Dynamic trees (Steator and Tarjan 83)

Operations that we do on the trees

Maketree(v)
$\mathrm{w}=$ findroot (v)
$(\mathrm{v}, \mathrm{c})=\operatorname{mincost}(\mathrm{v})$
$\operatorname{addcost}(\mathrm{v}, \mathrm{c})$
$\operatorname{link}(v, w, r(v, w))$
cut(v)
findcost(v)

Simple case -- paths

Assume for a moment that each tree T in the forest is a path. We represent it by a virtual tree which is a simple splay tree.

Findroot(v)

Splay at v, then follow right pointers until you reach the last vertex w on the right path. Return w and splay at w.

Mincost(v)

With every vertex x we record $\operatorname{cost}(x)=$ the cost of the edge ($\mathrm{x}, \mathrm{p}(\mathrm{x})$)

We also record with each vertex x mincost $(x)=$ minimum of cost(y) over all descendants y of x.

Mincost(v)

Splay at v and use mincost values to search for the minimum

Notice: we need to update mincost values as we do rotations.

Addcost(v,c)

Rather than storing $\operatorname{cost}(\mathrm{x})$ and $\operatorname{mincost}(\mathrm{x})$ we will store
$\Delta \operatorname{cost}(x)=\operatorname{cost}(x)-\operatorname{cost}(p(x))$
$\Delta \min (\mathrm{x})=\operatorname{cost}(\mathrm{x})-\operatorname{mincost}(\mathrm{x})$

Addcost(v, c) :

Splay at v, $\Delta \operatorname{cost}(\mathrm{v})+=\mathrm{c}$ $\Delta \operatorname{cost}(\operatorname{left}(\mathrm{v}))=\mathrm{c}$
similarly update Δ min

Addcost(v,c) (cont)

Notice that now we have to update $\Delta \operatorname{cost}(\mathrm{x})$ and $\Delta \min (\mathrm{x})$ through rotations

$\Delta \operatorname{cost}^{\prime}(\mathrm{v})=\Delta \operatorname{cost}(\mathrm{v})+\Delta \operatorname{cost}(\mathrm{w})$
$\Delta \operatorname{cost}^{\prime}(\mathrm{w})=-\Delta \operatorname{cost}(\mathrm{v})$
$\Delta \operatorname{cost}^{\prime}(\mathrm{b})=\Delta \operatorname{cost}(\mathrm{v})+\Delta \operatorname{cost}(\mathrm{b})$

Addcost(v,c) (cont)

Update Δ min:

$\Delta \min ^{\prime}(\mathrm{w})=\max \left\{0, \Delta \min (\mathrm{~b})-\Delta \operatorname{cost}^{\prime}(\mathrm{b}), \Delta \min (\mathrm{c})-\Delta \operatorname{cost}(\mathrm{c})\right\}$
$\Delta \min ^{\prime}(\mathrm{v})=\max \left\{0, \Delta \min (\mathrm{a})-\Delta \operatorname{cost}(\mathrm{a}), \Delta \min ^{\prime}(\mathrm{w})-\Delta \operatorname{cost}^{\prime}(\mathrm{w})\right\}$

Link(v,w,c), cut(v)

Translate directly into catenation and split of splay trees if we talk about paths.

Lets do the general case now.

The virtual tree

- We represent each tree T by a virtual tree V .

The virtual tree is a binary tree with middle children.

Think of V as partitioned into solid subtrees connected by dashed edges

What is the relation between V and T ?

Actual tree

Path decomposition

Virtual trees (cont)

Each path in T corresponds to a solid subtree in V

The parent of a vertex x in T is the successor of x (in symmetric order) in its solid subtree or the parent of the solid subtree if x is the last in symmetric order in this subtree

Virtual trees (cont)

Virtual trees (representation)

Each vertex points to $p(x)$ to its left son $1(x)$ and to its right son $\mathrm{r}(\mathrm{x})$.

A vertex can easily decide if it is a left child a right child or a middle child.

Each solid subtree functions like a splay tree.

The general case

Each solid subtree of a virtual tree is a splay tree.

We represent costs essentially as before.
$\Delta \operatorname{cost}(x)=\operatorname{cost}(x)-\operatorname{cost}(p(x))$ or $\operatorname{cost}(x)$ is x is a root of a solid subtree
$\Delta \min (x)=\operatorname{cost}(x)-\operatorname{mincost}(x)($ where mincost is the minimum cost within the subtree)

Splicing

Want to change the path decomposition such that v and the root are on the same path.

Let w be the root of a solid subtree and v a middle child of w

Want to make v the left child of w. It requires:
$\Delta \operatorname{cost}^{\prime}(\mathrm{v})=\Delta \operatorname{cost}(\mathrm{v})-\Delta \operatorname{cost}(\mathrm{w})$
$\Delta \operatorname{cost}^{\prime}(\mathrm{u})=\Delta \operatorname{cost}(\mathrm{u})+\Delta \operatorname{cost}(\mathrm{w})$
$\Delta \min ^{\prime}(\mathrm{w})=\max \left\{0, \Delta \min (\mathrm{v})-\Delta \operatorname{cost}^{\prime}(\mathrm{v}), \Delta \min (\operatorname{right}(\mathrm{w}))-\Delta \operatorname{cost}(\operatorname{right}(\mathrm{w}))\right\}$

Splicing (cont)

What is the effect on the path decomposition of the real tree ?

Splaying the virtual tree

Let x be the vertex in which we splay.
We do 3 passes:

1) Walk from x to the root and splay within each solid subtree

After the first pass the path from x to the root consists entirely of dashed edges

2) Walk from x to the root and splice at each proper ancestor of x.

Now x and the root are in the
same solid subtree
3) Splay at x

Now x is the root of the entire virtual tree.

Dynamic tree operations

$\mathrm{w}=$ findroot (v) : Splay at v , follow right pointers until reaching the last node w , splay at w , and return w .
$(\mathrm{v}, \mathrm{c})=\operatorname{mincost}(\mathrm{v}):$ Splay at v and use $\Delta \operatorname{cost}$ and $\Delta \mathrm{min}$ to follow pointers to the smallest node after v on its path (its in the right subtree of v). Let w be this node, splay at w.
addcost(v, c) : Splay at v , increase $\Delta \operatorname{cost}(\mathrm{v})$ by c and decrease $\Delta \operatorname{cost}(\operatorname{left}(\mathrm{v}))$ by c , update $\Delta \min (\mathrm{v})$
link(v,w,r(v,w)): Splay at v and splay at w and make v a middle child of w
cut(v) : Splay at v, break the link between v and right(v), set $\Delta \operatorname{cost}(\operatorname{right}(\mathrm{v}))+=\Delta \operatorname{cost}(\mathrm{v})$

Dynamic tree (analysis)

It suffices to analyze the amortized time of splay.
An extension of the access lemma.
-Assign weight 1 to each node. The size of a node is the total number of descendants it has in the virtual tree. Rank is the log of the size.

Potential is c times the sum of the ranks for some constant c . (So we can charge more than 1 for each rotation)

Dynamic tree (analysis)

pass 1 takes 3clogn +k
pass 2 takes k
pass 3 takes 3clogn $+1-(\mathrm{c}-1)(\mathrm{k}-1)$
$\mathrm{k}=\#$ dashed edges on the path

Proof of the access lemma (cont)

(1) zig - zig

$$
\begin{aligned}
& \text { amortized time }(z i g-z i g)=2+\Delta \Phi= \\
& 2+r^{\prime}(x)+r^{\prime}(y)+r^{\prime}(z)-r(x)-r(y)-r(z) \leq \\
& 2+r^{\prime}(x)+r^{\prime}(z)-r(x)-r(y) \leq 2+r^{\prime}(x)+r^{\prime}(z)-r(x)-r(x)= \\
& 2+r(x)-r^{\prime}(x)+r^{\prime}(z)-r^{\prime}(x)+3\left(r^{\prime}(x)-r(x)\right) \leq \\
& 2+\log \left(s(x) / s^{\prime}(x)\right)+\log \left(s^{\prime}(z) / s^{\prime}(x)\right)+3\left(r^{\prime}(x)-r(x)\right) \leq \\
& 2+\log \left(\left[s^{\prime}(x) / 2\right] / s^{\prime}(x)\right)+\log \left(\left[s^{\prime}(x) / 2\right] / s^{\prime}(x)\right)+3\left(r^{\prime}(x)-r(x)\right)=3\left(r^{\prime}(x)-r(x)\right){ }_{25}
\end{aligned}
$$

Proof of the access lemma (cont)

$$
\begin{aligned}
& \text { amortized time }(z i g-z i g)=2+\Delta \Phi= \\
& 2+r^{\prime}(x)+r^{\prime}(y)+r^{\prime}(z)-r(x)-r(y)-r(z) \leq \\
& 2+r^{\prime}(y)+r^{\prime}(z)-r(x)-r(y) \leq 2+r^{\prime}(y)+r^{\prime}(z)-r(x)-r(x)= \\
& 2+r^{\prime}(y)-r(x)+r^{\prime}(z)-r(x)+2\left(r^{\prime}(x)-r(x)\right) \leq \\
& 2+\log \left(s^{\prime}(y) / s(x)\right)+\log \left(s^{\prime}(z) / s(x)\right)+2\left(r^{\prime}(x)-r(x)\right) \leq \\
& 2+\log ([s(x) / 2] / s(x))+\log ([s(x) / 2] / s(x))+2\left(r^{\prime}(x)-r(x)\right) \leq 3\left(r^{\prime}(x)-r(x)\right)
\end{aligned}
$$

