Dynamic trees (Steator and Tarjan 83)



Operations that we do on the trees

Maketree(v)

w = findroot(v)
(v,Cc) = mincost(v)
addcost(v,c)
link(v,w,r(v,w))
cut(v)

findcost(v)



Simple case -- paths

Assume for a moment that each tree T in the forest is a path.
We represent it by a virtual tree which is a simple splay tree.

=
(@
S
®
o)

©

()



Findroot(v)

Splay at v, then follow right pointers until you reach the last
vertex w on the right path. Return w and splay at w.



Mincost(v)

With every vertex x we record cost(x) = the cost of the edge
(X,p(x))

We also record with each vertex x mincost(x) = minimum of
cost(y) over all descendants y of x.




Mincost(v)
Splay at v and use mincost values to search for the minimum

Notice: we need to update mincost values as we do rotations.

A



Addcost(v,c)

Rather than storing cost(x) and mincost(x) we will store

Acost(x) = cost(Xx) - cost(p(x))
Amin(X) = cost(x) - mincost(x)

A
.
2 ®
3 (&)
@@OG’

@. /7,6

3,-4,2

) (o) 4,-3,0
1,-2,0 2,-1,0
‘ ; (® o, 0,0

Addcost(v,c) :
Splay at v,
Acost(v) +=c¢
Acost(left(v)) -=

similarly update
Amin



Addcost(v,c) (cont)

Notice that now we have to update Acost(x) and Amin(x)
through rotations

T

Acost’(v) = Acost(v) + Acost(w)
Acost’(w) = -Acost(V)
Acost’(b) = Acost(v) + Acost(b)



Addcost(v,c) (cont)

Update Amin:

A £

Amin’(w) = max {0, Amin(b) - Acost’(b), Amin(c) - Acost(c)}
Amin’(v) = max {0, Amin(a) - Acost(a), Amin’(w) - Acost’(w)}



Link(v,w,c), cut(v)

Translate directly into catenation and split of splay trees if we
talk about paths.

Lets do the general case now.

10



The virtual tree

* We represent each tree T by a virtual tree V.

The virtual tree is a binary tree with middle children.

el middle right
Think of V as partitioned into solid subtrees connected by

dashed edges

What is the relation betweenVand T ?

11



Actual tree

@
0,

G
@/@ é\® \®\
ﬁ ) SN

N

®\

12



Partition T Into
disjoint paths

Path decomposition

®
®
@(@ \
® O
i/ W @'%

13



Virtual trees (cont)

EachpathinT
corresponds to a solid
subtree in V

The parent of a vertex
X In T Is the successor
of x (in symmetric
order) in its solid
subtree or the parent
of the solid subtree if W Y

X IS the Igstin | olRo
symmetric order in

this subtree

14



Virtual trees (cont)




Virtual trees (representation)

Each vertex points to p(x) to its left son I(x) and to its right son

r(x).

A vertex can easily decide if it is a left child a right child or a
middle child.

Each solid subtree functions like a splay tree.

16



The general case

Each solid subtree of a virtual tree is a splay tree.

We represent costs essentially as before.

Acost(X) = cost(x) - cost(p(x)) or cost(x) is x Is a root of a solid
subtree

Amin(Xx) = cost(x) - mincost(x) (where mincost is the minimum
cost within the subtree)

17



Splicing

Want to change the path decomposition such that v and the root
are on the same path.

Let w be the root of a solid subtree and v a middle child of w

==>

Right(w)

Q Right(w)

(Y
/ VN
/ [N
/ i \
/ \ \
/ \ \
/ i \
\
\

Want to make v the left child of w. It requires:
Acost’(v) = A cost(V) - A cost(w)
Acost’(u) = A cost(u) + A cost(w)

Amin’(w) = max {0, Amin(Vv) - Acost’(v), Amin(right(w))- Acost(right(w))}
18



Splicing (cont)

What Is the effect on the path decomposition of the real tree ?

19



Splaying the virtual tree

Let x be the vertex in which we splay.
We do 3 passes:

1) Walk from x to the root and splay within each solid subtree

After the first pass the path )

from X to the root consists

entirely of dashed edges /@
X

2) Walk from X to the root and splice at each proper ancestor of x.

Now X and the root are in the
same solid subtree

3) Splay at x

Now X is the root of the entire
virtual tree. 20



Dynamic tree operations

w = findroot(v) : Splay at v, follow right pointers until reaching
the last node w, splay at w, and return w.

(v,c) = mincost(v) : Splay at v and use Acost and Amin to follow
pointers to the smallest node after v on its path (its in the right
subtree of v). Let w be this node, splay at w.

addcost(v,c) : Splay at v, increase Acost(v) by c and decrease
Acost(left(v)) by c, update Amin(v)

link(v,w,r(v,w)) : Splay at v and splay at w and make v a middle
child of w

cut(v) : Splay at v, break the link between v and right(v), set
Acost(right(v)) += Acost(v)

21



Dynamic tree (analysis)
It suffices to analyze the amortized time of splay.

An extension of the access lemma.

*Assign weight 1 to each node. The size of a node is the total number
of descendants it has . Rank is the log of the size.

Potential is ¢ times the sum of the ranks for some constant c. (So we can charge
more than 1 for each rotation)




Dynamic tree (analysis)

pass 1 takes 3clogn + k
k=#dashed edges on the

pass 2 takes k path

pass 3 takes 3clogn + 1 —(c-1)(k-1)

23



Proof of the access lemma (cont)

SR

(1) zig - zig

amortized time(zig-zig) =2 + AD =

2+1r’(x)+r’(y) +1'(z) - 1(x) - r(y) - r(z) <

2+r’(x)+r'(z) -r(x) -rly) < 2+1'(x)+1'(2) - r(x) - r(x) =
2+1(X)-r’'x)+r’(z) -r’x)+ 3(r’(x)—r(x)) <

2 + log(s(x)/s’(x)) + log(s’(z)/s’(x)) + 3(r’(x) — r(x)) <

2 +log([s’(x)/2]/s’(x)) + log([s’(x)/2]/s°(x)) + 3(r’(x) - (X)) = 3(r’(x) - (X))




Proof of the access lemma (cont)

(2) zig - zag
==>

amortized time(zig-zig) =2 + AD =

2+1r’(x)+r’(y) +1'(z) - 1(x) - r(y) - r(z) <

2+1°(y) tr'(z) -r(x) -ry) < 2+1(y) +1'(2) - r(X) - r(x) =

2+1°(y) -1(¥) T 1°(2) -1(X) +2(r’(x) - r(x)) <

2 + log(s’(y)/s(x)) + log(s’(z)/s(x)) + 2(r’(x) — r(x)) <

2 + log([s(x)/2]/s(x)) + log([s(x)/2]/s(x)) + 2(r’(x) - r(x)) < 3(r’(x) - 1(X))



