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Abstract— Scheduling of down-link transmission for data ap-
plications in wireless networks has been the focus of recent
research. Channel-aware scheduling algorithms were shown to
achieve significant performance gains by accounting for the time
varying reception capacities and exploiting their independence
across the mobile users. We deviate from these studies by
considering mass-transit systems, in which reception capacities
of the mobile users are not independent and are positively
correlated and thus pose a potential problem due to the bursty
traffic requirements they inflict on the cells. We study the
performance of these systems aiming at providing a solution to
this bursty traffic, and propose a down-link scheduling algorithm
that maximizes the resources allocated to the ”standard” mobile
users while obeying the delay constraints of the train mobile
users. We further propose a new architecture for train wireless
support systems, based on spatially separated reception train
antennas which achieves significant throughput gains. Analysis
of this system shows that the combination of the proposed
scheduling algorithm with the proposed architecture results in
significant system performance improvement.

I. INTRODUCTION

There has been a growing interest in data applications
within wireless networks, due to the increase in systems which
support them. One topic, which has been the subject of recent
research, is scheduling of down-link transmission for data
applications in wireless networks. It has been shown that
using channel-aware scheduling on the base-station down-link,
where the service is given at each point in time to a mobile user
based on his channel capacity, can result in a dramatic increase
of both the QoS of each mobile user and the overall system
performance. Such an approach has been taken in, amongst
others, [1],[2],[3] and [7].

Two factors contribute to such gains. The first is the
large degree of variance in channel capacities at the various
geographical positions in the cell, affected by the different geo-
graphical and physical conditions such as distance and fading.
The second is the movement of the users across the cell. Sim-
plistic algorithms may end up spending significant amount of
transmission resources (transmission time or slots) attempting
to deliver data to users whose capacity is momentarily very
low and thus become very inefficient. Sophisticated scheduling
algorithms, in contrast, account for the user mobility and for
the time-varying capacity caused thereby. Such algorithms can
therefore reach significant performance gains by attempting to
transmit to users with (momentarily) high capacity.

Models of these systems, and stochastic analysis of system

capacity, are based in prior literature on the assumption that
the channel capacities of the users are, over time, independent
of each other. Such an assumption implies that at each moment
it is likely that some users will have high capacity and some
low capacity, and that this situation will probably reverse
in future moments. Thus, dynamic channel-aware scheduling
algorithms that prioritize (momentarily) high capacity users
can achieve high system throughput and QoS gains. Such an
assumption is based on the belief that the physical position and
movement of the different users are quite independent of each
other. This assumption is very reasonable in standard wireless
systems. However, the growing scope of wireless services
introduces systems and situations where the behaviors of users
are strongly (and positively) correlated with each other.

Our interest is in wireless systems where the users inde-
pendence assumption is significantly violated, and where the
capacities of a significant number of the users are positively
and strongly correlated to each other. Such situations arise in
1) Mass crowd (e.g. sport) events, 2) Rush-hour car situations,
and 3) Mass-transit systems, in particular train systems. Of the
three, we focus on the third, due to its challenging dynamic
situations and the popularity of train transit.

The main approach for providing wireless coverage onboard
mass-transit vehicles, such as trains, is to equip the mass-
transit vehicle with a central antenna unit. The central antenna
unit communicates with the terrestrial wireless base-stations in
a manner which is similar to the way a standard user does.
Additionly, the central antenna unit connects to an internal
Onboard Wireless Network (OWN)1. Each user on board the
train connects to the OWN, and all the wireless traffic is
channeled through the central antenna unit to/from the base-
station. This is the approach taken by many companies, such
as PointShot, Icomera, 21Net and more (for a sample list
of these, see [5]). Such an approach solves many difficulties
resulting from the train speed and the need to penetrate
the external hull of the train. Our interest is in the traffic
scheduling conducted at the terrestrial base-station which is the
bottleneck of the wireless system and which must concurrently
serve both the standard users and the train users.

The introduction of a train system into the wireless system,
poses significant challenges on the scheduling of the wireless

1In some systems the OWN can be connected also to a satellite system.
Such connection is out of the scope for this study and is left for future research



transmission at the terrestrial base-station. The challenges are
due to the high number of active users residing on board a
train whose total traffic volume can create a significant load
on the base-station, since all of them appear in the cell at the
same time. Of course one could easily solve this problem by
increasing the base-station capacity or adding base-stations.
However, since the train remains within the cell for only a
small fraction of the time, such an increase is not economical,
as the base-station will remain at very low utilization most
of the time (e.g. an order of a few tens of seconds). Thus,
due to the train passage, the base-station is subject to frequent
drastic increases of load (load bursts), during which it must
maintain proper QoS for the standard users as well as for the
train users.

While from the cell’s perspective the load increase is
only momentary, from the train’s perspective this issue is a
persistent one, since in every cell passed by the train, the
overall load, during the passage moments, is high. Thus, cell-
perspective solutions that might attempt to negatively discrim-
inate the train users, on the grounds that the period of overload
is only momentary, will result in very poor performance to the
train users for a long duration.

The purpose of this paper is to study this system and deal
specifically with its bursty traffic nature. We aim at proposing
mechanisms as well as base-station scheduling algorithms for
coping with these problems and for providing efficient system
operation.

After a description of the model (Section II) we start this
work (Section III) with constructing a base-station scheduling
algorithm designed to address the problem. We recognize that
since the train moves across many cells and shifts significant
loads from one cell to another, an optimal solution has to
involve all cells at once. This, however, might be too complex
a scheduling problem, due to the different (non-train) demands
posed on the various cells, and the variability of these demands
over time. We therefore propose an approach that decomposes
the problem and allows us to deal with it in each cell in
isolation. The approach aims at optimizing the scheduling
of the train transmissions so as to minimize the number of
transmission time dedicated to it in the cell, while obeying the
delay constraints of its transmissions. The scheduling accounts
for the reception capacity of the train that varies as a function
of the distance from the base-station. We propose a scheduling
algorithm, called Bounded Slot Delay (BSD), and prove its
optimality.

We continue (Section IV) to recognize that the significant
length of the train implies that at any given moment in
time the reception capacities, at different parts of the train,
significantly vary from each other. Aiming at exploiting this
property, we propose a new train architecture called Multi-
Antenna Spatially-Separated (MASS), in which the train uses
a multiplicity of antennas, spread over the train, to which the
base-station may transmit, and a switching mechanism that at
every moment selects only the antenna with (momentarily) the
highest reception level to be operative. Since our focus in this
work is on the effects of distance on reception capacity (see

Eq. (1), the selection of the reception antenna is based on the
antennas’ distances from the base-station. Our analysis reveals
an optimal rule for placing n > 1 antennas on the train. We
further derive the gains of a MASS system as a function of n
and conclude from this derivation that the largest marginal gain
is achieved during by transition from one antenna to n = 2
antennas.

We then (Section V) discuss how BSD can be combined
with this new MASS architecture, in order to significantly
improve the QoS to both train and cell users. Lastly (Section
VI) we use numerical results to evaluate the performance of
BSD and MASS.

II. MODEL DESCRIPTION

A. Mobile network

A wireless (cellular) network consists of base-stations which
are geographically spread, and users. The connection of the
user to the network is done via a wireless link, typically
to/from the base-station that is closest to the user. This means
that during any session, the information transmitted to the user
(voice, Web data, file transfer etc.) and from the user reaches
the network via the closest base-station.

The effective transmission rate (”throughput”) at which the
(closest) base-station can transmit to the user depends on many
factors. One central factor is the distance between the user and
the base-station: the closer the user is to the base-station, the
higher the effective rate. Specifically, the impact of distance on
the reception level is believed to be modeled by the function

Capacity(x) = xα (1)

for some −4 ≤ α ≤ −2, where x is the distance of the user
from the base-station. Thus, the user, as well as the overall
system, can benefit from having the user close to the base-
station. Other factors which affect the user reception capacity
rate, such as fading, are not dealt with in this paper. Let
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BS := (bsi ∈ R2)i∈Z be an infinite list of base-stations. In
this paper we limit ourselves to those base-stations which are
close enough to train tracks, so that at some point on the
tracks they are the closest to the tracks, and thus might be
required to support the users on the train. We list the base-
stations according to their order along the train tracks, which
are assumed to be of infinite length. For each base-station, let
di represent the minimal (euclidian) distance of bsi from the
train tracks, and for each pair of base-stations let zi,j be the
distance between them, sometimes denoted simply z. Figure
1 portrays this model, and Figure 2 reflects the fluctuations in
the reception capacity over time as the train moves through
the cells. Assuming that the train is moving at approximately
constant speed, there exists a linear correlation between the
time the train is within the cell and the length of the tracks. We
shall therefore commonly use the same variables in referring
to both distance and time (measured in transmission slots and
the distance passed during one such slot).

B. Users

Mobile users are classified into cell users, which are stan-
dard mobile users roaming freely in their respective cells, and
train users, which are train passengers and connect to the
OWN on-board the train. All train users can be transmitted
to in parallel, yet must share throughput. We therefore treat
the train as a single (large) user throughout the paper.

We use a time-slotted model, where time is divided into
short transmission slots, and during each slot the base-station
transmits to a single user chosen according to some predefined
policy. Many such policies exist, a class of which is commonly
referred to as ”channel-aware” policies. These policies decide
which user to transmit to at each slot, based on, among other
considerations, the S/N ratio of all users currently requesting
service, which reflects the amount of data (packets) which
can be transmitted to that user during the specific slot. This
information is collected by the base-station at the beginning
of each slot.

Each user u is associated with two time-dependent func-
tions. The first is the data-arrival rate denoted Inu(t), rep-
resenting the amount of packets which arrive at the base-
station for transmission to user u at slot t (all packets are
assumed to be of equal size). Packets which are not forwarded
immediately to u are stored in a buffer until the base-station
allocates a slot for transmitting them. Packet transmission is
continuous: a packet can be ”divided” and transmitted over
more than one slot (e.g. half a packet in slot t and the other
half in slot t + 1).

The second is the user’s reception capacity at slot t, denoted
Cu(t). When a slot is allocated to a specific user, the base-
station transmits the buffered packets according to order of
arrival, up to the user’s reception capacity limit. Furthermore,
due to the proportionality between distance and time men-
tioned earlier, we shall commonly use the notation Cu(x) to
refer to the capacity of user u at point x on the tracks.

At several points during the paper, some of these variables
shall be treated as constants, or we may refer to their expected

value. In such cases they shall be denoted Cu, Inu.
Each user u, is associated with a constant delay constraint

wu, reflecting the maximal delay allowed for its packets,
depending its service type. In this paper we limit ourselves
to dealing with data transfers, and assume a maximal delay
constraint uniformly applied to all users, denoted wmax.

III. EFFICIENT TRANSMISSION SCHEDULING ALGORITHM:
LOAD MINIMIZATION UNDER DELAY CONSTRAINTS

The introduction of train wireless support into a wireless
system poses significant challenges for the scheduling of the
wireless transmission at the terrestrial base-station. The reason
is that trains can potentially harbor many users simultaneously,
and their collective requirements from the wireless system
can cause a serious overload to the base-station. Since the
train remains within the cell for only a small fraction of time,
adding base-stations in the area to support this increase is
not economical, as each base-station will remain at very low
utilization most of the time.

A scheduling policy that would consider all users (on
train or off-train) similarly (e.g. using the approach taken
by [1]) will end up negatively discriminating the train users
considerably. The reason is that the overload experienced when
the train passes in a cell will degrade service to all users in
the cell; while for the cell users this will be a very short
(and temporary) degradation, for the train users this will be
permanent, since they will experience it in every cell.

Furthermore, an overall optimization of the scheduling
problem accounting for both the train users and the cell users
must account for the train transition across cells and thus
must consider all the users in all the network cells. Such an
optimization looks intractable.

For these reasons, we propose an alternative approach that
decomposes the problem and treats the train in each cell in
isolation, focusing at every epoch on the cell in which the
train passes. During this period, our approach is to guarantee a
certain level of service for the train users, while minimizing the
resources allocated for servicing them. As stated earlier, wmax

denotes the maximal delay allowed for a packet addressed to a
train user. Under this constraint, we develop an optimal ”semi-
online” algorithm which minimizes the amount of transmission
slots used by the train. ”Semi-online” means that the algorithm
relies on the knowledge of the future reception capacity, which
is available to the system due to the static nature of the base-
station locations and train tracks layout.

The algorithm presented here is developed and analyzed
under the assumption that the train-data arrival rate is constant.
Applying this algorithm to more dynamic settings is possible
with some slight modifications, and is not discussed here.

A. Notation and Preliminaries

We treat the train as a single (large) user Tr and let the
data arrival rate be a constant InTr = r. Note that the fact
that the train represents a large number of users, combined
with the law of large numbers, implies that the total train
arrival rate is relatively constant. Without losing generality



normalize the train-data arrival rate and the reception capacity
by r, yielding for the analysis that InTr = 1, reflecting that
at every given slot a single new packet arrives at the base-
station for transmission to the train. The scaled value CTr(t)
now represents the amount of packets transmittable in slot t
(which now is not necessarily an integer).

Let Bu
alg(t) denote the number of packets not yet trans-

mitted by algorithm alg to user u by slot t (inclusive), and
let Servicealg(t) denote the list of packet indices which
are transmitted by alg during slot t. Note that due to the
normalization stated above, Bu

alg(t) may contain one index
to a packet fraction and Servicealg(t) may contain two such
fraction indices. Also, let Exu(t) := max{0, Cu(t) − Inu}
be the excess capacity at slot t, and in similar fashion, let

Exu[t1, t2] = min{
t2∑

t=t1

Cu(t)− (t2 − t1 + 1), wmax}

be the maximal amount of additional packets that can be
transmitted legally (meet the delay constraints) between slots
t1 and t2 (inclusive), in addition to packets (t1, ..., t2).

Definition 1: A user service allocation is a vector A ∈
{0, 1}T where T is the number of slots available for allocation
and A(t) = 1 iff the user is transmitted to at slot t. For some
user service allocation A, |A| denotes the number of slots
marked for service in user service allocation A. A service
block in user service allocation A is a set of consecutive slots,
all of which are marked for transmission (1). We denote a
service block from slot t1 to slot t2 as A[t1, t2].

A legal user service allocation is a service allocation which
obeys the delay constraints. Specifically, for any t s.t. A(t) = 1
in a legal user service allocation A, the base-station transmits

min{CTr(t), Bu
A(t), wmax}

packets at slot t according to the order of arrival (FIFO). Note
that by Bu

A(t) we refer to the amount of buffered packets at
slot t (inclusive) when using the user service allocation A.
Throughout this section we shall only be referring to train
service allocations and thus omit to mention this explicitly.

We conclude this sub-section with the following lemma,
used frequently throughout our discussion of the load mini-
mization under delay constraints problem:

Lemma 1: Let Exu[t1, t2] = w1 ≤ wmax and for all t1 ≤
t ≤ t2 let Cu(t) ≥ Inu. Also, let Bu

alg(t1) = w2, and denote
w = min{w1, w2}. Then A[t1, t2] can transmit legally ((t2 −
t1 + 1) + w) · Inu packets.

Proof: The proof is shown for Inu = 1, and the general-
ization is trivial. Obviously, A[t1, t2] can transmit only packets
which have arrived by t2 and have not yet been transmitted.
Thus, the amount of packets which can be transmitted is
bounded by (t2− t1 +1)+w2. In similar fashion, the amount
of packets that can be transmitted by A[t1, t2] is bounded by
(t2− t1 +1)+Exu[t1, t2] = (t2− t1 +1)+w1, so we got the
upper bound. From here on let w = w1 ≤ w2, and we show
that exactly (t2−t1+1+w) packets can be transmitted during
this service block, without violation of their delay constraints.

Since Inu = 1, at every slot a single packet enters the
buffer. At the same time, at every slot Cu(t) ≥ Inu, so at
each slot at least one packet is transmitted, which ensures that
the buffer will never grow beyond it’s size at the beginning of
t1. Thus, if at slot t1 the buffer is of size w2 ≤ wmax, then,
due to FIFO, the delay constraints will not be violated until
the end of the service allocation block. Also, until the buffer is
emptied, at each slot the capacity will be utilized fully. From
our assumption that w = w1 ≤ w2, the buffer will not empty
before the end of t2, so a total of (t2 − t1 + 1 + w) packets
are transmitted.

B. Basic Properties

Though we have imposed no explicit limitations on the
relationship between the data arrival rate and the reception
capacity values, the introduction of delay constraints into the
model allows to limit discussion to specific capacity functions:

Theorem 1: Given a reception capacity function CTr() and
assuming InTr = 1, define a delay-bounded capacity function
as

CTr
∗ (t) = min{CTr(t), wmax · InTr} (2)

Then A is a legal service allocation w.r.t CTr iff A is a legal
service allocation w.r.t CTr

∗
Proof: Due to the delay constraint, in any legal service

allocation A all slots transmit up to wmax ·InTr packets, since
otherwise there is a packet which arrived more than wmax slots
earlier. This implies that if CTr(t) > wmax · InTr, the excess
capacity cannot be put to use and thus has no effect on the
resulting service allocation.
We therefore limit ourselves to delay-bounded capacity func-
tions. Given a general capacity function, all capacity which
exceeds wmax · InTr is discarded.

Each slot is associated with the cell within which it takes
place. For each cell i define Si

j to be a group of the j slots with
highest capacity within the cell, using as a tie-breaker the rule
that earlier slots are chosen over later slots. Since the reception
capacity of the train is a function of its distance from the base
station, and we assume the train tracks are laid out in a straight
line, Si

j is always a continuous block of slots, normally in the
middle of the duration in cell2. We further denote Si

max to be
Si

k = {t1, ..., tk} such that k is the minimal index for which

ExTr[t1, tk] = wmax. (3)

It is possible, theoretically, that such a k does not exist. This
might occur in cases where the data arrival rate is relatively
high and/or when the delay constraint is very relaxed (i.e.
wmax is very large). However, such cases are impractical and
uncommon in general. High data arrival rates are usually not
manageable within reasonable delay constraints, and extremely
relaxed delay constraints tend to lower the QoS of users. In
this paper we assume, therefore, that such a k exists.

2Recall we are dealing here in delay-bound capacity functions. If the
original function was not delay bound, we still choose the slots to make
up Smax according to the order in which they were in the original function.



Observation 1: CTr(t) > InTr for all t ∈ Smax, since for
any slot t in which CTr(t) ≤ InTr we know ExTr(t) = 0, so
from minimality of |Smax| such a slot would not be included
in Fmax.

Observation 2: For any Si
j ⊆ Si

max, Si
j = {t1, ..., tj},

the minimal amount of slots required for transmitting j +
ExTr[t1, tj ] packets within cell i is j. The reason for this
is that, on the one hand, if the buffer has at least ExTr[t1, tj ]
packets at slot t1 then Si

j can transmit all these packets and
t1, ..., tj ; and on the other hand, the slots in Si

j are the highest
j slots in the cell in terms of reception capacity, so any other
group of j slots cannot do any better. Also, such a transmission
is possible due to Lemma 1, relying on Observation 1 to ensure
the requirements of the lemma.

Si
max can transmit packets t1−wmax, ..., tk. Due to obser-

vation 2, an optimal service allocation for cell i alone would
allocate Si

max for transmission: it is the optimal allocation for
all the packets transmitted in it, and furthermore due to the fact
that it reaches the limit of delay constraints, no other packets
within the cell could have been transmitted by any of the slots
in Si

max. It also ensures the buffer to be empty at the end of
the service block.

However, it is possible that in some cases, not all of Si
max

would be used for transmission. There are two possible causes
for this. First, the last slot in Si

max may have more capacity
than required for transmitting the remaining buffer, so it might
be preferable to postpone transmission to a later slot. Such a
scenario results from the discreteness of the model and could
be avoided by moving to a continuous model and can, at most,
reduce the number of slots allocated by one. Second, some
packets tk−x, ..., tk, might be transmitted more efficiently in
some future cell which has slots of higher capacity.

The second case is essentially a form of packet postponing:
the system realizes that though it could transmit all packets
in the buffer with Si

max, by refraining from this the overall
results will be better due to future capacity values.

However, packet postponing can be optimal only if there
are some slots within wmax slots after tk ∈ Si

max with higher
capacity than tk. Such cases are very rare when dealing with
reasonable values for wmax in normal sized cells, which would
usually equal up to 1/3 of the slots in the cell, since Si

max

is usually tightly clustered around the center of the cell. We
therefore disregard such cases and assume a local point of
view throughout the paper, and assume Si

max is allocated for
use in any cell i.

C. Bounded Slot Delay algorithm (BSD)

Figure 2 qualitatively depicts the train reception correspond-
ing to the track cell structure given in Figure 1, based on
the assumption that the tracks form approximately a straight
line through the cell. The reception level increases as the
train approaches the base-station and drops as it moves away
from it. The reception level receives local minimum on the
intersection points between the cells where hand-off between
the cells is assumed to occur. In a multi-cell environment the
train goes through cycles of such reception level increase and

decrease. It should be noted that while the figure relates to
two symmetric cells, our analysis will not be limited to such
situations.

Our algorithm is constructed by dividing the cycle displayed
in Figure 2 into four segments, and finding the optimal alloca-
tion for each segment. Optimality is proven, at each segment,
relative to the whole cycle depicted in Figure 3, so the resulting
algorithm is optimal. The segments are (See Figure 3): a)
Segment A - monotonically decreasing, b) Segment B - all
slots around tmin s.t. CTr(t) < InTr, c) Segment C -
monotonically increasing, and d) Segment D - Smax. Segments
B and D are well defined. Segment A is then all the slots
from the end of segment D to the beginning of segment B,
and segment C is then all the slots from the end of segment
B to the beginning of segment D.

Our algorithm is designed to be the optimal slot allocation
over a single such cycle, where we assume to begin with a
empty buffer and ensure an empty buffer at the end. Thus,
optimal allocations of consecutive cells can be combined
easily. Note that though, as stated above, in the optimal
algorithm we might refrain from using the last slot in Smax,
this can only reduce the overall slot allocation by one, so we
disregard this in the sake of clarity.

The basic intuition behind the algorithm, which is described
next, is as follows. While the train has low capacity, it
transmits as little as possible and allows the buffer to grow.
When, on the other hand, capacity is very high (Smax),
it transmits all the buffered packets and the new incoming
packets. In between these two extremes, the algorithm strives
to keep the situation balanced: after the low capacity segment
it retains a close-to-full buffer, and after the high capacity
segment it retains a close-to-empty buffer.

From the definition of segment B, and as can be seen in
Figure 3, segments A, C, and D contain only slots for which
the following condition it met:

CTr(t) ≥ InTr. (4)

Lemma 2: Let CTr be a monotonically increasing function
over slots t1+wmax , ..., tP+wmax , which conforms to Equation
(4) for all t in the segment, and assume that for all t1 ≤
t ≤ twmax we have CTr(t) ≤ CTr(t1+wmax). Also, assume
the buffer is empty at slot t1. We want to use a minimal
amount of slots throughout the segment without violating the
delay constraints, but otherwise without any regard to the final
condition of the buffer. Then the following policy is optimal:
Refrain from transmitting as long as delay constraints are not

BA C D

In Tr

C (t)
Tr

Fig. 3. Capacity Cycle Segmentation



violated for some packet (in the next slot).
Proof: First we show that this policy yields a legal

service allocation. At every slot at most a single packet may
enter the buffer (InTr(t) = 1), thus each packet violates the
delay constraints in a different deadline. Since from (4) we
know that from slot t1 + wmax every single packet can be
transmitted in a single slot, applying the above policy cannot
violate the delay constraints, since the buffer is empty at slot t1
and thus the first violation is possible only after slot t1+wmax.

Next we prove optimality. For each slot t s.t. ABSD(t) =
1, denote by first(t) the first packet transmitted at slot t,
which then defines the set FIRST = {first(t)}t : ABSD(t)=1

. Note that since from each transmitted slot we take a single
representative, we get |ABSD| = |FIRST |. We prove the
lemma by showing that for every legal service allocation, every
packet in FIRST is served in a separate slot, and thus the
number of slots our algorithms uses is optimal.

Assume by way of contradiction there were two packets
{p1, p2} ⊆ FIRST , p1 < p2, s.t. {p1, p2} ⊆ ServiceA(s)
for some slot s, and let tpk

be the slot which served pk in
BSD. Recall that packets are served using FIFO policy by
both allocations, so in order to serve both p1 and p2, slot s
must comply to

ServiceBSD(s) ≥ p2 − p1 + 1

Since BSD served p1 when the delay constraint was reached,
and s must come no earlier than p2 this means p2 ≤ s ≤ tp1

and since the capacity is monotonically increasing, we get

p2 − p1 + 1 ≤ CTr(s) ≤ CTr(tp1)

from which we can conclude that BSD should also serve p2

at slot tp1 - contradicting our assumption that p2 = first(tp2).

The lemma implies that no transmission will occur during slots
t1, ..., twmax so the following also holds:

Lemma 3: Assume the conditions for Lemma 2 are met,
except for the fact that at slot t1 the buffer size is b, and once
again assume the final buffer size is of no consequence. Then
by using the policy described in Lemma 2 for the case of
an empty buffer, combined with transmitting these b buffered
packets over slots t1, ..., twmax in optimal fashion, results in
an optimal service allocation.

Proof: None of the b buffered packets can be transmitted
after twmax without violating their delay constraints, so they
must be transmitted over t1, ..., twmax . From Lemma 2, all
packets t1, ..., twmax are better off being transmitted after
twmax , so using the same allocation from Lemma 2 is optimal.
Since the two allocations do not intersect, the combination is
optimal.

Since we know that Smax is allocated for service, which by
definition can transmit all packets in a buffer of legal size, we
can apply Lemma 3 on slots that precede Smax, working back
from segment C and into previous segments. Specifically, if
segment B has > wmax slots, let P be the size of segment C
and the preceding slots t1, ..., twmax be the last wmax slots in
segment B. Relying on the fact that segment C complies with

Eq. (4) and segment B does not, the lemma is applicable, as
long as any buffered packets at slot t1 are cleared by twmax .
This is ensured by the following lemma:

Lemma 4: (Segment B) Let segment B be the sequence of
slots within a single cycle for which the capacity is less than
the train-data arrival rate. Formally, let th, tj be two slots s.t.
for all th ≤ t ≤ tj , CTr(t) < InTr, and tj − th is maximal.
Let x = (tj − th) − wmax for some x ∈ Z. Assuming the
buffer is empty at the beginning of the segment, Then: a) A
feasible service allocation exists only if

tj∑
th

CTr(t) ≥ x, (5)

and b) The optimal allocation would transmit no more than x
packets until the end of the segment, by using all the highest
capacity slots in the segment.

Proof: a) If x ≤ 0 the condition is met easily, and
no packets are transmitted. Otherwise, assume by way of
contradiction

∑tj

th
CTr(t) < x, then packet th + (x) will be

transmitted only after tj . This means the delay constraint was
violated, so no legal service allocation is possible.

b) To prove optimality we need to show that the optimal
allocation would not require to transmit more than x slots.
Assuming segment B has at least wmax slots, we treat two
cases:

1) If segment C is of size 0, segments B and D are adjacent.
Segment D can clear the buffer in optimal fashion, so
the allocation in B is optimal.

2) Otherwise, segment B must transmit all but the last
wmax packets in the buffer. Let t1, ..., twmax be the last
packets in segment B, applying the policy in Lemma 3
is optimal.

The case in which segment B has less than wmax slots is
considered later on in this section.

The optimal transmission of these x packets is achieved by
using the slot with highest capacity in Segment B, the proof
of which is simple and left out due to lack of space.

Lemma 5: (Segment A) Assume CTr is a monotonically
decreasing function over slots t1, ..., tP , which conforms to
Equation (4) for all t in the segment. Assume as well that
CTr(t1) ≥ BTr

BSD(t1). The optimal transmission policy is:
(a) Transmit at slot t such that CTr(t + 1) < BTr

BSD(t1) (b)
Cease transmission for the rest of the segment starting from the
first slot t which begins with an empty buffer and CTr(t) ≤
CTr(t + wmax).

Proof: Let ABSD be the service allocation defined by
the above policy. We need to prove that ABSD is a legal
service allocation, and that it is optimal, i.e. it uses the minimal
amount of slots.

Legality is obvious: we begin with a slot which has the
ability to transmit all the buffer, and since we conform to
Equation (4), we always transmit before the buffer exceeds the
capacity. Since we are limited to delay-bound capacity values,
this implies that the buffer never exceeds wmax packets.



Regarding optimality, if condition (b) is met, since we stop
at the first such occurrence we know that slot t + wmax is
part of a monotonically increasing sequence of slots which
also conform to Equation (4), and the inequality meets the re-
quirements of Lemma 2, so the optimal allocation is achieved
by refraining from transmission. Otherwise, let us analyze the
alternate possibilities for transmitting the buffer: transmitting
earlier would imply that we transmitted less packets for a
single slot, so we gain nothing by doing so. Transmitting
later would require at least 2 slots just to transmit the packets
buffered at slot t, since for all slots t + 1, ..., t + wmax the
capacity is lower (condition (b) was not met). Since these
same packets could be transmitted in a single slot at slot t,
there is no loss in doing so at the earlier slot.

If condition (a) is met somewhere in segment A, this implies
that segment B is of size < wmax. Otherwise, we continue
to perform the policy in condition (b) for transmission in
segment A. In such a case, one interesting result of the above
transmission policy is that at the end of segment A the buffer is
empty: : At least one packet enters the buffer at the beginning
of the last slot of segment A, so the amount of buffered packets
is larger than the capacity of all slots in segment B, and
so according to the above policy the buffer shall once again
be emptied right before Segment B. We therefore can apply
Lemma 4on Segment B which has been proven to be optimal.

The overall description of BSD is next given.
BSD Description: 1. Considering the train-data arrival rate, al-
locate a central transmission block D = Smax. 2. Considering
the train-data arrival rate, allocate slots according to Lemma
4 for segment B. 3. What remains are segments A,C, which
are served according to Lemma 5 and Lemma 3. Note that the
optimality of each stage was not local but global, so we get
the following theorem, which concludes our claims:

Theorem 2: BSD is optimal over the combination of seg-
ments A through D.

The dynamic nature of BSD allows for the train-data arrival
rate to vary. As the train enters the cell, the base-station
monitors the data arrival rate and computes its mean, which
it then feeds to the above chart. Assuming the variance of the
data arrival rate is not too large, the service allocation will
remain close to optimal.

IV. THE MASS ARCHITECTURE FOR CAPACITY INCREASE

A. MASS Architecture

As described in the introduction, we propose the Multi-
Antenna Spatially-Separated (MASS) architecture. It consists
of a multiplicity of reception antennas placed on the external
train hull, as shown in Figure 4, and transmitting at each
allocated slot only to the antenna with the highest reception
capacity. Denote these antennas as A0, ..., An−1, indexed in
order of placement. Recall that the train tracks are assumed to
coincide with the x-axis, and let F (t) = (xt, 0) be the position
of the head of the train at time t. We make use here of the
notation previously defined to denote by Ci

j(t) the reception
capacity of antenna i relative to base-station j.

The relative distance between train antenna and the head of
the train is set, so the following is well defined:

Definition 2: An antenna deployment is a sequence
Dep =< d(F,A0), ..., d(F,An−1) > where d(p1, p2) is the
euclidian distance between two points in R2.
Note that we use the term Ai to denote both the antenna and
its position in R2. Given a position F (t), and assuming the
layout of the train tracks is of a straight line parallel to the
x-axis, the position of the i-th antenna at time t is: Ai(t) :=
F (t)− (Dep(i), 0).

Let Cj(p) be the reception capacity available for bsj at the
point p = (x, y). From Equation (1) we have

Cj(p) = Capacity(d(p, bsj)) = d(p, bsj)α (6)

and denote accordingly C (p) := maxj∈Z Cj(p) as the avail-
able transmission capacity at point p.

Under MASS n antennas are mounted on the train.
The reception capacity of antenna Ai will be Ci(t) :=
maxj∈Z Ci

j(Ai(t)) and since we transmit only to the train
antenna with highest reception capacity, the overall capacity of
the train at time t is defined as CTr(t) = max0≤i≤n−1 Ci(t).

B. MASS analysis - symmetric model

Our objective is to analyze the performance gains of MASS
and to derive the optimal antenna placement. The optimal
placement depends on the exact route taken by the train and the
specific positioning of the surrounding base-stations. Such a
solution is not manageable for several reasons, among which
are the large amount of cells through which the train may
pass, the performance sensitivity of a ”tailored made” design
to changes in the network structure, and the fact that the
train antennas must be relatively static. Instead, a more stable
design, which would be more simple to devise per network
and an not too sensitive to network changes, would be more
suitable.

To this end we analyze a simplified model, which assumes:
1) All base-stations are at an equal distance d from the train
tracks, and w.l.o.g. are positioned on the same side of the
tracks. They thus coincide with the line y = d, parallel to the
x-axis, and 2) Distances between neighboring stations are all
equal to each other (z).

Specifically, let bsi = ((i + 1
2 ) · z, d). A model where

these conditions are met will be called a symmetric model,
and denoted SY Md

z . We shall relax these constraints later on
during numerical evaluation of the applicability of this model.

By applying simple geometry, these requirements imply that
for each cell there is a stretch of train tracks of length z within
its scope, and each point on the train spends exactly z slots
within each cell.

switching system

A0 A1 A2 A3F

Fig. 4. MASS architecture



Lemma 6: Let x = j ·z+h for some j ∈ Z and 0 < h < z,
then C (x) = Cj(x)

Proof: Since the reception capacity decreases with the
distance, the maximal capacity is achieved for the closest base-
station, which is bsj .
Observe that, since the base-stations are placed at equal
distances of z from one another, the maximal capacity function
is periodic with a period of z:

C (x) = C (x + z) = C (x mod z) (7)

Since we assume that the train, during transit, is moving at
constant speed, the same can be claimed substituting distance
traveled with time passed. This last observation leads us to
the following lemma, implying that for any arbitrary antenna
deployment there exists a deployment that is as efficient, yet
its span is at most z:

Lemma 7: Let Dep =< d(F, A0), ..., d(F, An−1) > be an
arbitrary deployment, then there exists a deployment Dep′ =<
d(F,A′0), ..., d(F,A′n−1) > such that

1) for all 0 ≤ i ≤ n− 1, d(F, A′i) ≤ z.
2) there exists a permutation π over {0, ..., n−1} such that

∀t ∀ 0 ≤ i ≤ n− 1 Ci(t) = Cπ(i)(t)′

Proof: The values of such a deployment will be
{x mod z : x ∈ Dep} indexed in ascending order s.t.
A′i ≤ A′i+1. By definition, all values in Dep′ are smaller than
z. Condition 2 is also met from Eq. (7), from which we know
we can match up Ai → A′j = Ai mod z.
This lemma leads to the following key result:

Theorem 3: In SY Md
z , all possible capacity configurations

can be achieved on a train of length z.
The cyclic nature of the capacity function also allows us to
replace the symmetric model with an equivalent single-cell
model, which we define here:

Definition 3: MODd
z is a single-cell model with train

tracks of length z which are connected at their edges, i.e.
when the edge of the tracks is reached the train reenters the
cell at the beginning of the tracks. Additionally the distance
from both edges of train tracks to the base-station is equal.

Lemma 8: MODd
z and SY Md

z yield identical capacity
functions for all train antennas.

Proof: Examine train antenna i. Previously we observed
that Ci(t) = Ci(t mod z), which is exactly the capacity
function of Ai in the MODd

z model.
We rely on Lemma 8 and move to consider the MODd

z

model. Due to the nature of the Modulo-model, and the limited
distance over which train antennas can be deployed (Theorem
3), the function CTr(t) repeats itself every z slots.

Definition 4: Ant(i) ⊆ {1...z} is the group of slots during
which the train switches to train antenna Ai for reception.

Lemma 9: Let Ai and Aj be non-adjacent train antennas.
By moving the position of Ai between its neighbors no
modifications are made to Ant(j) in MODd

z .
Proof: First we note that, by moving Ai, slots can either

be allocated to or from Ai, but are never moved between

two other train antennas. This is due to the fact that slots are
allocated solely according to the distance factor, so by moving
Ai distances can change only relative to Ai.
Let Ah be a train antenna positioned between Ai and Aj , and
let us look at the position of these antennas at some slot t0,
which changed allocation as a result of the move:
• If t0 ∈ Ant(j), this means Aj is closer to the base-station

than Ah, and thus also closer than Ai after the move,
which contradicts the assumption that t0 is reallocated to
Ai after the shift.

• Otherwise, originally t0 ∈ Ant(i) and let us assume that
in the new configuration t0 ∈ Ant′(j). This implies that
there is a position of Ai between it’s neighbors for which
at slot t0 the distance between the base-station and both
Ai and Aj is equal. Since Ah is between these two, we
know that at t0 Ah is closer to the base-station than both
of them, which contradicts the assumption that Aj is the
closest at t0 after the shift.

We use this lemma to asses the effect of moving a train antenna
on the overall train reception capacity throughout the cell:

Lemma 10: Let A = {A1, A2, A3} be three adjacent train
antennas in the MODd

z model, placed according to index (A1

and A3 might be the same antenna). Let the distance d(A1, A3)
be set, and assume d(A1, A2)−d(A2, A3) = ε > 0. For some
δ ≤ ε/2, define A′2 := A2 − δ an antenna position which is
closer to A1 than A2. Then using A′2 instead of A2 improves
the performance of the train antenna array, in the sense that
integration over CTr(t) will increase overall.

Proof: From Lemma (9), the exact position of A2 can
affect the values of CTr(t) only between the peak capacities of
A1 and A3. So let p1 = d(A1, A2)/2 and p2 = d(A2, A3)/2.
The performance gain by repositioning as described is

−2
δ

∫ p1

p1−δ/2

(d2 +x2)−α/2dx+
2
δ

∫ p2+δ/2

p2

(d2 +x2)−α/2dx =

−2
δ

∫ p1

p1−δ/2

(d2+x2)−α/2dx+
2
δ

∫ p1−ε/2+δ/2

p1−ε/2

(d2+x2)−α/2dx =

−2
δ

∫ p1

p1−δ/2

[(d2+x2)−α/2−(d2+(x+(−ε+δ)/2)2)−α/2]dx,

which is greater than zero since ε > δ and α ≥ 2.
These lead to the key result of this section stating the optimal
antenna deployment strategy:

Theorem 4: (1) The optimal deployment of train antennas
over a train of length ln ≥ z ·(1− 1

n ) is a uniform deployment
s.t. d(Ai, Ai+1) = z

n . (2) The optimal deployment of train
antennas over a train of length ln < z · (1− 1

n ) is a uniform
deployment over the whole body of the train.

Proof: Once the positions of A0 and An−1 are set, it is
clear from Lemma 10 that the rest are deployed uniformly
between them. Otherwise, there is a triplet for which the
middle antenna can be moved to improve overall capacity.
Considering A0 and An−1, note that in the MODd

z model
they are also adjacent and thus we can apply Lemma 10 to



both {An−2, An−1, A0} and {An−1, A0, A1}. For the case of
ln ≥ z ·(1− 1

n ) this implies a distance of z
n between each pair,

and for the case of ln < z · (1 − 1
n ) this implies we need to

move An−1 and A0 as close as possible, which means placing
them at the train edges.

The actual capacity gained by this system is determined by
(1) the number of train antennas, (2) the ratio between cell-
size and minimal distance (z and d), and (3) the exact value
of α. See Section VI for numerical evaluation on this issue.

V. BSD AND MASS COMBINATION

Reviewing the BSD algorithm (Section III), it is clear that
the costly areas are those in which the reception capacity
in relatively low. Implementing our MASS architecture not
only increases the overall capacity but also ensures a better
lower bound on the local capacity for all transmission slots.
Also, high reception capacity is no longer localized at one
single point in the cell but rather spread out along the cell,
which should improve the performance of BSD greatly. It
is therefore natural to combine both of these to significantly
improve performance.

VI. NUMERICAL AND SIMULATIVE EVALUATION

A. Minimal slots using BSD

To evaluate BSD we compare it to a family of ”semi-
static” algorithms which begin transmission when a certain
percentage of the buffer is full (a parameter). Figure 5 depicts
the number of slots occupied by these algorithms (dotted line)
as a function of this parameter. The performance of BSD
is given by the solid line. The results show significant slot
savings achieved by BSD compared to all these algorithms.
Note that some of those algorithms (to the right of 0.7) even
violate the delay constraints (while BSD does not).
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Fig. 5. Number slots required by train (α = −3).

B. Capacity increase using MASS

Many factors affect the exact possible gain using MASS. In
Figures (6) and (7), we compare the possible relative gain
of a MASSarchitecture to that of a single-antenna system,
using any number of train antennas and using only 2 antennas,
respectively. Each Figure shows three curves, one for each of
the different integer values of α ∈ {−2,−3,−4} (represented
by the red, green and blue lines, respectively), and depicting
the capacity gain of an optimized MASSversus the z/d ratio

(ratio between the train-track span within the cell to distance
between the base station and the tracks). As can be sen the
gains highly depend on this ratio and are very significant for
the whole spectrum.

To consider a realistic environment we consider (via sim-
ulation) a case where the cell sizes randomly vary while the
train antenna placement is fixed. For this setting with 2 train
antennas, the train relative gain is 142 percent (for antenna
inter-distance of 250m); the gain is, nonetheless, not very
sensitive to train antenna placement (e.g at distance of 200m or
300m it is 140 percent) and thus any static placement around
such values will have significant gains.

In practice, however, the symmetric model is far from
representing the actual structure of a base-station array. In
order to asses the actual gain, we assume a distribution of
distances between base-stations and iterate over the different
distances between train antennas on board the trains.
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