B, and

f the reduction from A to B.

Define N : On input w

1. compute f(w)

2. run M on input f(w) and output whatever M outputs.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 71

Mapping Reductions

Corollary: If A ≤m B and A is undecidable, then B is
undecidable.

In fact, this has been our principal tool for proving
undecidability of languages other than ATM.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. – p. 72

	Computational Models {small Lecture 8, Spring 2009}
	Standard Encoding of {�lue Turing Machines} (Slightly Modified)
	large Universal Turing Machine
	Universal Turing Machines
	Univeral Turing Machines: Some Simulation Details
	Univeral Turing Machines: Some Simulation Details
	Universal Turing Machines (4)
	Universal Turing Machines (5)
	In case You Forgot (or Repressed)
	The Halting/Acceptance Problem
	The Acceptance Problem
	The Halting Problem
	Acceptance, Again
	Acceptance (2)
	Acceptance (3)
	Acceptance (4)
	Self Reference (4)
	The Punch Line
	Once Again
	A Non-enumerable Language
	A Non-enumerable Language
	${�lue overline {Atm }}$ is not Enumerable
	Languages
	The Acceptance Problem (again)
	The Real Numbers
	Diagonalization
	Diagonalization
	Diagonalization
	 ${�lue exists }$ Countably Many Turing Machines
	 ${�lue exists }$ Countably Many Turing Machines (2)
	The Set of All Languages is {�lue Uncountable}
	The Set of Languages is Uncountable (2)
	The Set of Languages is Uncountable (3)
	TMs vs. Languages
	Reflections on Diagonalization
	Diagonalization (2)
	Diagonalization (3)
	Halting vs Acceptance Problem
	Undecidable Problems
	Computable Functions
	Computable Functions
	Computable Functions
	Computable Functions
	A Non-Computable Function: The {�lue Busy Beaver}
	A Non-Computable Function: The {�lue Busy Beaver}
	Reducibility
	Reducibility, In Our Context
	Examples
	Examples
	Reducibility
	Additional Undecidable Problems
	Undecidable Problems
	Undecidable Problems
	Undecidable Problems
	Undecidable Problems (2)
	Undecidable Problems (2)
	Undecidable Problems (2)
	Undecidable Problems (2)
	Undecidable Problems (2)
	Undecidable Problems (3)
	Undecidable Problems (3)
	Undecidable Problems (3)
	Undecidable Problems (3)
	Undecidable Problems (4)
	Undecidable Problems (4)
	Undecidable Problems (4)
	Bucket of Undecidable Problems
	Reducibility
	Mapping Reductions
	Mapping Reductions
	Mapping Reductions
	Mapping Reductions

