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Today’s lecture topics:

1. Show PRFs→ PRPs.

2. Direct constructions of block ciphers, design principles.

3. Key exchange.

4. Trapdoor permutations.

1 From PRFs to PRPs

Definition 1. Let Rn be the family of all functions from 0, 1n to 0, 1n.

Definition 2. Let P2n be the family of permutations on {0, 1}2n.

Definition 3. Ensemble F = {F a(n),n}n∈N such that

F a(n),n = {Fk = {0, 1}n → {0, 1}n}k∈{0,1}a(n)

is a PRF if for every polytime opponent A

|Probk∈{0,1}a(n) [AFk(1n) = 1]− ProbF∈Fn,n
[AF (1n) = 1]| < v(n)

Where v(n) is a negligible function and F is randomly drawn from Rn.

We will now recall the Feistel ladder:

Let:
FeF = {FeF n}n∈N , F eF n = {Fef}f∈F n

Fef (l, r) = (r, l ⊕ f(r))

Now for the composition, Let:
Fek
F = {Fek

F n}n∈N

Fek
F n = {g(r, l ⊕ f(r)}f∈F n,g∈Fek−1

F n

Theorem [Luby and Rackoff 88]: 1. If F is a PRF then Fe3F is a PRP.

Our modus operandi for proving: We’ll first prove a few claims which we will later use the prove
the theorem, then we’ll reduce the theorem statement to the case where the Fi’s are truly random and
prove it.

Lemma 1.1. • Let A be an oracle machine that makes at most q queries.

Then:

|ProbF←Fe3
Rn

[AF (1n) = 1]− [ProbP←P2n [AP (1n) = 1]| < 4q2

2n
(∗)
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Proof. We use the following notation to describe the internal values in the evaluation of Fe3F on input
(l0, r0):

l0 r0
l1 = r0 r1 = l0 + F1(r0)
l2 = r1 r2 = l1 + F2(r1)
l3 = r2 r3 = l2 + F3(r2)

• Let lij the value of lj in the i’th question of A.

• Let ri
j the value of rj in the i’th question of A.

(Assuming A never asks the same question twice wlog)

Claim 1.1.1. ∀A and ∀i 6= i′

Prob[ri
1 = ri′

1 ] ≤ 1
2n

Proof.

• If ri
0 = ri′

0 then ri
1 6= ri′

1 is always true.(Since li0 6= li
′

0 (or the queries are identical)→ F1(ri
0)+

li0 6= F1(ri′=i
0 ) + li

′
)

• if ri
0 6= ri′

0 then ri
1 6= ri′

1 is true with probability 1
2n (Since F1 is a random function with no

dependencies to li0, l
i′

0 values).

Claim 1.1.2. ∀A and ∀i 6= i′

Prob[ri
2 = ri′

2 ] <
2
2n

Proof.

Prob[ri
2 = ri′

2 ] = Prob[ri
2 = ri′

2 |ri
1 = ri′

1 ]Prob[ri
1 = ri′

1 ] + Prob[ri
2 = ri′

2 |ri
1 6= ri′

1 ]Prob[ri
1 6= ri′

1 ]

On the l.h.s of the addition we use claim 1.1.1 and bound Prob[ri
2 = ri′

2 |ri
1 = ri′

1 ] by 1 And on the
r.h.s of the addition we observe that Prob[ri

2 = ri′

2 |ri
1 6= ri′

1 ] < 1
2n (See proof for claim 1.1.1), and

bound Prob[ri
1 6= ri′

1 ] by 1.

Claim 1.1.3. Let Ck be the event where ∃i, i′ i 6= i′ ∧ i, i′ ≤ k s.t.

ri
2 = ri′

2 ∨ ri
1 = ri′

1

Then

Prob[Ck] <
3k2

2n

Proof.
From claim 1.1.1 and claim 1.1.2 (we check if the k’th query satisfies the conditions with any of the
previous k-1 queries) we get:

Prob[Ck|Ck−1] <
3(k − 1)

2n
(1)

By partitioning to conditional probabilities we have:

Prob[Ck] ≤ Prob[Ck|Ck−1]Prob[Ck−1] + Prob[Ck|Ck−1]Prob[Ck−1] (2)
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By bounding Prob[Ck|Ck−1] and Prob[Ck−1] by one we get

Prob[Ck−1] + Prob[Ck|Ck−1]

Performing induction on k we get
∑k

i=1 Prob[Ck|Ck−1] and now we apply (1) to get (3).

Prob[Ck] ≤
k−1∑
i=1

3i
2n
≤ 3k2

2n
(3)

Let us remember the lemma we wished to prove

|ProbF←Fe3
Rn

[AF (1n) = 1]− [ProbP←P2n
[AP (1n) = 1]| < 4q2

2n
(∗)

We will look at the case where the event Cq happened i.e. (Cq didn’t happen)
Note that {r13, ..., r

q
3} are now all jointly uniform, i.e. they are uniform in {{0, 1}n}q . {l13, ..., l

q
3} On

the other hand are also jointly uniform, subject to the condition that they are all different. Learning
this, we conclude that the only way an adversary could distinguish between the two distributions(one
created from a truly random permutation and the other from the Feistel construction) is to find j 6= i
s.t. li3 = lj3 and ri

3 6= rj
3 (such pairs could appear if the distribution is taken from P2n but never if

taken from Fe3k). There are at most
(
q
2

)
such pairs in P2n.

Therefor the probability of an adversary distinguishing the result of Fe3R from a P← P2n is (using
claim 1.1.3)

3q2

2n
+

(
q
2

)
2n
≤ 4q2

2n
(4)

Notice that in numerical terms the bound here is not very good, the probability an adversary of
distinguishing grows quadratically in the number of queries. We, of course, would like it to grow
slower. Such constructions exists which result in better bounds. Also, the main lemma comes in
handy in other areas in cryptography.

Proof of the theorem from the lemma:
By reduction to the PRFness of F.
We’ll need an intermediary lemma: If F is a PRF then no adversary can distinguish three independent
functions drawn from F from three independent random functions. This is shown via a straightforward
hybrids argument.

Now, assume that there is a polytime adversary A that distinguishes Fe3F from P2n w.p. e. We
construct a polytime adversaryA′ that distinguishes three functions drawn from F from three random
functions R1, R2, R3 w.p. e− 4q2

2n . Given oracles O1, O2, O3, A′ runs A, where each query of A is
answered via Fe3O1,O2,O3. A′ then outputs whatever A outputs. Now, if the oracles of A′ are taken
from F , then A sees Fe3F . If the oracles of A′ are taken from Rn, then A sees Fe3R rather than P2n.
(If A saw P2n then A′ would succeed w.p. e.) However, by (4) the difference between the output of
A given P2n and given Fe3R is at most 4q2

2n . Thus, A′ distinguishes with probability e− 4q2

2n .

This proof technique highlights the power of the concept of PRFs: Allows us to think and reason only
about the case where F is a random function. But note that this works only as long the secret keys of
F remain unknown to the attacker! Turns out that Fe3 is not enough(There is an attack). However
Fe4 is in fact enough.

[Luby and Rackoff 88] 2. If F is a PRF then Fe4F is a strong PRP We will not include a proof here
however one can be found at-
http://www.wisdom.weizmann.ac.il/ reingold/publications/LR.PS
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2 Direct constructions of block ciphers (SPRPs):

In practice, people do not use the constructions based on OWFs that we saw in class. Instead, they
use direct("dirty") constructions. We’ll give a brief overview of two main constructions: DES and
AES.

The first block cipher constructed was the DES, developed at IBM with the NSA around 1976, long
before a lot of the theory we’ve learned was developed. The block size was n=64 bits, with key size
a=56 bits.
The main structure is that of a Feistel ladder with 16 rounds, where each round function is a univert-
ible function on 32 bits. This is a sketch of a 16-round Feistel ladder

We will now take a closer look at these round functions. A 56-bit key is expanded (via a "key sched-
ule") to 16 ("pseudo random") strings of 48-bit each. Next each round function starts by expanding
the 32 bit input to 48 bits, xoring these 48 bits with the corresponding 48-bit string derived from the
key. Then, the 48 bits are partitioned into 8 groups of 6 bits each, and each group goes via some fixed
"random" function, called an s-box that goes from 6 to 4 bits. The output is the resulting 32 bits,
permuted by some fixed permutation P. Below, a sketch of the s-boxes MO.
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We notice that:

• The only non-linear (or, "hard to invert") operations in the cipher are the s-boxes

• The s-boxes are performed only on small chunks of inputs.

• The key is incorporated only in a "mild" way (via the initial xor).

Thus one might expect that the cipher is weak. However, it turns out that no significant "practical"
weaknesses have been found in DES - the reason it was phased out is that the block size is small
(allowing for semi-feasible exhaustive-search attacks), and its speed isn’t too great either.

DES might be regarded as an instantiation of the "confusion and diffusion" principle put forth by
Shannon. The principle calls for working as follows.

1. Partition the input bits to chunks.

2. Apply a "random function" locally on each chunk

3. Perform some simple "diffusion" operation that makes the each chunk of bits depend on each
other chunk.

4. Repeat the process

The only non-trivial attacks against DES are of a type called "differential cryptanalysis". We have
seen an example for such an attack, namely the attack against a 2-round Feistel. Essentially, one
feeds the cipher with random inputs with known (and carefully chosen) xor, and hopes to see similar
correlations in the outputs. Somewhat more sophisticated attacks, called "linear cryptanalysis", re-
place the xor with other linear relations. However, these attacks never got close to being practically
viable(Though they were successful against other ciphers).

In 1997 NIST(National Institute of Standards and Technology) has announced a competition for a
block cipher that would replace DES. The security requirements were essentially that the new cipher
be a good SPRP for a block size of 128 bits and variable key size 128-160 bits. There were lots
of efficiency requirements (including efficiency in software, hardware, on low end and high end
machines, small footprint and simplicity) There were 5 finalists which were largely accepted to be all
very good. The winning algorithm, Rijndael (now called simply AES) is a very elegant construction:

Similarly to DES, AES works in rounds. (The number of rounds, r, depends on the key length, which
is variable.) Initially the key is expanded to r chunks (of 128 bits each) where each chunk is xored
with the current state at the onset of round r.

Similarly to DES, the "heart" of each round is a bunch of s-boxes, or non-linear operation that are
done one small chunks of bits, plus some simple operations that "diffuse" the information among the
individual chunks.

However, there are a number of significant differences regarding the s-boxes:

1. In AES the s-boxes are invertible permutations (specifically, they are permutations on bytes (8
bits)).

2. The s-boxes are not "hand crafted" as the s-boxes in DES appear to be. Rather, they are con-
structed via some non-linear algebraic mechanism.
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The fact that the s-boxes (and all the other operations in the cipher) are invertible, means that there
is no need in the Feistel structure. Instead, inversion of AES is performed by inverting each internal
operation in sequence.

There is more extensive "diffusion" of information among the blocks than in DES. Specifically, the
diffusion step proceeds as follows: The 16 blocks are thought of as arranged in a 4x4 matrix. Then,
after the s-box functions are applied to each block separately,

the i-th row of blocks is rotated by i (to the left).

Then, the i-th column is treated as a length-4 vector with entries in F 8
2 , and is multiplied (in F 8

2 ) by
some fixed 4x4 matrix.

We not that this description is not complete, nor is it 100% precise. However it gives the main idea.
For more information please refer to
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

As of today, there are no known "weaknesses" in AES.

3 Key Exchange

So far we have seen how to construct stream ciphers (PRGs) and block ciphers (PRPs) from OWFs.
Key exchange is an example for something that we don’t know how to construct from OWFs.
The key exchange problem: Consider two parties that wish to agree on a secret key, but they can only
communicate over an open (tappable) communication medium. How can they do it?

3.1 Formulation of the problem:

Definition 1. An interactive algorithm is an algorithm with two types of input, and two types of
output:
- Local input
- Local output
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- Incoming communication
- Outgoing communication

We can think of an interactive algorithm as a Turing Machine with two extra tapes (These are TM’s
are called ITM - Interactive Turing Machine).
A two party protocol P = (A,B) is a pair of interactive algorithms (A,B).

Definition 2. We say that an ITM M is polytime if at any point the overall runtime of M so far is
bounded by nc for some c > 0, where n is the overall accumulating length of inputs to M in its
execution. (We stress that here we measure only the length on the information written on the input
tape. The information written on the incoming communication tape is not counted towards providing
runtime.)

Definition 3. For an Execution of a Protocol P , we look at the system where the outgoing commu-
nication tape of one is unified with the incoming communication tape of the other. More formally, an
execution of a two party protocol is a sequence of activations. In each activation one out of (A,B)
is activated in his turn. When activated, the algorithm runs until it reaches a waiting state or until it
stops.

Definition 4. For P = (A,B), let P (xA, rA;xB , rB) = (yA, yB) denote the output of the protocol
on input xA and random input rA forA, and input xB , random input rB forB. Here yA isA’s output
and yB is B’s output. P (xA;xB) is the corresponding random variable over rA, rB .

Definition 5. Let COMP (xA, rA;xB , rB) denote the protocol’s communication in the run of P on
inputs and random inputs (xA, rA, xB , rB), namely the sequence of values written over the commu-
nication tapes between the parties.
COMP (xA, xB) is the corresponding random variable over rA, rB .
{OUT + COMP }(xA, rA;xB , rB) = P (xA, rA;xB , rB)|COMP (xA, rA;xB , rB)
{OUT+COMP }(xA, xB) is the random variable describing the joint r.v. P (xA, xB), COMP (xA, xB),
where both the output and the communication are computed based on the same values of rA and rB .

Definition 6. A two party protocol is a key exchange protocol with respect to domainD = {Dn}n∈N

if:
-Agreement: For every rA, rB , P (1n, rA; 1n, rB) = (yA, yB) where yA = yB .
-Secrecy: {OUT + COMP (1n, 1n)}n∈N ≈ {COMP (1n, 1n), y, y}n∈N , where y is chosen uni-
formly from Dn.
The secrecy criterion formalizes the intuition that the key should "look random" to a polynomial time
outside observer.
We remark that there are other, more sophisticated definitions of security for key exchange. Still, this
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one will do for our purposes.
As said, we don’t know how to construct key exchange protocols assuming only existence of OWFs.
In fact, there is some evidence that this might be hard to prove (essentially, proofs that simply use the
underlying OWF "in a black box way" probably cannot work).

Definition 7. Assume A,B agree on a prime order group G and a generator g of G (In fact, we
consider an ensemble G = {Gn}n∈N , where Gn is of order p, p ∼ 2n is a prime).
The Diffie-Hellman protocol:
Alice: On input 1n, choose random generator g ∈ Gn and an element a ∈ 1..|p|, send g, ga to Bob.
Bob: Choose random b ∈ G, send gb to A, and output (ga)b.
Alice: output (gb)a.

The above key exchange protocol can be applied on every prime order group G. The following is an
example for a more specific case where G is the group Z∗p .

It is obvious that both parties agree on the same key, but what about secrecy?
Theorem: Assume that the DDH assumption holds with respect to the ensemble G. Then protocol
DH with ensemble G is a key exchange protocol for G.
Proof: Agreement is immediate. Secrecy follows immediately from the DDH assumption. (Recall:
the DDH assumption over G states that g, ga, h, ha ≈ g, ga, h, hr where g, h are random in G and
a, r are random in [1..|p|]).
In our case {OUT +COMP } = {g, ga, gb, gab} and {COMP , y, y} = {g, ga, gb, gbr} (In our case,
the adversary sees {g, ga, gb, gbr} ≈ {g, ga, gb, gab})

3.2 Trapdoor Permutation:

How to generalize from the specific properties of DLP to get a structure (akin to OWFs) that would
give the desired properties of key exchange?
We’ll see a primitive that allows having key exchange (but is somewhat stronger than simply key
exchange). The idea is to have one way functions with "trapdoor" - namely one way functions that
can actually be inverted with additional "trapdoor" information.
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How to formalize it?

3.2.1 Formulation of the problem:

Attempt 1: f : {0, 1}∗ → {0, 1}∗ is a TDP if
- for every n, f is a permutation on {0, 1}n.
- It is a OWF.
- There exist an algorithm f−1 that inverts f (on input y outputs x s.t. f(x) = y).

But this is self contradictory...
So we need something else. We’ll require to have a family of functions (or, permutations), where it is
possible to generate "forward computing" and "inversion" keys, and where the inversion key for one
function in the family does not give the ability to invert other functions in the family. More specifi-
cally:

Definition 8. One way permutation families with trapdoor (TDPs):
Ensemble F = {Fn}n∈N is ensemble of a TDP if for every n, Fn = {fn

i : Dn
i → Dn

i }i∈In (In is
the key index) and there exist the following algorithms:
G - a randomized Index generation algorithm: G(1n) = (i, t).
S - a randomized domain Sampling algorithm: S(1n, i) ∈ Dn

i .
F - an evaluation algorithm: for all i and x ∈ Dn

i , F (1n, i, x) = fn
i (x).

F−1 - an inversion algorithm: for every i and x ∈ Di, F−1(1n, t, fn
i (x)) = x.

One wayness: For any polynomial time non uniform algorithmA, Pr(i,t)∈G(1n),x∈S(1n,i)[A((fn
i (x)) =

x] < ν(n) for a negligible function ν(n).

Notes:
• Notice that here the probability of choosing x is determined by S, and is not necessarily uniform.
• The definition makes sense as a definition of one way functions even without trapdoor. This for-
mulation is useful for "more structured families" which are not defined overall of {0, 1}∗, or where
distributions other than the uniform one make more sense.
• There are a number of additional properties that are often useful for TPDs. for instance:
– It’s often useful to be able to recognize whether i is a valid index in the range of g.
– It’s often useful to be able to recognize whether a given x is in Di for a given i.
• Why insist on permutations? Because this will be convenient. The definition makes sense (and is
still useful) when F is a family of functions that are not too-many-to-one. When the functions are
too-many-to-one the ability to invert seems much less useful.

Theorem: If there exist TDPs then there exist key exchange protocols.
Proof: Homework.

3.2.2 Candidates for TDPs

We will now see two candidates for TDPs. These candidates are based on the hardness of factoring,
specifically factoring of n = p · q where p, q are prime numbers.
Both candidates are based of the following facts:
• In Z∗p where p is a prime, it is easy to compute e-th roots for any e: Given y,e, it is easy to find x
s.t. xe = y(mod p).
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• In Z∗N , where N = p · q, p and q are primes, if p,q are given, then computing roots can be reduced
to computing e-th roots modulo p,q (and is thus easy).
• If p,q are not given, it is not known how to compute e-th roots mod N .

Candidate 1: RSA
RSAN,e(X) = Xe(mod N), N = p · q, p,q are prime numbers and gcd(e, (p− 1)(q − 1)) = 1.

In this case:
• The index i is (N, e), G(1n) = (i = (N, e), t = (N, d)) where gcd(e, (p − 1)(q − 1)) = 1 and d
is such that xe·d = x(mod N) for all x.
• The sampling algorithm will choose an element uniformly from Z∗N .
• The evaluation and inversion algorithms are straightforward.

Note:
• It turns out that RSA is a permutation whenever gcd(e, (p− 1)(q − 1)) = 1.
• If factoring is easy then RSA is not a OW. However, we don’t know whether hardness of factoring
implies OWness of RSA.

Candidate 2:Rabin
Rabin(X) = X2(mod N)

That is, the function is the same as RSA, except that e is fixed to 2, and the index generator is
G(1n) = (i = N, t = p, q). The good news is that there is a reduction from inverting Rabin to
factoring, so in this case we know why it is hard. It at least hard as factoring, and we know that
factoring is hard.

The bad news is that the Rabin function is not a permutation... each square in Z∗N has exactly 4 square
roots. But this is fixable. It turns out that when both p and q are 3 mod 4 (such numbers are called
Blum integers), N = p · q has a specific structure:
Let QRN be the set of quadratic residues mod N (That is, QRN = {x| there is y ∈ Z∗N s.t. y2 =
x(mod N)}). Then, when N is a Blum integer, each x ∈ QRN has exactly one square root in QRN .
Consequently, when N is a Blum integer, the Rabin function is a permutation over QRN .
More precisely:
• The index generator is G(1n) = (i = N, t = p, q). Here N is a Blum integer.
• The sampling algorithm S samples uniformly from QRN . (This is done by choosing a value in Z∗N
and squaring it.)
• The evaluation and inversion algorithms are straightforward.

Note that here for OWness one has to assume that factoring is hard even when restricted to Blum
integers.
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