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Dynamic trees (Steator and Tarjan 83) 
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Operations that we do on the trees 

Maketree(v) 

w = findroot(v) 

(v,c) = mincost(v) 

addcost(v,c) 

link(v,w,r(v,w)) 

cut(v) 

findcost(v) 
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Simple case -- paths 

Assume for a moment that each tree T in the forest is a path. 

We represent it by a virtual tree which is a simple splay tree. 
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Findroot(v) 

Splay at v, then follow right pointers until you reach the last 

vertex w on the right path. Return w and splay at w. 
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Mincost(v) 

With every vertex x we record cost(x) = the cost of the edge 

(x,p(x)) 

We also record with each vertex x mincost(x) = minimum of 

cost(y) over all descendants y of x. 
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Mincost(v) 

Splay at v and use mincost values to search for the minimum 

Notice: we need to update mincost values as we do rotations. 
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Addcost(v,c) 

Rather than storing cost(x) and mincost(x) we will store 

cost(x) = cost(x) - cost(p(x)) 

min(x) = cost(x) - mincost(x) 
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Addcost(v,c) : 

Splay at v,  

cost(v) += c 

cost(left(v)) -= c 

 

similarly update 

min 
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Addcost(v,c) (cont) 

Notice that now we have to update cost(x) and min(x) 

through rotations 
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cost’(v) = cost(v) + cost(w) 

cost’(w) = -cost(v) 

    b b 

cost’(b) = cost(v) + cost(b) 
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Addcost(v,c) (cont) 
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min’(w) = max{0, min(b) - cost’(b), min(c) - cost(c)} 

min’(v) = max{0, min(a) - cost(a), min’(w) - cost’(w)} 

    b b 

Update min: 
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Link(v,w,c), cut(v) 

Translate directly into catenation and split of splay trees if we 

talk about paths.  

Lets do the general case now.  
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The virtual tree 

• We represent each tree T by a virtual tree V. 

The virtual tree is a binary tree with middle children. 

left right middle 

What is the relation between V and T ? 

Think of V as partitioned into solid subtrees connected by 

dashed edges 
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Actual tree 
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Path decomposition 
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Virtual trees (cont) 
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Virtual trees (cont) 
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Virtual trees (representation) 

Each vertex points to p(x) to its left son l(x) and to its right son 

r(x). 

A vertex can easily decide if it is a left child a right child or a 

middle child. 

Each solid subtree functions like a splay tree. 
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The general case 

Each solid subtree of a virtual tree is a splay tree. 

We represent costs essentially as before. 

cost(x) = cost(x) - cost(p(x))  or cost(x) is x is a root of a solid 

subtree 

min(x) = cost(x) - mincost(x) (where mincost is the minimum 

cost within the subtree) 
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Splicing 

Want to change the path decomposition such that v and the root 

are on the same path. 

Let w be the root of a solid subtree and v a middle child of w 

Want to make v the left child of w. It requires: 

cost’(v) =  cost(v) -  cost(w) 

w 

Right(w) v u 

w 

Right(w) u v 

==> 

cost’(u) =  cost(u) +  cost(w) 

min’(w) = max{0, min(v) - cost’(v), min(right(w))- cost(right(w))} 
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Splicing (cont) 

What is the effect on the path decomposition of the real tree ? 
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Splaying the virtual tree 

Let x be the vertex in which we splay. 

We do 3 passes: 

1) Walk from x to the root and splay within each solid subtree 

w 

v 
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After the first pass the path 

from x to the root consists 

entirely of dashed edges 

2) Walk from x to the root and splice at each proper ancestor of x. 

Now x and the root are in the 

same solid subtree 

3) Splay at x 

Now x is the root of the entire 

virtual tree. 
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Dynamic tree operations 

w = findroot(v) : Splay at v, follow right pointers until reaching 

the last node w, splay at w, and return w. 

(v,c) = mincost(v) : Splay at v and use cost and min to follow 

pointers to the smallest node after v on its path (its in the right 

subtree of v). Let w be this node, splay at w. 

addcost(v,c) : Splay at v, increase cost(v)  by c and decrease 

cost(left(v)) by c, update min(v)  

link(v,w,r(v,w)) : Splay at v and splay at w and make v a middle 

child of w 

cut(v) : Splay at v, break the link between v and right(v), set 

cost(right(v)) += cost(v) 
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Dynamic tree (analysis) 
It suffices to analyze the amortized time of splay. 

An extension of the access lemma. 

•Assign weight 1 to each node. The size of a node is the total number 

of descendants it has in the virtual tree. Rank is the log of the size. 

Potential is c times the sum of the ranks for some constant c. (So we can charge 

more than 1 for each rotation) 
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Dynamic tree (analysis) 

pass 1 takes 3clogn + k      

pass 2 takes k 

pass 3 takes  3clogn + 1 – (c-1)(k-1) 

k=#dashed edges on the 

path 
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Proof of the access lemma (cont) 

amortized time(zig-zig) = 2 +  = 

2 + r’(x) + r’(y) + r’(z) - r(x) - r(y) - r(z)   

2 + r’(x) + r’(z) - r(x) - r(y)       2 + r’(x) + r’(z) - r(x) - r(x) = 

2 + r(x) - r’(x) + r’(z)  - r’(x) + 3(r’(x) – r(x))   

2 + log(s(x)/s’(x)) + log(s’(z)/s’(x)) + 3(r’(x) – r(x))  

2 + log([s’(x)/2]/s’(x)) + log([s’(x)/2]/s’(x)) + 3(r’(x) - r(x)) = 3(r’(x) - r(x))  
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Proof of the access lemma (cont) 

z 

y 

x 

B C 

A 

D 

x 

z 

D C 

==> 
(2) zig - zag 
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amortized time(zig-zig) = 2 +  = 

2 + r’(x) + r’(y) + r’(z) - r(x) - r(y) - r(z)   

2 + r’(y) + r’(z) - r(x) - r(y)       2 + r’(y) + r’(z) - r(x) - r(x) = 

2 + r’(y) - r(x) + r’(z)  - r(x) + 2(r’(x) – r(x))   

2 + log(s’(y)/s(x)) + log(s’(z)/s(x)) + 2(r’(x) – r(x))  

2 + log([s(x)/2]/s(x)) + log([s(x)/2]/s(x)) + 2(r’(x) - r(x)) ≤ 3(r’(x) - r(x))  


