Compilation
0368-3133 (Semester A, 2013/14)

Lecture 10: Register Allocation

Noam Rinetzky

Slides credit: Roman Manevich, Mooly Sagiv and Eran Yahav

Promo: (Re)thinking Software Design

e Daniel Jackson (MIT)
e This Wednesday 12:00
e Gilman 223

What is the essence of software design? Researchers and
practitioners have for many years quoted Fred Brooks's
assertions that "conceptual integrity is the most important
consideration in system design" and is "central to product
qguality".

But what exactly is conceptual integrity? In this talk, I'll report on
progress in a new research project that explores this question by
attempting to develop a theory of conceptual design, and
applying it experimentally in a series of redesigns of common
applications (such as Git, Gmail and Dropbox)

What is a Compiler?

“A compiler is a computer program that
transforms source code written in a
programming language (source language)
into another language (target language).

The most common reason for wanting to

transform source code is to create an
executable program.”
--Wikipedia

Conceptual Structure of a Compiler

Compiler
Frontend Semantic Backend : | :
- : —>
Representation :
Lexical Syntax Semantic Intermediate Code
Analysis Analysis Analysis Representation

Generation
Parsing (IR)

From scanning to parsing

program text ((23 + 7) * x)

Lexical

Analyzer
token stream |— (23 + 7) . X
LP LP Num oP Num RP oP Id

Grammar: @

E—..|Id P

Id—‘a" | ...| 7 syntax ﬂvand
Op(*)

Abstract Syntax Tree

Op(+) Id(b)

Num(23) Num(7)

From scanning to parsing

program text ((23 + 7) * X)

Lexical

Analyzer
token stream |— (23 + 7) : X
LP LP Num oP Num RP oP Id

Grammar: @
E—..|Id (
(7 (_) .
Id — 4d | | Z s;/rnrtoarx ﬂvalld
Op(*)

Abstract Syntax Tree

Op(+) Id(b)

Num(23) Num(7)

Context Analysis

Op(*) Ab
stract Syntax Tree
Type rules AN y
El: int E2 :int Op(+) Id(b)
/\
El + E2 : int Num(23) Num(7)

N\

Semantic Error Valid + Symbol Table

Code Generation

K Valid Abstract Syntax Tree

c6en Symbol Table

Frame Manager Op(+) Id(b)

PN

Num(23) Num(7)

7 |

Intermediate Representation (IR)

!

mm) Executable Code)

Verification (possible runtime
Errors/Warnings

Register Allocation

Source
code

(program)

Lexical
Analysis

Syntax
Analysis

Parsing

AST

Symbol
Table
etc.

Inter.
Rep.
(IR)

Code
Generation

Target code

(executable)

e The process of assigning variables to registers

and managing data transfer in and out of

registers

e Using registers intelligently is a critical step in any
compiler

— A good register allocator can generate code orders of

magnitude better than a bad register allocator

Register Allocation: Goals

Lexical Syntax AST Symbol Code
Source Analysis Analysis Table lgter' Generation Ta rget code
code : etc. ep.
Parsing (IR) (executable)
(program)

e Reduce number of temporaries (registers)
— Machine has at most K registers
— Some registers have special purpose
e E.g., pass parameters
e Reduce the number of move instructions
— MOVE R1,R2 /J/R1 < R2

Registers

e Most machines have a set of registers, dedicated
memory locations that

— canh be accessed quickly,
— can have computations performed on them, and
— are used for special purposes (e.g., parameter passing)

e Usages
— Operands of instructions
— Store temporary results

— Can (should) be used as loop indexes due to frequent
arithmetic operation

— Used to manage administrative info

e e.g., runtime stack

Register allocation

e |In TAC, there are an unlimited number of
variables

e On a physical machine there are a small
number of registers:

— x86 has four general-purpose registers and a
number of specialized registers

— MIPS has twenty-four general-purpose
registers and eight special-purpose registers

Spilling

Even an optimal register allocator can
require more registers than available

Need to generate code for every correct
program

The compiler can save temporary results
— Spill registers into temporaries
— Load when needed

Many heuristics exist

Simple approach

e Straightforward solution:
e Allocate each variable in activation record

e At each instruction, bring values needed into

registers, perform operation, then store result to
memory

mov 16(%ebp), %eax
_ mov 20(%ebp), %ebx
X=Vy+2 ‘
y add %ebx, %eax
mov %eax, 24(%ebx)

e Problem: program execution very inefficient—
moving data back and forth between memory
and registers

Register Allocation

e Machine-agnostic optimizations
e Assume unbounded number of registers

— Expression trees (tree-local)

— Basic blocks (block-local)

e Machine-dependent optimization

e K registers
e Some have special purposes

— Control flow graphs (global register allocation)

Source
code

(program)

Register Allocation: IR

Lexical
Analysis

Syntax
Analysis

Parsing

AST

Symbol
Table
etc.

Inter.
Rep.
(IR)

Code
Generation

Target code

(executable)

16

Register Allocation

e Machine-agnostic optimizations
e Assume unbounded number of registers

— Basic blocks

e Machine-dependent optimization

e K registers
e Some have special purposes

— Control flow graphs (whole program)

Sethi-Ullman translation

e Algorithm by Ravi Sethi and Jeffrey D. Ullman
to emit optimal TAC

— Minimizes number of temporaries for a single
expression

Simple Spilling Method

e Heavy tree — Needs more registers than
available

e A “heavy” tree contains a “heavy” subtree
whose dependents are “light”

e Simple spilling
— Generate code for the light tree

— Spill the content into memory and replace
subtree by temporary

— Generate code for the resultant tree

Example (optimized): b*b-4*a*c

N\ PN

1

b 1y 4

*
2 &
14 1c

Example (spilled): x := b*b-4*a*c

2 2
14 2 4
1a 1C

t7 := b * b Xx =t/ — 4 * a * ¢

Register Allocation

e Machine-agnostic optimizations
e Assume unbounded number of registers

— EXxpression trees

e Machine-dependent optimization

e K registers
e Some have special purposes

— Control flow graphs (whole program)

Basic Blocks

e basic block is a sequence of instructions with

— single entry (to first instruction), no jumps to the middle
of the block

— single exit (last instruction)

— code execute as a sequence from first instruction to last
instruction without any jumps

e edge from one basic block B1 to another block B2
when the last statement of B1 may jump to B2

control flow graph

: P 1
e Adirected graph G=(V,E) oL [Pmi =0]B
| =
e nodes V = basic blocks l
e edges E = control flow ~ N
|
— (B1,B2) € E when control from B1 :__--;_! —3| t =4 % K
flows to B2 t,:=alt]
t;i=4*i
t,i=b[t,]
e |Leaders-based construction - ff:fro;fl”
6 5
— Target of jump instructions True fmd_::;s
. .] 7Z=I+
— Instructions following jumps =t
if i <= 20 goto B,
\ J

l False

Register Allocation for B.B.

e Dependency graphs for basic blocks
e Transformations on dependency graphs
e From dependency graphs into code

— Instruction selection
e linearizations of dependency graphs

— Register allocation
e At the basic block level

AST for a Basic Block

. |
VA VANV A NN
V2 NV NV A N N
/N

Dependency graph

VANEEVAN RVANEIVAN
AN IVANE VAN AN

it n Simplified Data

~21177 1 Dependency Graph
| {

SN N

N\, N,
()

Fas

Pseudo Register Target Code

Load Mem
Add Const
Load Reqg

Load Reqg
Mult Reg
Add Mem
Add Mem
Store Reg

Load Reqg
Add Const
Mult Mem
Store_Reg

a,R1l
1,R1
R1,X1

X1,R1
X1,R1
b,R1
c,R1
R1,x

X1,R1
1,R1
d,R1
R1l,vy

——

KB X Bk
3

o0 (_f'

| | |
O B3 O o ~
* 4+ + +

S5 B 35

+

Question: Why “y”?

X

| |
ANEVAN

N\, \.,
)

a/+\l

Question: Why “vy”?

False True

b

VANVAN

1;
r11;* n + c; b/ \}‘ \
- ()

PN

1

N

Question: Why “y”?

False True

N K
I

O
+
P

Question: Why “y”?

False True

}_l
=)
oo (—i'
=)

S .

B

O 35 O o ~

* + + +

y N
r11;* n + c; b/ \
)
a/ \l
Y 0;

y + X7

v, dead or alive?

False True False
int n; int n;
n:=a+1; n :=a + 1;
X : = b+ n*n + c; X :=b +n *n + c
n :(=n + 1; n :=n + 1;
y := d * n; y :=d * n;

True

y t X7

y+X,‘ y =

x, dead or alive?

False
int n;
n :=a + 1;
X = b +n *n + c;
n :=n + 1
y :=d * n

Q::

False
int n;
n :=a + 1;
X 1= b +n *n + c;
n :=n + 1
y = d * n

Register Allocation

e Machine-agnostic optimizations
e Assume unbounded number of registers

— EXxpression trees

— Basic blocks

e Machine-dependent optimization

e K registers
e Some have special purposes

— Control flow graphs (global register allocation)

Register Allocation: Assembly

Source
code

(program)

Lexical
Analysis

Syntax
Analysis

Parsing

AST

Symbol
Table
etc.

Inter.
Rep.
(IR)

Target code

(executable)

37

Register Allocation: Assembly

Source
code

(program)

Lexical
Analysis

Syntax
Analysis

Parsing

AST

Symbol
Table
etc.

Inter.
Rep.
(IR)

AST+Sym.Tab. | IR (TAC) generation |

IR Optimization

IR

“Optimized” IR

“Assembly”

Target code

(executable)

Assembly

38

Register Allocation: Assembly

Lexical Syntax

Source Analysis Analysis

COde Parsing
(program)

AST

Modern compiler implementation in C
Andrew A. Appel

Symbol
Table
etc.

Inter.
Rep.
(IR)

AST+Sym.Tab. | IR (TAC) generation |

IR Optimization

IR

“Optimized” IR

“Assembly”

Target code

(executable)

Assembly

39

“Global” Register Allocation

e |[nput:
— Sequence of machine instructions (“assembly”)
e Unbounded number of temporary variables

— aka symbolic registers
— “machine description”
e # of registers, restrictions
e Output

— Sequence of machine instructions using machine
registers (assembly)

— Some MOV instructions removed

Variable Liveness

e Astatementx=y+z
— defines x
— uses y and z

e Avariable x is live at a program point if its
value (at this point) is used at a later point

(y =42 \ x undef, y live, z undef

z=173 x undef, y live, z live
X=y+z X is live, y dead, z dead
print(x); x is dead, y dead, z dead

(showing state after the statement)

Find a register allocation

—————————————————

- p)
eax

b ?

c ? ebx

b=a+2

c=b*b

b=c+1

return b * c

Is this a valid allocation?

Overwrites previous

a eax
eax

b ebx

C eax ebx

b=a+2 e%

c=b*b eax = ebx * ebx

b=c+1 ebx =eax +1

return b * c

value of ‘@’ also
_—1 stored in eax

return ebx * eax

Is this a valid allocation?

a eax
eax

b ebx

C eax o ebx

b=a+2 ebx = eax + 2

c=b*b eax = ebx * ebx

b=c+1 ebx =eax +1

return b * c

return ebx * eax

Value of ‘a’ stored in
eax is not needed
anymore so reuse it

| for ‘b’

Is this a valid allocation?

a eax
eax

b ebx

C eax o ebx

b=a+2 ebx = eax + 2

c=b*b eax = ebx * ebx

b=c+1 ebx =eax +1

return b * a

return ebx * eax

Value of ‘a’ stored in
eax is not needed
anymore so reuse it

| for ‘b’

Main idea

For every node n in CFG, we have out[n]
— Set of temporaries live out of n

Two variables interfere if they appear in the same
out[n] of any node n

— Cannot be allocated to the same register

Conversely, if two variables do not interfere with
each other, they can be assigned the same register

— We say they have disjoint live ranges
How to assign registers to variables?

Interference graph

Nodes of the graph = variables

Edges connect variables that interfere with
one another

Nodes will be assigned a color
corresponding to the register assigned to

the variable

Two colors can’t be next to one another in
the graph

Interference graph construction

b=a+2
c=b*b
b=c+1

return b * a

Interference graph construction

b=a+2
c=b*b
b=c+1

{b, a}
return b * a

Interference graph construction

b=a+2
c=b*b

{a, c}
b=c+1

{b, a}

return b * a

Interference graph construction

b=a+2

{b, a}
c=b*b

{a, c}
b=c+1

{b, a}

return b * a

Interference graph construction

{a}

b=a+2

{b, a}
c=b*b

{a, c}
b=c+1

{b, a}

return b * a

ﬂ
> + * +
(on (o (ox N
*

Interference graph

1 regist
{a} eax
{b, a} ebx
3, c}

b, a} @

b=a+2

c=b*b

b=c+1

return b * a

Colored graph

b, a}

{a, c}

b, a}

' color register |

cax

Graph coloring

e This problem is equivalent to graph-
coloring, which is NP-hard if there are at
least three registers

e No good polynomial-time algorithms (or
even good approximations!) are known for
this problem

— We have to be content with a heuristic that is
good enough for RIGs that arise in practice

Coloring by simplification [Kempe 1879]

e How to find a k-coloring of a graph

e |[ntuition:
— Suppose we are trying to k-color a graph and
find a node with fewer than k edges

— If we delete this node from the graph and color
what remains, we can find a color for this node
if we add it back in

— Reason: fewer than k neighbors — some color
must be left over

Coloring by simplification [Kempe 1879]

e How to find a k-coloring of a graph
e Phase 1: Simplification

— Repeatedly simplify graph . /_>
— When a variable (i.e., graph node) is simplify

removed, push it on a stack

e Phase 2: Coloring !
— Unwind stack and reconstruct the graph as color
follows: \)

— Pop variable from the stack
— Add it back to the graph

— Color the node for that variable with a
color that it doesn’t interfere with

AN sack
AE

.............. stack:

.............. stack:

______________ stack:

______________ stack:

© © ~

Failure of heuristic

e If the graph cannot be colored, it will
eventually be simplified to graph in which
every node has at least K neighbors

e Sometimes, the graph is still K-colorable!

* Finding a K-coloring in all situations is an
NP-complete problem

— We will have to approximate to make register
allocators fast enough

AN ok
S

e — - Coloring k=2

. color register

eax
Some graphs can’t be colored

ebx | inKcolors:

@\

() ()

O 9 ® T O

e — - Coloring k=2

. color register

€ax

. Some graphs can’t be colored
ebx | inKcolors:

@\

() ()

o O M

e — - Coloring k=2

. color register

€ax

. Some graphs can’t be colored
ebx | inKcolors:

@\

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

@\ ek

no colors left for e!

Chaitin’s algorithm

e Choose and remove an arbitrary node,
marking it “troublesome”

— Use heuristics to choose which one

— When adding node back in, it may be possible
to find a valid color

— Otherwise, we have to spill that node

Spilling

e Phase 3: spilling
— once all nodes have K or more neighbors, pick a node
for spilling

e There are many heuristics that can be used to pick a node
e Try to pick node not used much, not in inner loop
e Storage in activation record

— Remove it from graph

e We can now repeat phases 1-2 without this node

e Better approach —rewrite code to spill variable,

recompute liveness information and try to color
again

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

@\ ek

no colors left for e!

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

(o)

stack:

(o) b

oo o

() O

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

(o)

stack:

) e
() O

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

(o)

@ :tack:
() O

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

(o)

@ Ztack:
() O

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

(o)

@ stack:
() O

Handling precolored nodes

e Some variables are pre-assigned to
registers

— Eg: mul on x86/pentium
e uses eax; defines eax, edx

— Eg: call on x86/pentium
e Defines (trashes) caller-save registers eax, ecx, edx
e To properly allocate registers, treat these
register uses as special temporary variables
and enter into interference graph as
precolored nodes

Handling precolored nodes

e Simplify. Never remove a pre-colored node
— it already has a color, i.e., it is a given
register

e Coloring. Once simplified graph is all
colored nodes, add other nodes back in and
color them using precolored nodes as
starting point

Graph Coloring by Simplification

Build: Construct the interference graph

1

Simplify: Recursively remove nodes with less than K
neighbors ; Push removed nodes into stack

1

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

1

Select: Assign actual registers (from simplify/spill
stack)

Actual-Spill: Spill some potential spills and repeat the
process

Optimizing MOV instructions

Code generation produces a lot of extra mov
instructions
mov t5, t9

If we can assign t5 and t9 to same register, we can get
rid of the mov

— effectively, copy elimination at the register allocation level

Idea: if t5 and t9 are not connected in inference graph,
coalesce them into a single variable; the move will be
redundant

Problem: coalescing nodes can make a graph
un-colorable

— Conservative coalescing heuristic

Coalescing

e MOVs can be removed if the source and
the target share the same register

e The source and the target of the move can
be merged into a single node
(unifying the sets of neighbors)

— May require more registers

— Conservative Coalescing

e Merge nodes only if the resulting node has fewer
than K neighbors with degree > K (in the resulting

graph)

Constrained Moves

e Ainstruction T < Sis constrained
— if Sand T interfere

e May happen after coalescing

- %G)
Y<Z /
/

e Constrained MQOVs are not coalesced

Constrained Moves

e Ainstruction T < Sis constrained
— if Sand T interfere

e May happen after coalescing

= Y

Y <—7 »

e Constrained MQOVs are not coalesced

Constrained Moves

e Ainstruction T < Sis constrained
— if Sand T interfere

e May happen after coalescing

= S

Y<Z

e Constrained MQOVs are not coalesced

Graph Coloring with Coalescing

Build: Construct the interference graph | (Special case: h
 Z merged node
Simplify: Recursively remove non-\M OV nodes with 18 1255 e le
less than K neighbors; Push removed nodes into stack neighbors J
¥
Coalesce: Conservatively merge unconstrained MOV
related nodes with fewer than K “heavy” neighbors
y All non-MOV
Freeze: Give-Up Coalescing on some MOV related related nodes
nodes with low degree of interference edges are “heavy”
]
Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack
¥
Select: Assign actual registers (from simplify/spill >
stack)
]
Actual-Spill: Spill some potential spills and repeat the
process

Spilling

e Many heuristics exist
— Maximal degree
— Live-ranges
— Number of uses in loops

e The whole process need to be repeated
after an actual spill

Pre-Colored Nodes

Some registers in the intermediate language are pre-
colored:

— correspond to real registers
(stack-pointer, frame-pointer, parameters,)

Cannot be Simplified, Coalesced, or Spilled
— infinite degree

Interfered with each other

But normal temporaries can be coalesced into pre-colored
registers

Register allocation is completed when all the nodes are
pre-colored

Caller-Save and Callee-Save Registers

e callee-save-registers (MIPS 16-23)
— Saved by the callee when modified
— Values are automatically preserved across calls

e caller-save-registers
— Saved by the caller when needed
— Values are not automatically preserved

e Usually the architecture defines caller-save and callee-
save registers
— Separate compilation
— Interoperability between code produced by different compilers/
languages
e But compilers can decide when to use caller/callee
registers

Caller-Save vs.

int foo(int a) {
int b=a+1;
£10);

gl(b);
return(b+2);

Callee-Save Registers

void bar (int y) {
int x=y+1;
£2(y);
22(2);

Saving Callee-Save Registers

enter: def(r,) enter: def(r,)

b3 < 17

r; <= b3,

exit: use(r-) exit: use(r-)

A Complete Example

enter: it ms Callee-saved registers
@ sl
e rlant a, inh B A b < r, Caller-saved registers
int d=0; il
int e=a; Wl
do {d = d+b;
R loop: d <~ d+b
} while (e>0); e «—e—1
return d; if e > 0 goto loop
} \ 4 7'y ok d
enter: ¢ <« r3
a <r ‘ o W a8
b L Ewe) -
quiee return (r1,r3 live out)
e «—a

P RO W = //\
o e:e—l 1'3\ b

if e > 0 goto loop / 1'2\ /

i o d
g0
return

A Complete Example

i o flant 4, inb B} 1
int d=0;
int e=a;
Ao {d' = qa¢b;
e = e~-1;
} while (e>0);
return d;
}
Uses+Defs Uses+Defs Spill
Hods outside loop within loop Degiee priority
a 2 +H% 0 Y[/ % e 0.50
b (. 1L e 1 95/ 4 7= 2.75
c ¢ 2. =2410x 0O) / G = 0.33
d C 2400 -2 ¥/ & = 5.50
e (oL =18k 3)/ & = 1033

enter:

loop:

o Rrl
<rtill
o
~ 0
= O

QU QU S Q o

e «—e—1

if e > 0 goto loop
r1<-—d

i Y X

return (r1,r3 live out)

e

P

-
.
.
.

A Complete Example

Spill ¢

A Complete Example

YR e ae &rl
\ / \\ —
HAT A Ay (Alt: ..}
freeze r,ae-d
Simplify d
e |
dc

s ..a'\d

pop d
(Alt: ae+rl) ' >

C

I3 I7b

50

riac

\ 5=04 - &
N ' o o
- - - - x' J& *\4
¢ ~ s

enter:

loop:

A Complete Example

EL Y13
M[cioc] < c1
¢ g ol &

b e 5

d <0

e «<—a

d <d+b>b

e «—e—1

if e > 0 goto loop
ri «~d

c2 < Mlcioc]

I3 = £2

return

1'3\r

</ \/\

C2\ 1'1

r3C1C2 ~ry

=Y e N

a\d

I‘2b

a&e, b&r2 | 1C127
— \/ \\

Eig-----ae——d

A Complete Example

r3C1C2

i

f....-- ae——d

enter:

loop:

Mlcioc] < 13
e 0

ry «<ri3t+nr
rp«<r—1

if r; > 0 goto loop
ry < 13

r3 M[cioc]
return

I(O pt”

G

enter:

loop:

ae &rl
Simplify d

Pop d

i3 13

M[cioc] < 13
ry = rj

19 %=

r3 < 0

ry £

r3 «<r3+n
rp < rp—1
if r1 > 0 goto loop
Il -5}

r3 < M[cioc]
¥y & r3
return

r3C1C2 b
|
\\\\\\\\rlae
d
r3C1C2 I'2b
|
\\\\\\\\rlae
gen code

Interprocedural Allocation

Allocate registers to multiple procedures

Potential saving
— caller/callee save registers
— Parameter passing

— Return values
But may increase compilation cost
Function inline can help

Summary

e Two Register Allocation Methods

— Local of every IR tree

e Simultaneous instruction selection and register
allocation

e Optimal (under certain conditions)

— Global of every function
e Applied after instruction selection
e Performs well for machines with many registers
e Can handle instruction level parallelism

e Missing
— Interprocedural allocation

The End

