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2.1 Coordination Ratio

Our main goal is to compare the ”cost” of Nash equilibrium (NE ) to the ”cost” of a global
optimum of our choice. The following examples will help us get a notion of the Coordination
Ratio:

S T

Figure 2.1: Routing on parallel lines

• Assume there is a network of parallel lines from an origin to a destination as shown
in figure 2.1. Several agents want to send a particular amount of traffic along a path
from the source to the destination. The more traffic on a particular line, the longer
the traffic delay.

• Allocation jobs to machines as shown in figure 2.2. Each job has a different size and
each machine has a different speed. The performance of each machine reduces as more
jobs are allocated to it. An example for a global optimum function, in this case, would
be to minimize the load on the most loaded machine.

In these scribes we will use only the terminology of the scheduling problem.
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Figure 2.2: Scheduling jobs on machines

2.2 The Model

• Group of n users (or players), denoted N = {1, 2, ..., n}

• m machines: M1,M2, ..., Mm

• ~s speeds: s1, s2, ..., sm (in accordance to Mi)

• Each user i has a weight: wi > 0

• ψ : mapping of users to machines:

ψ(i) = j

where i is the user and j is the machine’s index. Note that NE is a special type of ψ -
one which is also an equilibrium.

• The load on machine Mj will be:

Lj =

∑
i:ψ(i)=j wj

sj

• The cost of a configuration will be defined as the maximal load of a machine:

cost(ψ) = max
j

Lj
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Our goal is to minimize the cost. The minimal cost, sometimes referred to as the social
optimum is denoted by OPT and defined as follows:

OPT = min
ψ

cost(ψ)

Definition We name the ratio between the worst NE and OPT the Coordination Ratio and
define it to be:

CR =
maxNE cost(NE)

OPT

2.3 Points of equilibria

In our discussion we will attend two types of equilibria:

• Deterministic: Each user i is assigned to one machine, Mj.

• Stochastic: Each user i has a distribution pi over ~M . Note that the deterministic

model is a special case of the stochastic model where pi(j) =

{
1 if j = j0

0 otherwise
.

When each player chooses a certain distribution, the expected load on machine j is:

E[Lj] =

∑n
i=1 pi(j) ∗ wi

sj

Next we define for player i the cost of choosing machine j. This function represents the
point of view of player i: we define it as if he chose the machine in a deterministic manner.

Ci(j) =
∑

k 6=i

pk(j) ∗ wk

sj

+
wi

sj

= E[Lj] +
(1− pi(j)) ∗ wj

sj

In other words, Ci(j) is the load on Mj if player i moves to machine j.

In an equilibrium player i will choose the machine with the minimal cost (and therefore
he has no interest in changing to another machine). We define the cost to be:

Cost(i) = min
j

Ci(j)

Minimizing the cost function for player i means that pi(j) > 0 only for machines that
will have a minimal load after the player moves to them. For this reason, i actually shows
Best Response. (As such, for each machine j: If Ci(j) > Cost(i), then pi(j) = 0. In such a
case choosing Mj does not yield a Best Response).
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2.4 Bounding CR

First we will show a simple bound on CR.

Claim 2.1 For m machines, CR ∈ [1, m].

Proof: As any equilibrium point cannot be better than the global optimal solution,
CR >= 1. Therefore we need only to establish the upper bound.
Let S = maxj sj. In the worst case any Nash equilibrium is bounded by:

Cost NE ≤
∑n

i=1 wi

S

(Otherwise, the player can move to a machine with speed S for which its load is always less
than Cost NE).
We also have that

OPT ≥
∑n

i=1 wi∑m
j=1 sj

(As if we can distribute each player’s weight in an equal manner over all the machines).
Using the above bounds, we get:

CR =
Cost NE

OPT
≤

∑n

i=1
wi

S∑n

i=1
wi∑m

j=1
sj

=

∑m
j=1 sj

S
≤ m

2

Note 2.2 The bound now for CR is linear, but in Theorem 2.9 we will show that the bound
is in fact logarithmic.

Claim 2.3 Finding OPT for m=2, is an NP-Complete problem.

Proof: Given that s1 = s2, this problem becomes identical to dividing natural numbers
into two disjoint sets such that the numbers in both sets yield the same sum. This problem
(called partitioning) is known to be NP-C. 2

Note 2.4 We’ve seen models where the optimal solution was not an equilibrium (such the
’prisoner dilema’). In this example the optimal solution is a Nash Equilibrium.
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Figure 2.3: Example of CR = 4
3

2.5 Two Identical Machines, Deterministic Model

As can be seen in figure 2.3, at a Nash Equilibrium point, the maximal load is 4. However,
the maximal load of the optimal solution is only 3. Therefore CR = 4

3
.

Claim 2.5 For 2 identical machines in the deterministic model, CR ≥ 4
3
.

Proof: Without loss of generality, let us assume that L1 > L2. We define v = L2 − L1.

a. If L2 ≥ v :
L1 = L2 +v. Therfore Cost NE = L2 +v, and OPT is at least L1+L2

2
= L2 + v

2
. Hence,

CR =
NE

OPT
=

L2 + v

L2 + v
2

= 1 +
v
2

L2 + v
2

≤ 1 +
v
2

v + v
2

=
4

3
.

b. If L2 < v:
As before L1 = L2 + v. Therefore 2L2 < L1 < 2v. If L1 consists of the weight of more
than one player, we will define w to be the weight of the user with the smallest weight.
Since this is a Nash Equilibrium, w > v. (Otherwise the player would rather move).
However, L1 < 2v, hence it is not possible to have two or more players on the same
machine. Because of this, we will get one player on M1 which is the optimal solution,
and CR = 1 accordingly.

2
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2.6 Two Identical Machines, Stochastic Model

For an example we’ll look at 2 identical users, for which w1 = w2 = 1, as shown in figure
2.4. Each of the players chooses a machine at random.

User1 User2

1/2 1/21/21/2

M1 M2

Figure 2.4: Stochastic model example

At a Nash Equilibrium point, with a probability of 1/2, the players will choose the same
machine and with a probability of 1/2, each player will choose a different machine. Together
we get Cost NE = 1/2 ∗ 2 + 1/2 ∗ 1 = 3/2. The cost of OPT is 1 and so it follows that
CR = 3/2.

Theorem 2.6 For 2 identical machines in the stochastic model, CR ≤ 3
2

Proof: Let pi(b) be the probability that player i chooses machine Mb. We get that

L̄b = E[Lb] =
n∑

i=1

(pi(b) ∗ wi).

And the cost of player i when he chooses machine Mb becomes:

(E[Costi(b)]) = wi +
∑

j 6=i

(pj(b) ∗ wj) = Ci(b)

Since we have 2 machines, Cost(i) = min{Ci(1), Ci(2)}.
Basically, the least loaded machine, when ignoring the weight of user i, is chosen. Since each
user performs according to its optimal solution, we get that in a case of an equilibrium point,
if pi(b) > 0 then Ci(b) = Cost(i).
On the other hand, if Ci(b) > Cost(i) then pi(b) = 0. In other words, the player chooses her
Best Response according to what he sees.
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We now define qi to be the probability that player i chooses the most loaded machine.
We get that

Cost NE = E[max Lb] =
n∑

i=1

(qi ∗ wi).

Furthermore, we will define the probability of a collision on a machine (both user i and user
j choose the same machine) as tij.

Pay attention to the following properties:

1. In a Nash Equilibrium point,
∑

k 6=i(tik ∗ wk) + wi = Cost(i).

2. For m machines, Cost(i) ≤ 1
m

∑n
k=1 wk + m−1

m
wi

Proof:

Cost(i) = min
j

Ci(j) ≤ 1

m

m∑

j=1

Ci(j)

=
1

m

m∑

j=1

(E[Lj] + (1− pi(j)) ∗ wi) =
1

m

m∑

j=1

n∑

k=1

(pk(j) ∗ wk) +
m− 1

m
wi

=
1

m

n∑

k=1

wk +
m− 1

m
wi

Substituting m for 2 machines, we get that

Cost(i) ≤ 1

2

n∑

k=1

wk +
wi

2

3. qi + qj ≤ 1 + tij
Proof:
qi + qj − tij ≤ Pr[i and j choose the most loaded machine] ≤ 1.

4.
∑

k 6=i(1 + tik) ∗ wk ≤ 3
2

∑
k 6=i wk

Proof: ∑

k 6=i

(1 + tik) ∗ wk =
∑

k 6=i

wk +
∑

k 6=i

tikwk

=
∑

k 6=i

wk + Cost(i)− wi

using property 2:

≤ ∑

k 6=i

wk +
1

2

∑

k

wk +
wi

2
− wi

=
3

2

∑

k 6=i

wk +
1

2
wi − 1

2
wi
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≤ 3

2

∑

k 6=i

wk

To finish the proof of the theorem we now get:

Cost NE =
n∑

k=1

qkwk =

∑

k

(qi + qk)wk −
∑

k

qiwk

= 2qiwi +
∑

k 6=i

(qi + qk)wk − qi

∑

k

wk

≤ 2qiwi +
∑

k 6=i

(1 + tik)wk − qi

∑

k

wk

≤ 2qiwi +
3

2

∑

k 6=i

wk − qi

∑

k

wk

= (2qi − 3

2
)wi + (

3

2
− qi)

∑

k

wk

As previously shown, OPT ≥ max{1
2

∑n
k=1 wk, wi}.

Realize that one of the following 2 situations may occur:

1. There exists a player i such that qi ≥ 3
4
.

In such a case, (2qi − 3
2
)wi ≤ (2qi − 3

2
) ∗OPT .

Therefore,

Cost NE ≤ (
3

2
− qi) ∗ 2OPT + (2qi − 3

2
) ∗OPT

≤ [2qi − 3

2
+ 2(

3

2
− qi)] ∗OPT

=
3

2
∗OPT

2. For all i, qi ≤ 3
4

, therefore

Cost NE =
n∑

k=1

qkwk ≤ 3

4
∗

n∑

k=1

wk

≤ 3

2
∗OPT

In both cases we reach our desired result that Cost NE ≤ 3
2
∗OPT . 2
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2.7 Identical machines, deterministic users

First we define some variables:
wmax = max

i
wi (2.1)

Lmax = max
j

Lj (2.2)

Lmin = min
j

Lj (2.3)

Claim 2.7 In a Nash equilibrium, Lmax − Lmin ≤ wmax

Proof: Otherwise there would be some user j s.t. wj ≤ wmax, which could switch to the
machine with load Lmin. 2

Theorem 2.8 Given identical machines and deterministic users, CR ≤ 2

Proof: There are two options:

• Lmin ≤ wmax

Then Lmax ≤ 2wmax

But since OPT ≥ wmax we get CR ≤ Lmax

OPT
≤ 2

• Lmin > wmax

Then Lmax ≤ Lmin + wmax ≤ 2Lmin, which results in
OPT ≥ 1

m

∑
k wk ≥ Lmin. Therefore CR ≤ Lmax

OPT
≤ 2Lmin

Lmin
= 2

2
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2.7.1 Example of CR → 2

ε
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Figure 2.5: CR comes near to 2

Let’s examine an example of a configuration with a CR that approaches 2. Consider m
machines and m−1

ε
users with a weight of ε and 2 users with a weight of 1 as shown in figure

2.5. This is a Nash equilibrium with a cost of 2.
The optimal configuration is obtained by scheduling the two ”heavy” users (with w = 1)

on two separate machines and dividing the other users among the rest of the machines. In
this configuration we get:

C = OPT = 1 + 1
m
→ 1

2.8 Identical machines, stochastic users

2.8.1 Example

Consider the following example: m machines, n = m users, wi = 1, pi(j) = 1
m

. What is the
maximal expected load?

This problem is identical to the following problem: m balls are thrown randomly into m
bins; What is the expected maximum number of balls in a single bin? Let us first see what
is the probability that k balls will fall into a certain bin:

Pr =

(
m
k

) (
1

m

)k (
1− 1

m

)m−k

≈
(

c ∗m

k

)k (
1

m

)k

=
(

c

k

)k
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The probability that there exists a bin with at least k balls is 1 − (1 − ( c
k
)k)m which is

constant for k ∼ ln m
ln ln m

. Therefore the maximal load is roughly ln m
ln ln m

.

2.8.2 Upper bound

Using the Azuma-Hoeffding inequality we will establish a highly probable upper bound on
the maximum expected load. Using theorem 2.8 from the deterministic part we know that:

L̄j = E[Lj] ≤ 2OPT

We wish to prove that the probability of having a j for which Lj À L̄j is negligible. The
Azuma-Hoeffding inequality for some random variable X =

∑
xi, where xi are random

variables with values in the interval [0, z], is:

P [X ≥ λ] ≤
(

e ∗ E[X]

λ

)λ
z

Let us define λ = 2αOPT , z = wmax and xi =

{
wi if pi(j) > 0
0 otherwise

By applying the inequality we get:

P [Lj ≥ 2αOPT ] ≤
(

e ∗ E[Lj]

2αOPT

) 2αOPT
wmax

≤
(

e

α

)2α

which results in

P [∃j Lj ≥ 2αOPT ] ≤ m
(

e

α

)2α

Note that for α = Ω( ln m
ln ln m

) the probability is smaller than 1
2m

.

Theorem 2.9 For m identical machines the worst case CR is O
(

ln m
ln ln m

)

Proof: We shall calculate the expected cost including high loads which have a low
probability, and see that their contribution is O(1). For any random variable X and a
natural number A we know that:

E[X] ≤ A +
∞∑

i=A

P [X ≥ i]

In our case we get

E[cost-NE] ≤ A ∗OPT +
∞∑

α=A

P [cost-NE ≥ 2α ∗OPT ] ∗ 2OPT
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Therefore we define A = 2 ∗ c ln m
ln ln m

for some constant c and get

E[cost-NE] ≤ 2 ∗ c
ln m

ln ln m
∗OPT + m

∑
α

(
e

α

)2α

∗OPT

But since e
α
≤ 1

2m
we get

E[cost-NE] ≤ 2 ∗ c
ln m

ln ln m
∗OPT + O(1) ∗OPT

Resulting in

CR = O

(
ln m

ln ln m

)

2

2.9 Non-identical machines, deterministic users

We shall first examine a situation with a ’bad’ coordination ratio of ln m
ln ln m

, then establish an
upper bound.

2.9.1 Example

Let us have k + 1 groups of machines, with Nj machines in group j. The total number of
machines m = N =

∑k
j=0 Nj. We define the size of the groups by induction:

• Nk =
√

N

• Nj = (j + 1) ∗Nj+1

• N0 = k! ∗Nk

From the above it results that:

k ∼ ln N

ln ln N

the speed of the machines in group Nj is defined sj = 2j.
First we set up an equilibrium with a high cost. Each machine in group Nj receives j

users, each with a weight of 2j. It is easy to see that the load in group Nj is j and therefore
the cost is k. Note that group N0 received no users.

Claim 2.10 This setup is a Nash equilibrium.
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Proof: Let us take a user in group Nj. If we attempt to move him to group Nj−1 he will
see a load of

(j − 1) +
2j

2j−1
= j + 1 > j

On the other hand, on group Nj+1 the load is j + 1 even without his job and therefore
he has no reason to move there. 2

To achieve the optimum we simply need to move all the users of group Nj to group Nj−1

(for j = 1...k). Now there is a separate machine for each user and the load on all machines

is 2j

2j−1 = 2.

Corollary 2.11 The coordination ratio is ∼ ln m
ln ln m

2.9.2 Upper bound

The machines have different speeds; Without loss of generality let us assume that s1 ≥
s2 · · · ≥ sm. The cost is defined C = max Lj.

For k ≥ 1, define Jk to be the smallest index in {0, 1, . . . , m} such that LJk+1 < k ∗OPT
or, if no such index exists, Jk = m. We can observe the following:

• All machines up to Jk have a load of at least k ∗OPT

• The load of the machine with an index of Jk + 1 is less than k ∗OPT

Let C∗ be defined:

C∗ = bC −OPT

OPT
c

Our goal is to show that C∗! < J1 which will result in

C = O

(
log m

log log m

)
∗OPT

We will show this using induction.

Claim 2.12 (The induction base) JC∗ ≥ 1

Proof: By the way of contradiction, assume JC∗ = 0. This implies (from the definition
of Jk) that L1 < C∗ ∗ OPT ≤ C − OPT . Let q denote the machine with the maximum
expected load. Then L1 + OPT < C = Lq.

We observe that any user that uses q must have a weight wi larger than s1 ∗ OPT .
Otherwise he could switch to the fastest machine, reaching a cost of L1+

wi

s1
≤ L1+OPT < Lq,

which contradicts the stability of the Nash equilibrium. 2

We shall divide the proof of the induction step into two claims. Let S be the group of
users of the machines M1, . . . , MJk+1

.
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Claim 2.13 An optimal strategy will not assign a user from group S to a machine r > Jk.

Proof: From the definition of Jk, the users in S have a load of at least (k + 1) ∗ OPT .
Machine Jk + 1 has a load of at most k ∗OPT . No user from S will want to switch to Jk + 1
because the minimal weight in S is sJk+1 ∗OPT . Switching to machine r > Jk +1 will result
in a load bigger than OPT because sr < sJk+1. 2

Claim 2.14 If an optimal strategy assigns users from group S to machines 1, 2, . . . , Jk then
Jk ≥ (k + 1)Jk+1

Proof: Let W =
∑

i∈S wi.

W =
∑

j≤Jk+1

sj ∗ E[Lj] ≥ (k + 1)OPT (
∑

j≤Jk+1

sj)

Since an optimal strategy uses only machines 1, 2, . . . , Jk we get:

OPT (
∑

j≤Jk

sj) ≥ W

∑

j≤Jk

sj ≥ (k + 1) ∗ ∑

j≤Jk+1

sj

Since the sequence of the speeds is non-increasing, this implies that Jk ≥ (k + 1)Jk+1, the
induction step. 2

Now we can combine the two claims above using induction to obtain:

Corollary 2.15 C∗! < J1

By definition J1 ≤ m. Consequently C∗! ≤ m, which implies the following:

Corollary 2.16 (Upper bound) C = O( log m
log log m

)


