
1

Dynamic trees (Steator and Tarjan 83)

2

Operations that we do on the trees

Maketree(v)

w = findroot(v)

(v,c) = mincost(v)

addcost(v,c)

link(v,w,r(v,w))

cut(v)

findcost(v)

3

Simple case -- paths

Assume for a moment that each tree T in the forest is a path.

We represent it by a virtual tree which is a simple splay tree.

b

a
c

e
d

f

b

a c

e

d

f

4

Findroot(v)

Splay at v, then follow right pointers until you reach the last

vertex w on the right path. Return w and splay at w.

5

Mincost(v)

With every vertex x we record cost(x) = the cost of the edge

(x,p(x))

We also record with each vertex x mincost(x) = minimum of

cost(y) over all descendants y of x.

b

a c

e

d

f
1,1

3,1

2,2

7,1

4,4

, 

6

Mincost(v)

Splay at v and use mincost values to search for the minimum

Notice: we need to update mincost values as we do rotations.

y

x

B A

C

x

y

C B

A

7

Addcost(v,c)

Rather than storing cost(x) and mincost(x) we will store

cost(x) = cost(x) - cost(p(x))

min(x) = cost(x) - mincost(x)

b

a c

e

d

f
1,-2,0

3,-4,2

2,-1,0

7,7,6

4,-3,0

, , 0

Addcost(v,c) :

Splay at v,

cost(v) += c

cost(left(v)) -= c

similarly update

min

8

Addcost(v,c) (cont)

Notice that now we have to update cost(x) and min(x)

through rotations

w

v

B A

C

v

w

C B

A

cost’(v) = cost(v) + cost(w)

cost’(w) = -cost(v)

 b b

cost’(b) = cost(v) + cost(b)

9

Addcost(v,c) (cont)

w

v

B A

C

v

w

C B

A

min’(w) = max{0, min(b) - cost’(b), min(c) - cost(c)}

min’(v) = max{0, min(a) - cost(a), min’(w) - cost’(w)}

 b b

Update min:

10

Link(v,w,c), cut(v)

Translate directly into catenation and split of splay trees if we

talk about paths.

Lets do the general case now.

11

The virtual tree

• We represent each tree T by a virtual tree V.

The virtual tree is a binary tree with middle children.

left right middle

What is the relation between V and T ?

Think of V as partitioned into solid subtrees connected by

dashed edges

12

Actual tree

b

c

e

h

k

o n

a

i

f

l

q p

g

d

j

m

t

s

u

v

w

r

13

Path decomposition

b

c

e

h

k

o n

a

i

f

l

q p

g

d

j

m

t

s

u

v

w

r

Partition T into

disjoint paths

14

Virtual trees (cont)

b

c

e

h

k

o n

a i

f

l

q

p

g

d

j

m

t

s u

v

w

r

Each path in T

corresponds to a solid

subtree in V

The parent of a vertex

x in T is the successor

of x (in symmetric

order) in its solid

subtree or the parent

of the solid subtree if

x is the last in

symmetric order in

this subtree

15

Virtual trees (cont)

b

c

e

h

k

o n

a i

f

l

q

p

g

d

j

m

t

s u

v

w

r

b

c

e

h

k

o n

a

i

f

l

q p

g

d

j

m

t

s

u

v

w

r

16

Virtual trees (representation)

Each vertex points to p(x) to its left son l(x) and to its right son

r(x).

A vertex can easily decide if it is a left child a right child or a

middle child.

Each solid subtree functions like a splay tree.

17

The general case

Each solid subtree of a virtual tree is a splay tree.

We represent costs essentially as before.

cost(x) = cost(x) - cost(p(x)) or cost(x) is x is a root of a solid

subtree

min(x) = cost(x) - mincost(x) (where mincost is the minimum

cost within the subtree)

18

Splicing

Want to change the path decomposition such that v and the root

are on the same path.

Let w be the root of a solid subtree and v a middle child of w

Want to make v the left child of w. It requires:

cost’(v) =  cost(v) -  cost(w)

w

Right(w) v u

w

Right(w) u v

==>

cost’(u) =  cost(u) +  cost(w)

min’(w) = max{0, min(v) - cost’(v), min(right(w))- cost(right(w))}

19

Splicing (cont)

What is the effect on the path decomposition of the real tree ?

w

right v u

w

right u v



w

u

v

b

a

w

u

v

b

a



20

Splaying the virtual tree

Let x be the vertex in which we splay.

We do 3 passes:

1) Walk from x to the root and splay within each solid subtree

w

v

x

After the first pass the path

from x to the root consists

entirely of dashed edges

2) Walk from x to the root and splice at each proper ancestor of x.

Now x and the root are in the

same solid subtree

3) Splay at x

Now x is the root of the entire

virtual tree.

21

Dynamic tree operations

w = findroot(v) : Splay at v, follow right pointers until reaching

the last node w, splay at w, and return w.

(v,c) = mincost(v) : Splay at v and use cost and min to follow

pointers to the smallest node after v on its path (its in the right

subtree of v). Let w be this node, splay at w.

addcost(v,c) : Splay at v, increase cost(v) by c and decrease

cost(left(v)) by c, update min(v)

link(v,w,r(v,w)) : Splay at v and splay at w and make v a middle

child of w

cut(v) : Splay at v, break the link between v and right(v), set

cost(right(v)) += cost(v)

22

Dynamic tree (analysis)
It suffices to analyze the amortized time of splay.

An extension of the access lemma.

•Assign weight 1 to each node. The size of a node is the total number

of descendants it has in the virtual tree. Rank is the log of the size.

Potential is c times the sum of the ranks for some constant c. (So we can charge

more than 1 for each rotation)

x

x1

xk

1

1

() ()()
log log log

() () ()

()
log

()

k x

k

k

s T s Ts T
c c c k

s x s x s x

s T
c k

s x

     
         

   

 
 

 

23

Dynamic tree (analysis)

pass 1 takes 3clogn + k

pass 2 takes k

pass 3 takes 3clogn + 1 – (c-1)(k-1)

k=#dashed edges on the

path

25

Proof of the access lemma (cont)

amortized time(zig-zig) = 2 +  =

2 + r’(x) + r’(y) + r’(z) - r(x) - r(y) - r(z) 

2 + r’(x) + r’(z) - r(x) - r(y)  2 + r’(x) + r’(z) - r(x) - r(x) =

2 + r(x) - r’(x) + r’(z) - r’(x) + 3(r’(x) – r(x)) 

2 + log(s(x)/s’(x)) + log(s’(z)/s’(x)) + 3(r’(x) – r(x)) 

2 + log([s’(x)/2]/s’(x)) + log([s’(x)/2]/s’(x)) + 3(r’(x) - r(x)) = 3(r’(x) - r(x))

z

y

x

A B

C

D

x

y

z

D C

B

A

==>
(1) zig - zig

26

Proof of the access lemma (cont)

z

y

x

B C

A

D

x

z

D C

==>
(2) zig - zag

y

B A

amortized time(zig-zig) = 2 +  =

2 + r’(x) + r’(y) + r’(z) - r(x) - r(y) - r(z) 

2 + r’(y) + r’(z) - r(x) - r(y)  2 + r’(y) + r’(z) - r(x) - r(x) =

2 + r’(y) - r(x) + r’(z) - r(x) + 2(r’(x) – r(x)) 

2 + log(s’(y)/s(x)) + log(s’(z)/s(x)) + 2(r’(x) – r(x)) 

2 + log([s(x)/2]/s(x)) + log([s(x)/2]/s(x)) + 2(r’(x) - r(x)) ≤ 3(r’(x) - r(x))

