Homework number 2
1. Symmetric zero sum game
A symmetric
two player game has u1(i,j)= u2(j,i).
For a zero sum
game matrix A it implies that ai,j= -aj,i.
Show that a
symmetric zero sum game has value zero.
2. e-Nash: Show, for every e > 0, an example of a two player game where there
is an e-Nash which in which both
players have a much higher payoff then in any Nash equilibrium.
3. Symmetric game: Show that every symmetric game has a symmetric Nash
equilibrium.
4. Action elimination:
a. Show that in a two-player zero sum game,
elimination of actions of the MAX player can only reduce the value of the game.
b. Show an example of a general two player
game in which eliminating a given action of player 1 can increase player 1
payoff in every Nash equilibrium.
The
homework is due April 20