
Techniques for Improving Software 
Productivity 
16/17 Fall Semester 

Homework Assignment 4: Dafny 
The code skeleton for the exercise can be found in: https://bitbucket.org/tausigplan/soft-

prod16 under exercises/ex4/, and the code from the demos can be found there under demos/. 

 

1. Consider the Dafny specification and code below, which is supposed to calculate the 

product of two numbers. Annotate the code so that it checks. 

method Product (m: nat, n: nat) returns (res:nat) 
  ensures res == m * n; 
{  
  var m1: nat := m; res := 0; 
  while (m1 != 0)  
  {  
    var n1: nat := n; 
    while (n1 != 0)  
    { 
      res := res + 1; 
      n1 := n1 - 1; 
    } 
    m1 := m1 - 1; 
  } 
} 

 
2. Prove, using Dafny, that the following algorithm satisfies its postconditions. 

method Divide(x : nat, y : nat) returns (q : nat, r : nat) 
  requires y > 0; 
  ensures q * y + r == x && r >= 0 && r < y; 
{ 
  q := 0; 
  r := x; 
  while (r >= y)  
  { 
    r := r - y; 
    q := q + 1; 
  } 
} 
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3. Prove the correctness of the following program, which performs bitwise addition of two 

numbers a0 and b0. You have to supply the appropriate invariant and ranking function. 

method Bitwise_add(a0 : int, b0 : int) returns (c : int) 
  requires a0 >= 0 && b0 >= 0; 
  ensures c == a0+b0; 
{ 
  c := 0; 
  var a, b, g, m := a0, b0, 1, 0; 
  while (a > 0 || b > 0) 
  {  
    m := m + a % 2 + b % 2; 
    a := a / 2; 
    b := b / 2; 
    c := c + g * (m % 2); 
    g := 2 * g; 
    m := m / 2; 
  } 
  c := c + g * m; 
} 
 
4. Prove the correctness of the following implementation of Linear Search. 

method find(a : array<int>, key : int) returns (index : int) 
  requires a != null; 
  ensures 0 <= index <= a.Length; 
  ensures index < a.Length ==> a[index] == key; 
{ 
  index := 0; 
  while (index < a.Length && a[index] != key) 
  { 
    index := index + 1; 
  } 
} 

 

  



5. Below, we show the functional definition of the factorial function, and a loopy program 

that supposedly computes the factorial of a number as well. Write suitable annotations 

to show that the latter in fact computes the factorial function.  

function Factorial(n: nat): nat 
{ 
  if n == 0 then 1 else n * Factorial(n-1) 
} 
method AdditiveFactorial(n: nat) returns (u: nat) 
  ensures u == Factorial(n); 
{ 
  u := 1; 
  var r := 0; 
  while (r < n)  
  { 
    var v := u; 
    var s := 1; 
    while (s <= r)  
    { 
      u := u + v; 
      s := s + 1; 
    } 
    r := r + 1; 
  } 
} 

 
6. Consider the following implementation of Binary Search, annotated with pre and post-

conditions. As you will find by pasting this code into Dafny, there is something wrong 

with either the annotations or the code. Explain what the problem is. 

method BinarySearch(a: array<int>, value: int) returns (index: int) 
  requires a != null && 0 <= a.Length; 
  requires forall j, k :: 0 <= j < k < a.Length ==> a[j] <= a[k]; 
  ensures 0 <= index ==> index < a.Length && a[index] == value; 
  ensures index < 0 ==> forall k :: 0 <= k < a.Length ==> a[k] != value; 
{ 
  var low, high := 0, a.Length; 
  while (low < high) 
    invariant 0 <= low <= high <= a.Length; 
    invariant forall i :: 0 <= i < a.Length && !(low <= i < high) ==> a[i] != value; 
  { 
    var mid := (low + high) / 2; 
    if (a[mid] < value)  
    { 
      low := mid; 
    } 
    else if (value < a[mid])  
    { 
      high := mid - 1; 
    } 
    else  
    { 
      return mid; 
    } 
  } 
return -1; 
} 


