Compilation

0368-3133 (Semester A, 2013/14)

Lecture 11: Data Flow Analysis & Optimizations

Noam Rinetzky

Slides credit: Roman Manevich, Mooly Sagiv and Eran Yahav

What is a compiler?

"A compiler is a computer program that transforms source code written in a programming language (source language) into another language (target language).

The most common reason for wanting to transform source code is to create an executable program."

--Wikipedia

Source Code (brodler registers)

Najve" IR Assembly"

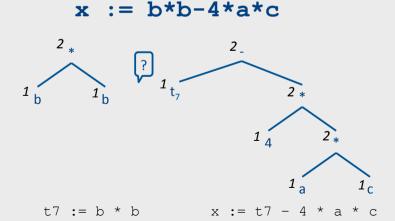
Assembly

As

Registers

- Most machines have a set of registers, dedicated memory locations that
 - can be accessed quickly,
 - can have computations performed on them, and
 - are used for special purposes (e.g., parameter passing)
- Usages
 - Operands of instructions
 - Store temporary results
 - Can (should) be used as loop indexes due to frequent arithmetic operation
 - Used to manage administrative info
 - e.g., runtime stack

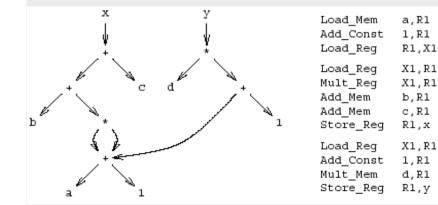
Register Allocation for Expression trees

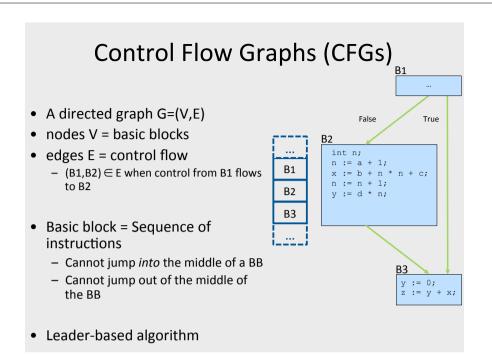


Register Allocation

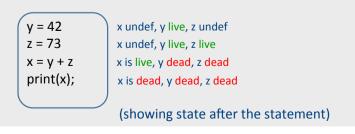
- Machine-agnostic optimizations
 - Assume unbounded number of registers
 - Expression trees (tree-local)
 - Basic blocks (block-local)
- Machine-dependent optimization
 - K registers
 - Some have special purposes
 - Control flow graphs (global register allocation)

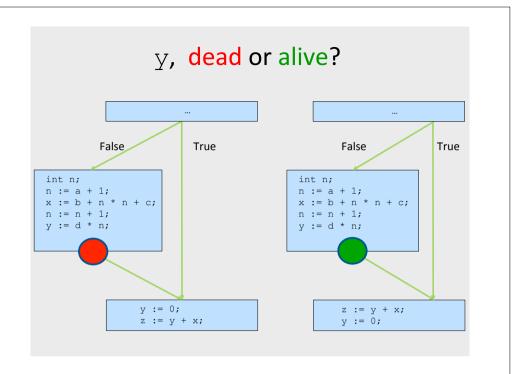
Register Allocation for Basic Blocks





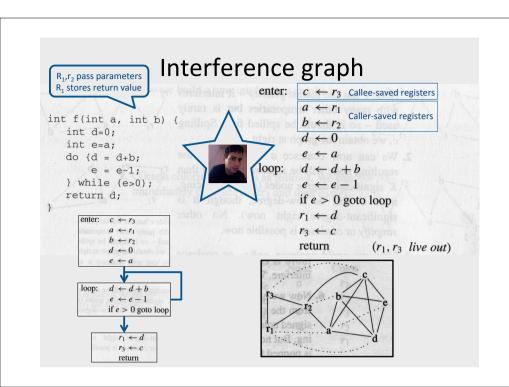
- A statement x = y + z
 - defines x
 - uses y and z
- A variable x is live at a program point if its value (at this point) is used at a later point





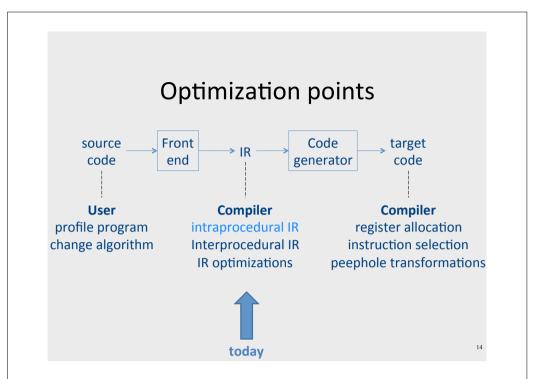
Global Register Allocation using Liveness Information

- For every node n in CFG, we have out[n]
 - Set of temporaries live out of n
- Two variables *interfere* if they appear in the same out[n] of any node n
 - Cannot be allocated to the same register
- Conversely, if two variables do not interfere with each other, they can be assigned the same register
 - We say they have disjoint live ranges
- How to assign registers to variables?





- In order to optimize a program, the compiler has to be able to reason about the properties of that program
- An analysis is called **sound** if it never asserts an incorrect fact about a program
- All the analyses we will discuss in this class are sound
 - (Why?)



int x; int y; if (y < 5) x = 137; else x = 42; Print(x);</pre> "At this point in the program, x holds some integer value"

Soundness int x; int y; if (y < 5) x = 137; else x = 42; Print(x);</pre> "At this point in the program, x is either 137 or 42"

```
(Un) Soundness

int x;
int y;

if (y < 5)
    x = 137;
else
    x = 42;

Print(x);</pre>
"At this point in the program, x is 137"
```

Soundness & Precision

```
int x;
int y;

if (y < 5)
    x = 137;
else
    x = 42;

Print(x);</pre>
"At this point in the program, x is either 137, 42, or 271"
```

Semantics-preserving optimizations

- An optimization is semantics-preserving if it does not alter the semantics (meaning) of the original program
 - ✓ Eliminating unnecessary temporary variables
 - ✓ Computing values that are known statically at compiletime instead of computing them at runtime
 - ✓ Evaluating iteration-independent expressions outside of a loop instead of inside
 - X Replacing bubble sort with quicksort (why?)
- The optimizations we will consider in this class are all semantics-preserving

A formalism for IR optimization

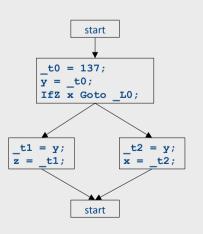
- Every phase of the compiler uses some new abstraction:
 - Scanning uses regular expressions
 - Parsing uses Context Free Grammars (CFGs)
 - Semantic analysis uses proof systems and symbol tables
 - IR generation uses ASTs
- In optimization, we need a formalism that captures the structure of a program in a way amenable to optimization
 - Control Flow Graphs (CFGs)

21

Local optimizations

```
int main() {
   int x;
   int y;
   int z;

   y = 137;
   if (x == 0)
        z = y;
   else
        x = y;
}
```



Types of optimizations

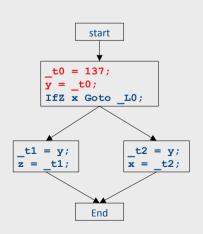
- An optimization is local if it works on just a single basic block
- An optimization is global if it works on an entire control-flow graph
- An optimization is interprocedural if it works across the control-flow graphs of multiple functions
 - We won't talk about this in this course

22

Local optimizations

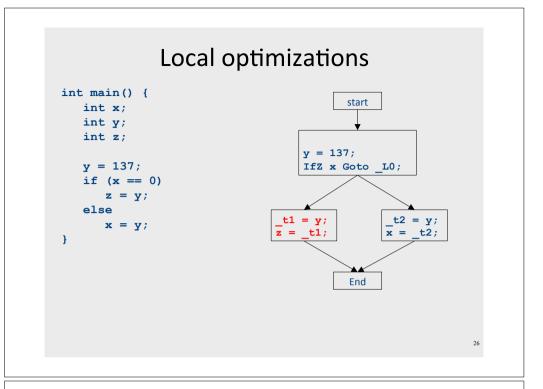
```
int main() {
   int x;
   int y;
   int z;

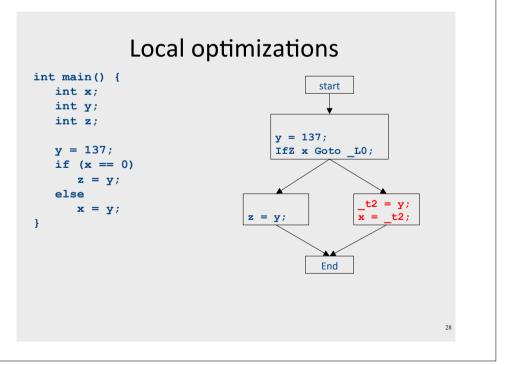
   y = 137;
   if (x == 0)
      z = y;
   else
      x = y;
}
```



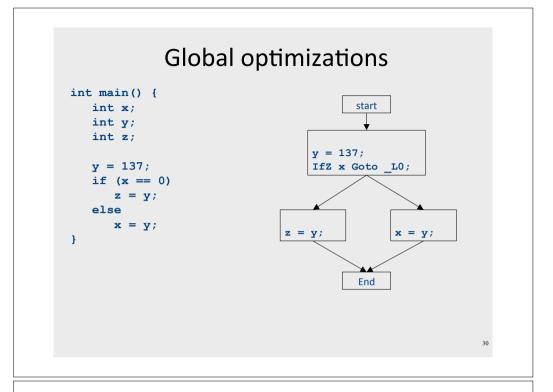
2.4

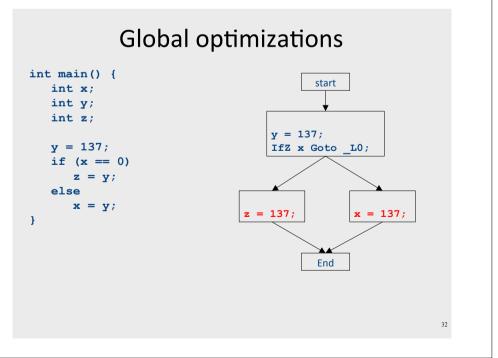
Local optimizations int main() { start int x; int y; int z; y = 137;y = 137;IfZ x Goto L0; if (x == 0)z = y;t2 = y; $_{t1} = y;$ x = y; $\overline{z} = t1;$ $\bar{x} = t2;$





Local optimizations int main() { int x; int y; int z; y = 137; if (x == 0) z = y; else x = y; }





Local Optimizations

Optimization path done Code **Target** with IR Generation Code optimizations (+optimizations) Control-Flow optimizations Program CFG builder Graph **Analysis Annotaated** CFG **Optimizing** Transformation

Common subexpression elimination

```
Object x;
                            tmp0 = 4;
int a:
                            Push tmp0;
                            tmp1 = Call Alloc;
int b;
int c;
                            Pop tmp2;
                            *(tmp1) = tmp2;
x = new Object;
                            x = tmp1;
                            tmp3 = 4;
a = 4;
c = a + b;
                            a = tmp3;
x.fn(a + b);
                            tmp4 = a + b;
                            c = tmp4;
                            tmp5 = a + b;
                            tmp6 = *(x);
                            tmp7 = *(tmp6);
                            Push tmp5;
                            Push x;
                            Call tmp7;
```

Common subexpression elimination

```
Object x;
                            tmp0 = 4;
int a:
                            Push tmp0;
                            tmp1 = Call Alloc;
int b;
int c;
                            Pop tmp2;
                            *( tmp1) = _tmp2;
x = new Object;
                            x = tmp1;
                             tmp3 = 4;
a = 4:
c = a + b;
                            a = tmp3;
                            tmp4 = a + b;
x.fn(a + b);
                            c = tmp4;
                            tmp5 = a + b;
                            tmp6 = *(x);
                            tmp7 = *(tmp6);
                            Push tmp5;
                            Push x;
                            Call tmp7;
```

Common subexpression elimination

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = 4;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = tmp4;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call tmp7;
```

Common subexpression elimination

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = 4;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = tmp4;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call tmp7;
```

38

Common subexpression elimination

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = tmp4;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x:
Call tmp7;
```

Common subexpression elimination

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = tmp4;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x:
Call tmp7;
```

Common subexpression elimination

```
Object x;
int a;
int b;
int c;

x = new
Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call tmp7;
```

Common Subexpression Elimination

 If we have two variable assignments v1 = a op b

v2 = a op b

 and the values of v1, a, and b have not changed between the assignments, rewrite the code as v1 = a op b

v2 = v1

- Eliminates useless recalculation
- Paves the way for later optimizations

42

Copy Propagation

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x:
Call tmp7;
```

Copy Propagation

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x:
Call tmp7;
```

Copy Propagation

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push tmp5;
Push tmp1;
Call tmp7;
```

43

Copy Propagation

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push tmp5;
Push tmp1;
Call tmp7;
```

7

Copy Propagation

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push tmp5;
Push tmp1;
Call tmp7;
```

Copy Propagation

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push tmp5;
Push tmp1;
Call tmp7;
```

Copy Propagation

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push c:
Push tmp1;
Call tmp7;
```

Copy Propagation

```
Object x;
int a;
int b;
int c;

x = new
Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push c;
Push tmp1;
Call tmp7;
```

5

Copy Propagation

```
Object x;
int a;
int b;
int c;

x = new
Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = tmp2;
tmp7 = *(tmp6);
Push c;
Push tmp1;
Call tmp7;
```

Copy Propagation

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = tmp2;
tmp7 = *(tmp6);
Push c;
Push tmp1;
Call tmp7;
```

Copy Propagation

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = tmp2;
tmp7 = *(tmp2);
Push c:
Push tmp1;
Call tmp7;
```

Copy Propagation

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = tmp2;
tmp7 = *(tmp2);
Push c:
Push tmp1;
Call tmp7;
```

-

Copy Propagation

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp0;
tmp4 = tmp0 + b;
c = tmp4;
tmp5 = c;
tmp6 = tmp2;
tmp7 = *(tmp2);
Push c;
Push tmp1;
Call tmp7;
```

Copy Propagation

If we have a variable assignment v1 = v2
 then as long as v1 and v2 are not reassigned, we can rewrite expressions of the form a = ... v1 ...
 as
 a = ... v2 ...

provided that such a rewrite is legal

Dead Code Elimination

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4:
Push tmp0;
tmp1 = Call Alloc;
Pop tmp2;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp0;
tmp4 = tmp0 + b;
c = tmp4;
tmp5 = c;
tmp6 = tmp2;
tmp7 = *(tmp2);
Push c:
Push tmp1;
Call tmp7;
```

Dead Code Elimination

```
Object x;
                             tmp0 = 4;
int a;
                             Push tmp0;
                             tmp1 = Call Alloc;
int b:
            values
int c:
            never
                             Pop tmp2;
            read
                             *(tmp1) = tmp2;
x = new
                             x = tmp1;
                             tmp3 = tmp0;
Object;
a = 4:
                             a = tmp0;
c = a + b;
                             tmp4 = tmp0 + b;
                             c = tmp4;
x.fn(a + b);
                              tmp5 = c;
                              tmp6 = tmp2;
            values
                             tmp7 = *(tmp2);
            never
                             Push c:
            read
                             Push tmp1;
                             Call tmp7;
```

Dead Code Elimination

```
Object x;
int a;
int b;
int c;

x = new
Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
Pop tmp2;
*(_tmp1) = _tmp2;

_tmp4 = _tmp0 + b;
c = _tmp4;

_tmp7 = *(_tmp2);
Push c;
Push _tmp1;
Call _tmp7;
```

Dead Code Elimination

- An assignment to a variable v is called dead if the value of that assignment is never read anywhere
- Dead code elimination removes dead assignments from IR
- Determining whether an assignment is dead depends on what variable is being assigned to and when it's being assigned

Applying local optimizations

- The different optimizations we've seen so far all take care of just a small piece of the optimization
- Common subexpression elimination eliminates unnecessary statements
- Copy propagation helps identify dead code
- Dead code elimination removes statements that are no longer needed
- To get maximum effect, we may have to apply these optimizations numerous times

Applying local optimizations example

```
b = a * a;
c = a * a;
d = b + c;
e = b + b;
```

62

Applying local optimizations example

b = a * a; c = a * a; d = b + c; e = b + b:

Which optimization should we apply here?

Applying local optimizations example

b = a * a; c = b; d = b + c; e = b + b;

Which optimization should we apply here?

Common sub-expression elimination

Applying local optimizations example

```
b = a * a;
c = b;
d = b + c;
e = b + b;
```

Which optimization should we apply here?

Applying local optimizations example

```
b = a * a;
c = b;
d = b + b;
e = b + b;
```

Which optimization should we apply here?

Copy propagation

65

Applying local optimizations example

```
b = a * a;
c = b;
d = b + b;
e = b + b;
```

Which optimization should we apply here?

Applying local optimizations example

```
b = a * a;
c = b;
d = b + b;
e = d;
```

Which optimization should we apply here?

Common sub-expression elimination (again)

6

Other types of local optimizations

- Arithmetic Simplification
 - Replace "hard" operations with easier ones
 - e.g. rewrite x = 4 * a; as x = a << 2;
- Constant Folding
 - Evaluate expressions at compile-time if they have a constant value.
 - e.g. rewrite x = 4 * 5; as x = 20;

69

Available expressions

- Both common subexpression elimination and copy propagation depend on an analysis of the available expressions in a program
- An expression is called available if some variable in the program holds the value of that expression
- In common subexpression elimination, we replace an available expression by the variable holding its value
- In copy propagation, we replace the use of a variable by the available expression it holds

Optimizations and analyses

- Most optimizations are only possible given some analysis of the program's behavior
- In order to implement an optimization, we will talk about the corresponding program analyses

/0

Finding available expressions

- Initially, no expressions are available
- Whenever we execute a statementa = b op c:
 - Any expression holding a is invalidated
 - The expression **a** = **b** *op* **c** becomes available
- Idea: Iterate across the basic block, beginning with the empty set of expressions and updating available expressions at each variable

Available expressions example

```
{ }
a = b;
{ a = b }
c = b;
{ a = b, c = b }
d = a + b;
{ a = b, c = b, d = a + b }
e = a + b;
{ a = b, c = b, d = a + b, e = a + b }
d = b;
{ a = b, c = b, d = b, e = a + b }
f = a + b;
{ a = b, c = b, d = b, e = a + b }
f = a + b;
{ a = b, c = b, d = b, e = a + b }
```

Common sub-expression elimination

Common sub-expression elimination

Common sub-expression elimination

Live variables

- The analysis corresponding to dead code elimination is called liveness analysis
- A variable is live at a point in a program if later in the program its value will be read before it is written to again
- Dead code elimination works by computing liveness for each variable, then eliminating assignments to dead variables

77

```
{ b }
a = b;
{ a, b }
c = a;
{ a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b, e }
d = a;
{ b, d, e }
f = e;
{ b, d } - given
```

Computing live variables

- To know if a variable will be used at some point, we iterate across the statements in a basic block in reverse order
- Initially, some small set of values are known to be live (which ones depends on the particular program)
- When we see the statement a = b op c:
 - Just before the statement, a is not alive, since its value is about to be overwritten
 - Just before the statement, both b and c are alive, since we're about to read their values
 - (what if we have a = a + b?)

/8

```
{ b } Dead Code Elimination
a = b;
{ a, b }
c = a;
{ a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b, e }
d = a;
{ b, d, e }
f = e;
{ b, d }
```

```
{ b } Dead Code Elimination
a = b;
{ a, b }

{ a, b }

d = a + b;
{ a, b, d }

e = d;
{ a, b, e }

d = a;
{ b, d, e }

{ b, d }
```

```
{ b }
a = b;

Liveness analysis II

{ a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b }
d = a;
{ b, d }
```

```
{ b }
a = b;

Liveness analysis II

{ a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b }
d = a;
{ b, d }
```

```
{ b } Dead code elimination
a = b;

Which statements are dead?

Which statements are dead?

d = a + b;
{ a, b, d }
e = d;
{ a, b }
d = a;
{ b, d }
```

```
{ b } Dead code elimination
a = b;

{ a, b }
d = a + b;
{ a, b, d }

{ a, b }
d = a;
{ b, d }
```

```
{ b }
a = b;

Liveness analysis III

{ a, b }
d = a + b;

{ a, b }
d = a;
{ b, d }
```

```
{ b }
a = b;
Dead code elimination

{ a, b }
d = a + b;

{ a, b }
d = a;
{ b, d }
Which statements are dead?
```

```
{ b } Dead code elimination
a = b;

{ a, b }

{ a, b }

d = a;
{ b, d }
```

Dead code elimination If we further apply copy propagation this statement can be eliminated too

d = a;

89

A combined algorithm

```
c = a;
d = a + b;
e = d;
d = a;
```

f = e;

a = b;

A combined algorithm

- Start with initial live variables at end of block
- Traverse statements from end to beginning
- For each statement
 - If assigns to dead variables eliminate it
 - Otherwise, compute live variables before statement and continue in reverse

90

A combined algorithm

```
c = a;
d = a + b;
e = d;
d = a;
f = e;
{ b, d }
```

a = b;

```
A combined algorithm

a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d }
```

```
A combined algorithm

a = b;

c = a;

d = a + b;

e = d;

d = a;

{ b, d }
```

```
A combined algorithm

a = b;

c = a;

d = a + b;

e = d;
{a, b}
d = a;

{b, d}
```

```
A combined algorithm

a = b;

c = a;

d = a + b;

e = d;
{a, b}
d = a;

{b, d}
```

```
A combined algorithm

a = b;

c = a;

d = a + b;

{ a, b }

d = a;

{ b, d }
```

```
A combined algorithm

a = b;

c = a;

d = a + b;

{ a, b }

d = a;

{ b, d }
```

```
A combined algorithm
a = b;
c = a;

{ a, b }
d = a;

{ b, d }
```

```
A combined algorithm
a = b;
c = a;

{ a, b }
d = a;

{ b, d }
```

```
a = b;

A combined algorithm

{ a, b }
d = a;

{ b, d }
```

```
{ b }
a = b;

A combined algorithm

{ a, b }
d = a;

{ b, d }
```

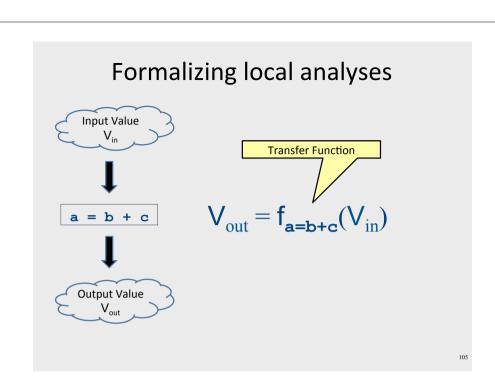
```
A combined algorithm
```

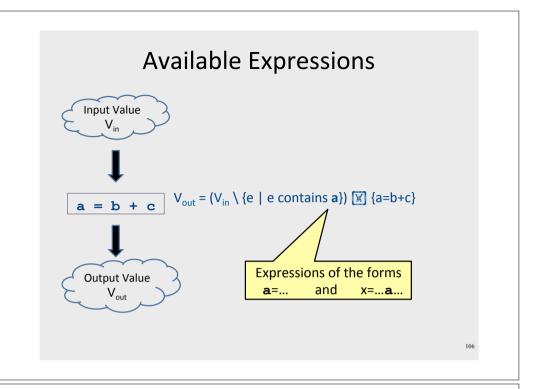
```
d = a;
```

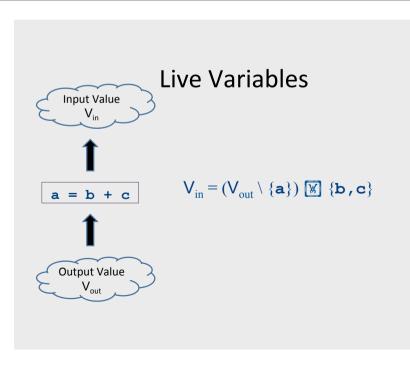
103

High-level goals

- Generalize analysis mechanism
 - Reuse common ingredients for many analyses
 - Reuse proofs of correctness
- Generalize from basic blocks to entire CFGs
 - Go from local optimizations to global optimizations







Information for a local analysis

- What direction are we going?
 - Sometimes forward (available expressions)
 - Sometimes backward (liveness analysis)
- How do we update information after processing a statement?
 - What are the new semantics?
 - What information do we know initially?

Formalizing local analyses

- Define an analysis of a basic block as a quadruple (D, V, F, I) where
 - **D** is a direction (forwards or backwards)
 - V is a set of values the program can have at any point
 - F is a family of transfer functions defining the meaning of any expression as a function f: V W V
 - I is the initial information at the top (or bottom) of a basic block

109

Liveness Analysis

• Direction: Backward

• Values: Sets of variables

- **Transfer functions:** Given a set of variable assignments V and statement a = b + c:
- Remove a from V (any previous value of a is now dead.)
- Add b and c to V (any previous value of b or c is now live.)
- Formally: $V_{in} = (V_{out} \setminus \{a\}) \times \{b, c\}$
- Initial value: Depends on semantics of language
 - E.g., function arguments and return values (pushes)
 - Result of local analysis of other blocks as part of a global analysis

Available Expressions

• Direction: Forward

• Values: Sets of expressions assigned to variables

• Transfer functions: Given a set of variable assignments V and statement a = b + c:

 Remove from V any expression containing a as a subexpression

– Add to V the expression a = b + c

- Formally: $V_{out} = (V_{in} \setminus \{e \mid e \text{ contains } a\}) \times \{a = b + c\}$

• Initial value: Empty set of expressions

110

Running local analyses

- Given an analysis (D, V, F, I) for a basic block
- Assume that **D** is "forward;" analogous for the reverse case
- Initially, set OUT[entry] to I
- For each statement **s**, in order:
 - Set IN[s] to OUT[prev], where prev is the previous statement
 - Set OUT[s] to f_s(IN[s]), where f_s is the transfer function for statement s

Global Optimizations

113

Local vs. global analysis

- Many of the optimizations from local analysis can still be applied globally
 - Common sub-expression elimination
 - Copy propagation
 - Dead code elimination
- Certain optimizations are possible in global analysis that aren't possible locally:
 - e.g. code motion: Moving code from one basic block into another to avoid computing values unnecessarily
- Example global optimizations:
 - Global constant propagation
 - Partial redundancy elimination

Global analysis

- A global analysis is an analysis that works on a control-flow graph as a whole
- Substantially more powerful than a local analysis
 - (Why?)
- Substantially more complicated than a local analysis
 - (Why?)

114

Loop invariant code motion example

```
while (t < 120) { while (t < 120) { while (t < 120) { z = z + w; } }
```

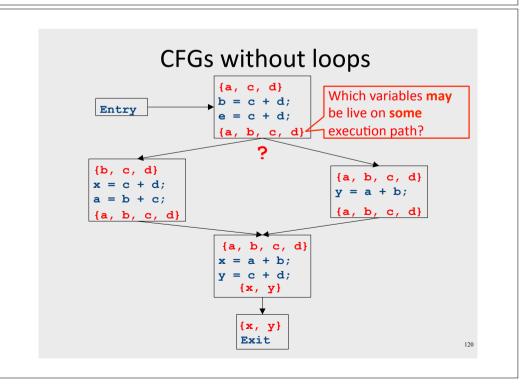
Why global analysis is hard

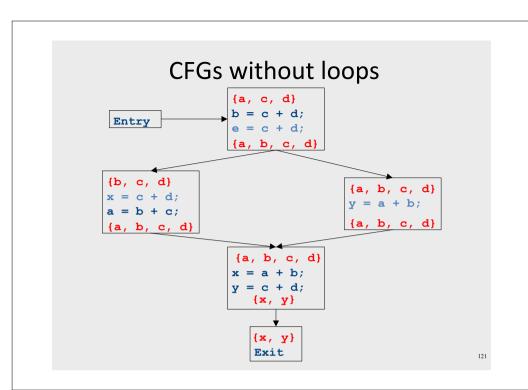
- Need to be able to handle multiple predecessors/successors for a basic block
- Need to be able to handle multiple paths through the control-flow graph, and may need to iterate multiple times to compute the final value (but the analysis still needs to terminate!)
- Need to be able to assign each basic block a reasonable default value for before we've analyzed it

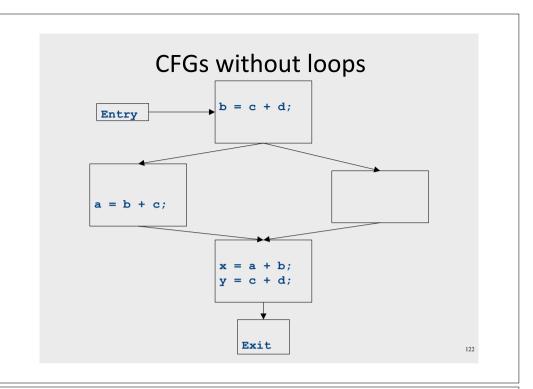
117

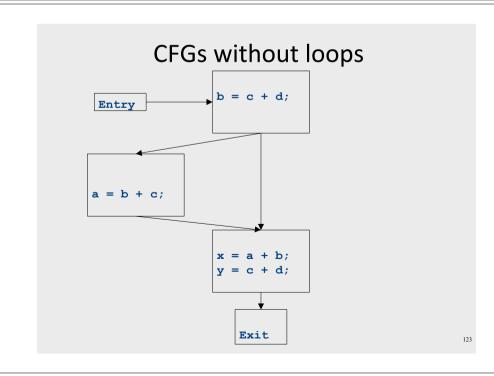
Global dead code elimination

- Local dead code elimination needed to know what variables were live on exit from a basic block
- This information can only be computed as part of a global analysis
- How do we modify our liveness analysis to handle a CFG?



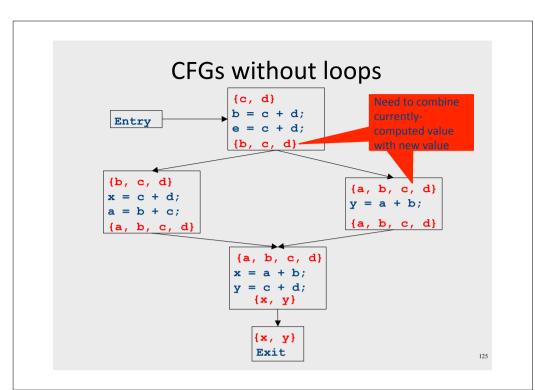


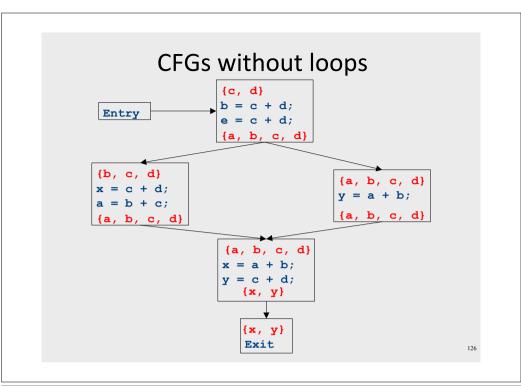


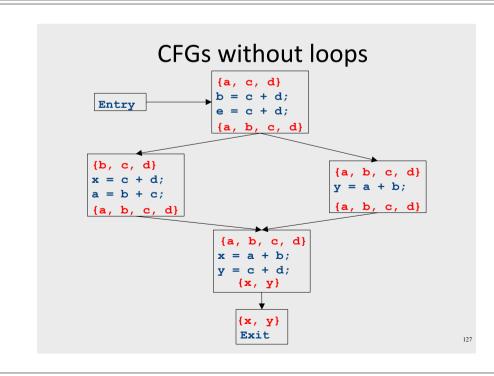


Major changes – part 1

- In a local analysis, each statement has exactly one predecessor
- In a global analysis, each statement may have **multiple** predecessors
- A global analysis must have some means of combining information from all predecessors of a basic block







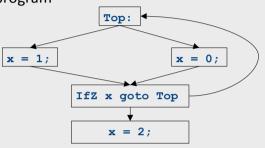
Major changes – part 2

- In a local analysis, there is only one possible path through a basic block
- In a global analysis, there may be **many** paths through a CFG
- May need to recompute values multiple times as more information becomes available
- Need to be careful when doing this not to loop infinitely!
 - (More on that later)

CFGs with loops

- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths
- When we add loops into the picture, this is no longer true

 Not all possible loops in a CFG can be realized in the actual program



120

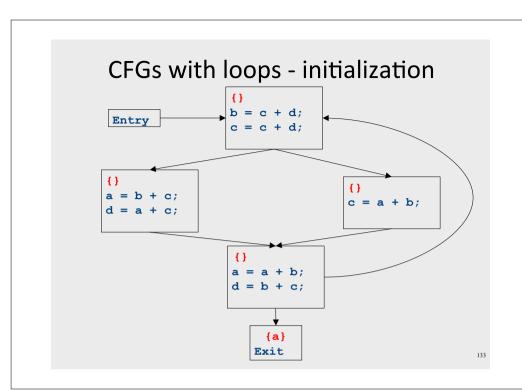
CFGs with loops

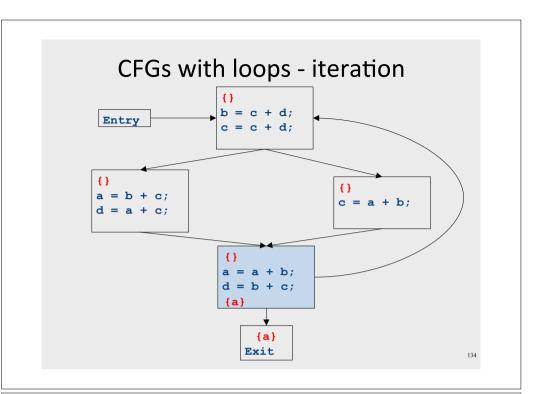
- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths
- When we add loops into the picture, this is no longer true
- Not all possible loops in a CFG can be realized in the actual program
- **Sound approximation:** Assume that every possible path through the CFG corresponds to a valid execution
 - Includes all realizable paths, but some additional paths as well
 - May make our analysis less precise (but still sound)
 - Makes the analysis feasible; we'll see how later

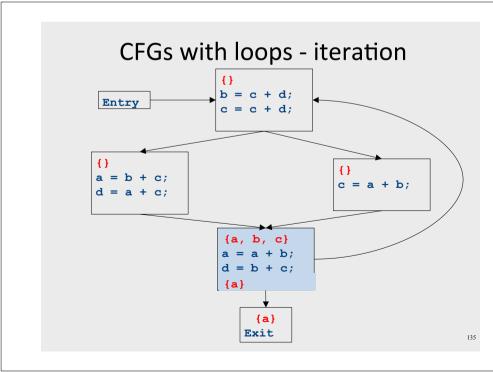
130

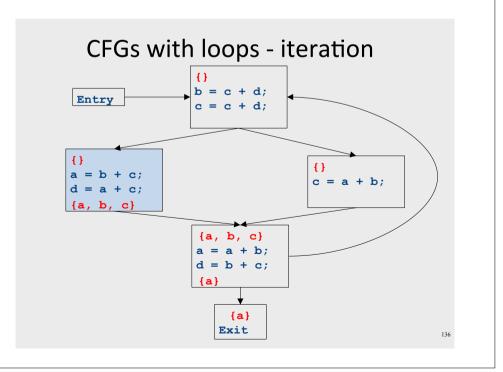
Major changes – part 3

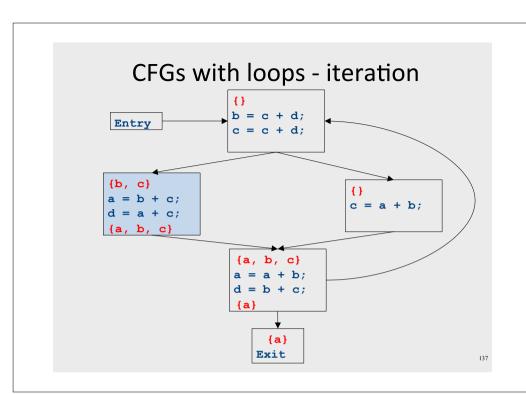
- In a local analysis, there is always a well defined "first" statement to begin processing
- In a global analysis with loops, every basic block might depend on every other basic block
- To fix this, we need to assign initial values to all of the blocks in the CFG

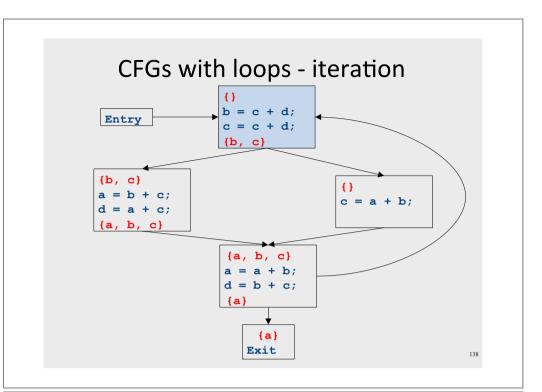


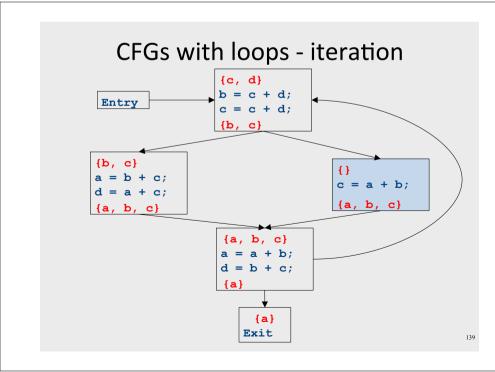


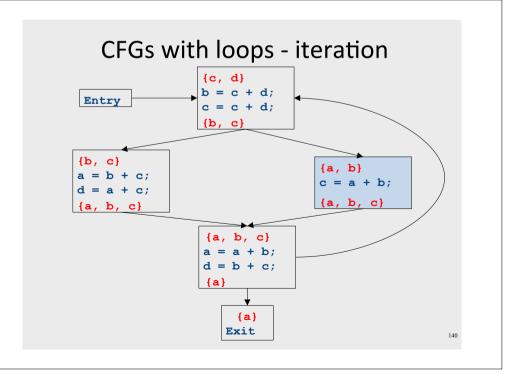


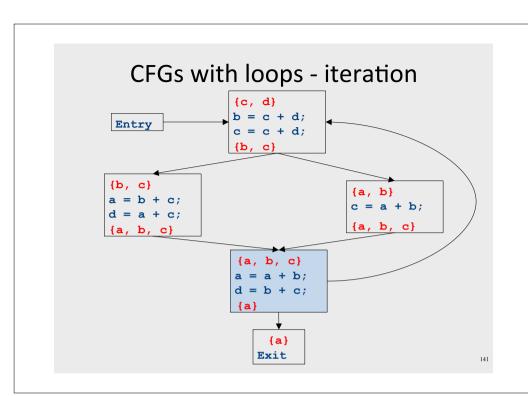


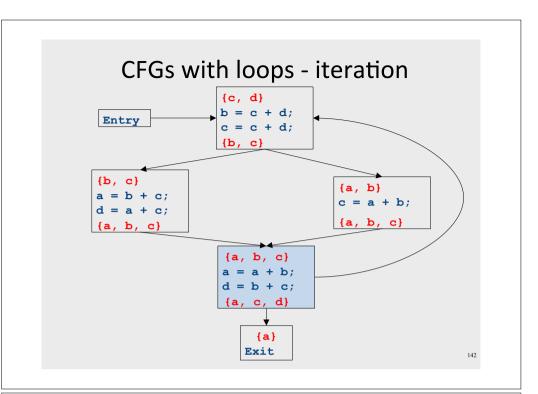


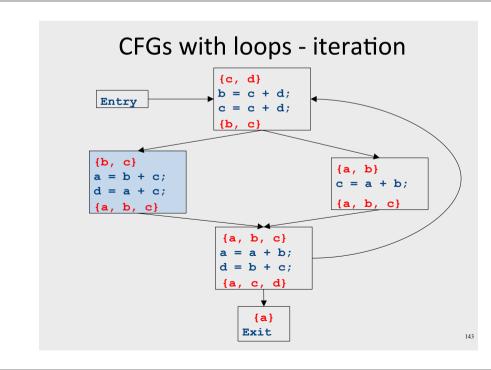


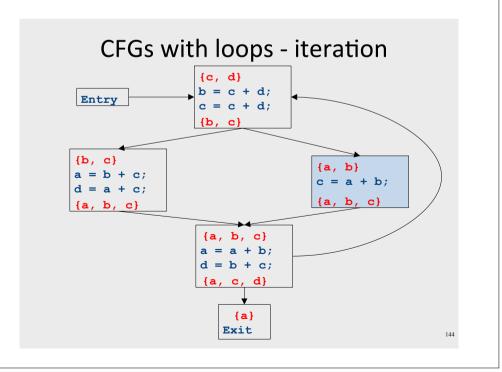


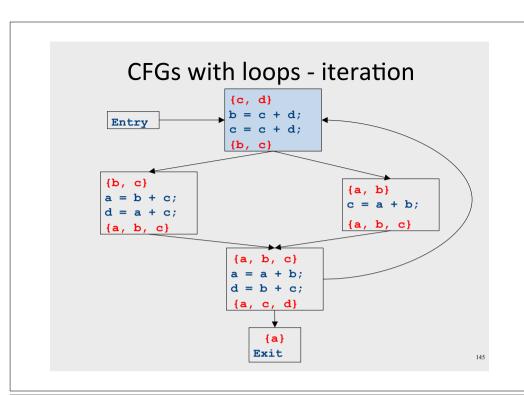


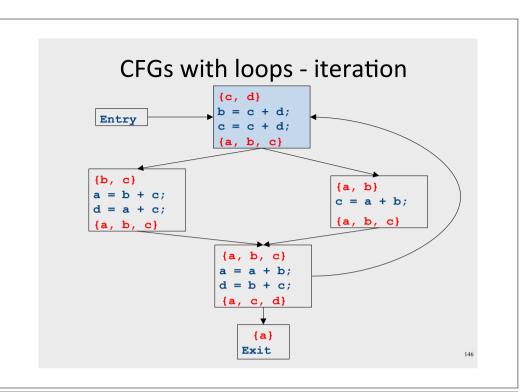


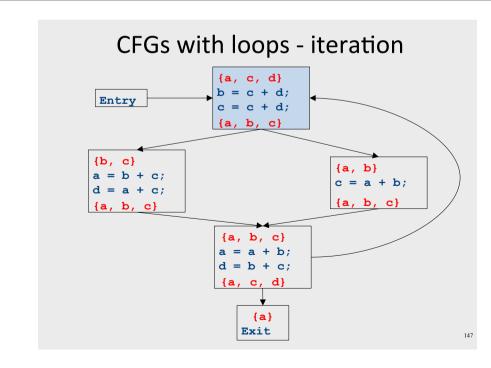


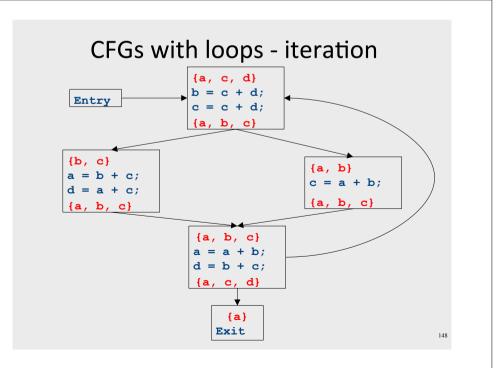












Summary of differences

- Need to be able to handle multiple predecessors/successors for a basic block
- Need to be able to handle multiple paths through the control-flow graph, and may need to iterate multiple times to compute the final value
 - But the analysis still needs to terminate!
- Need to be able to assign each basic block a reasonable default value for before we've analyzed it

149

Global liveness analysis $\underbrace{|N[s]=\{UT[s]-\{a\}\}} \boxtimes \{b,c\}$ $\underbrace{|N[s2]} \boxtimes |N[s3]$ $\underbrace{|N[s3]} \boxtimes S$

Global liveness analysis

- Initially, set IN[s] = { } for each statement s
- Set IN[exit] to the set of variables known to be live on exit (language-specific knowledge)
- Repeat until no changes occur:
 - For each statement s of the form a = b + c, in any order you'd like:
 - Set OUT[s] to set union of IN[p] for each successor p of s
 - Set IN[s] to (OUT[s] − a) 🖼 {b, c}.
- Yet another fixed-point iteration!

150

Why does this work?

- To show correctness, we need to show that
 - The algorithm eventually terminates, and
 - When it terminates, it has a sound answer
- Termination argument:
 - Once a variable is discovered to be live during some point of the analysis, it always stays live
 - Only finitely many variables and finitely many places where a variable can become live
- Soundness argument (sketch):
 - Each individual rule, applied to some set, correctly updates liveness in that set
 - When computing the union of the set of live variables, a variable is only live if it was live on some path leaving the statement

Abstract Interpretation

- Theoretical foundations of program analysis
- Cousot and Cousot 1977
- Abstract meaning of programs
 - Executed at compile time

153

Properties of local analysis

- The only way to find out what a program will actually do is to run it
- Problems:
 - The program might not terminate
 - The program might have some behavior we didn't see when we ran it on a particular input
- However, this is not a problem inside a basic block
 - Basic blocks contain no loops
 - There is only one path through the basic block

Another view of local optimization

- In local optimization, we want to reason about some property of the runtime behavior of the program
- Could we run the program and just watch what happens?
- Idea: Redefine the semantics of our programming language to give us information about our analysis

154

Assigning new semantics

- Example: Available Expressions
- Redefine the statement a = b + c to mean
 "a now holds the value of b + c, and any
 variable holding the value a is now invalid"
- Run the program assuming these new semantics
- Treat the optimizer as an interpreter for these new semantics

.

1:

Theory to the rescue

- Building up all of the machinery to design this analysis was tricky
- The key ideas, however, are mostly independent of the analysis:
 - We need to be able to compute functions describing the behavior of each statement
 - We need to be able to merge several subcomputations together
 - We need an initial value for all of the basic blocks
- There is a beautiful formalism that captures many of these properties

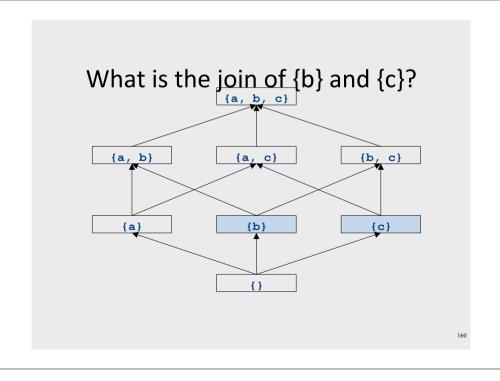
157

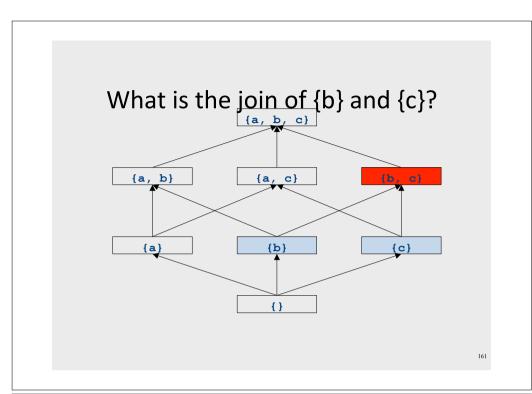
Join semilattices

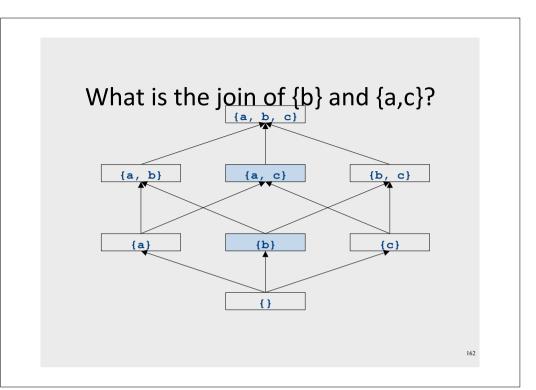
- A join semilattice is a ordering defined on a set of elements
- Any two elements have some join that is the smallest element larger than both elements
- There is a unique bottom element, which is smaller than all other elements
- Intuitively:
 - The join of two elements represents combining information from two elements by an overapproximation
- The bottom element represents "no information yet" or "the least conservative possible answer"

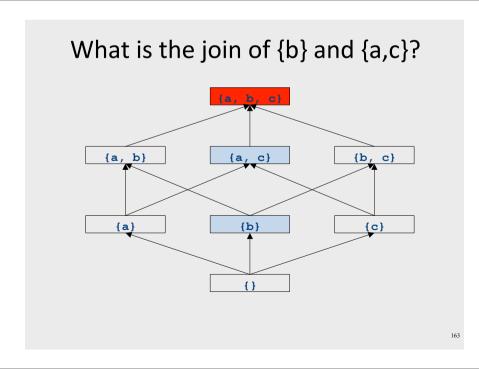
158

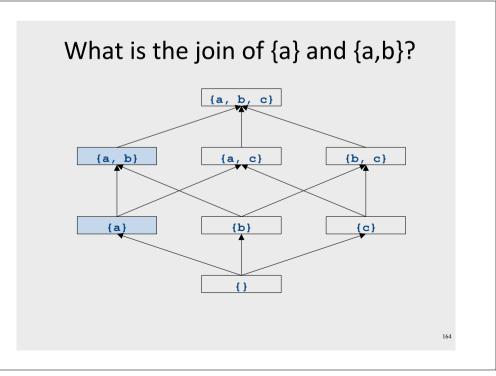
Join semilattice for liveness (a, b, c) (a) (b) (c) Bottom element

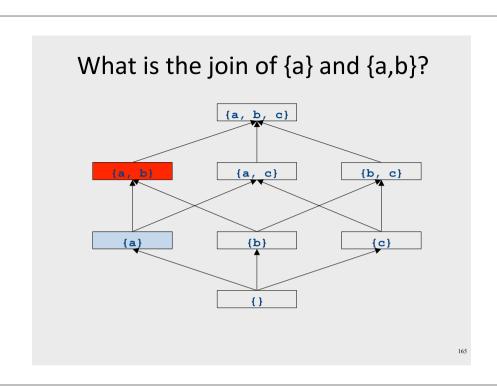






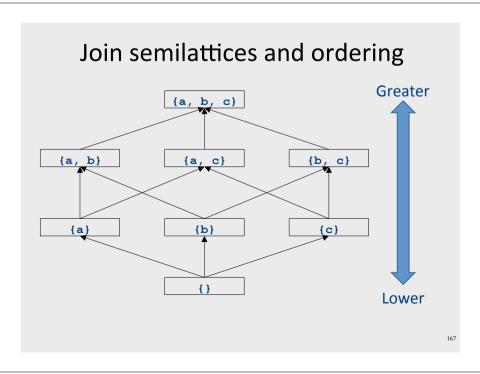


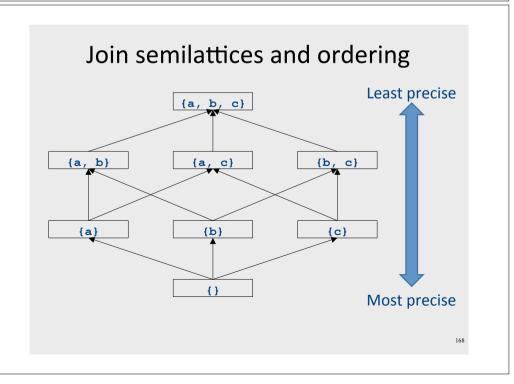




Formal definitions

- A join semilattice is a pair (V, W), where
- V is a domain of elements
- 🕱 is a join operator that is
 - commutative: x W y = y W x
 - associative: (x ⋈ y) ⋈ z = x ⋈ (y ⋈ z)
 - idempotent: x ⋈ x = x
- If x y = z, we say that z is the join or (least upper bound) of x and y
- Every join semilattice has a bottom element denoted w such that w x = x for all x





Join semilattices and orderings

- Every join semilattice (V, ເ⋈) induces an ordering relationship ເ⋈ over its elements
- Define x \(\mathbb{W} \) y iff x \(\mathbb{W} \) y = y
- Need to prove
 - Reflexivity: x 🕱 x
 - Antisymmetry: If $x \boxtimes y$ and $y \boxtimes x$, then x = y
 - Transitivity: If x ⋈ y and y ⋈ z, then x ⋈ z

169

A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:

$$-x \times x = x$$

- Commutative:
 - $-x \times y = y \times x$
- Associative:
 - $-(x \times y) \times z = x \times (y \times z)$
- Bottom element:
 - The empty set: $\emptyset \times x = x$
- What is the ordering over these elements?

An example join semilattice

- The set of natural numbers and the **max** function
- Idempotent
 - max{a, a} = a
- Commutative
 - $\max\{a, b\} = \max\{b, a\}$
- Associative
 - $max{a, max{b, c}} = max{max{a, b}, c}$
- Bottom element is 0:
 - $\max\{0, a\} = a$
- What is the ordering over these elements?

170

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
- What value do we give to basic blocks we haven't seen yet?
- How do we know that the algorithm always terminates?

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
 - Take the join of all information from those blocks
- What value do we give to basic blocks we haven't seen yet?
 - Use the bottom element
- How do we know that the algorithm always terminates?
 - Actually, we still don't! More on that later

173

A general framework

- A global analysis is a tuple (**D**, **V**, **X**, **F**, **I**), where
 - **D** is a direction (forward or backward)
 - The order to visit statements within a basic block, not the order in which to visit the basic blocks
 - V is a set of values.
 - ─ is a join operator over those values
 - F is a set of transfer functions f : V ⋈ V
 - I is an initial value
- The only difference from local analysis is the introduction of the join operator

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
 - Take the join of all information from those blocks
- What value do we give to basic blocks we haven't seen yet?
 - Use the bottom element
- How do we know that the algorithm always terminates?
 - Actually, we still don't! More on that later

174

Running global analyses

- Assume that (**D**, **V**, **W**, **F**, **I**) is a forward analysis
- Set OUT[s] = X for all statements s
- Set OUT[entry] = I
- Repeat until no values change:
 - For each statement s with predecessors

p₁, **p**₂, ... , **p**_n:

- Set OUT[s] = f_s (IN[s])
- The order of this iteration does not matter
 - This is sometimes called chaotic iteration

For comparison

- Set OUT[s] = W for all statements s
- Set OUT[entry] = I
- Repeat until no values change:
 - For each statement s with predecessors

p₁, **p**₂, ... , **p**_n:

- Set IN[s] = OUT[p₁] ☒ OUT[p₂] ☒ ... ☒ OUT[pₙ]
- Set OUT[s] = f_s (IN[s])

- Set IN[s] = {} for all statements s
- Set OUT[exit] = the set of variables known to be live on exit
- Repeat until no values change:
 - For each statement s of the form a=b+c:
 - Set OUT[s] = set union of IN[x] for each successor x of s
 - Set IN[s] = (OUT[s]-{a}) 🖼 {b,c}

17

The dataflow framework

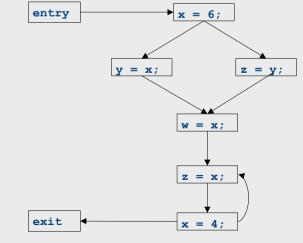
- This form of analysis is called the dataflow framework
- Can be used to easily prove an analysis is sound
- With certain restrictions, can be used to prove that an analysis eventually terminates
 - Again, more on that later

17

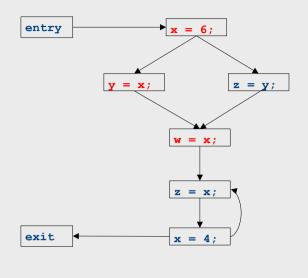
Global constant propagation

- Constant propagation is an optimization that replaces each variable that is known to be a constant value with that constant
- An elegant example of the dataflow framework

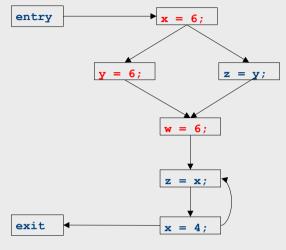
Global constant propagation



Global constant propagation



Global constant propagation



1

Constant propagation analysis

- In order to do a constant propagation, we need to track what values might be assigned to a variable at each program point
- Every variable will either
 - Never have a value assigned to it,
 - Have a single constant value assigned to it,
 - Have two or more constant values assigned to it, or
 - Have a known non-constant value.
 - Our analysis will propagate this information throughout a CFG to identify locations where a value is constant

Properties of constant propagation

- For now, consider just some single variable **x**
- At each point in the program, we know one of three things about the value of **x**:
 - x is definitely not a constant, since it's been assigned two values or assigned a value that we know isn't a constant
 - x is definitely a constant and has value k
 - We have never seen a value for x
- Note that the first and last of these are **not** the same!
 - The first one means that there may be a way for x to have multiple values
 - The last one means that x never had a value at all

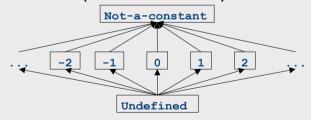
Defining a join operator

- The join of any two different constants is **Not-a-Constant**
 - (If the variable might have two different values on entry to a statement, it cannot be a constant)
- The join of Not a Constant and any other value is Not-a-Constant
 - (If on some path the value is known not to be a constant, then on entry to a statement its value can't possibly be a constant)
- The join of **Undefined** and any other value is that other value
 - (If x has no value on some path and does have a value on some other path, we can just pretend it always had the assigned value)

185

A semilattice for constant propagation

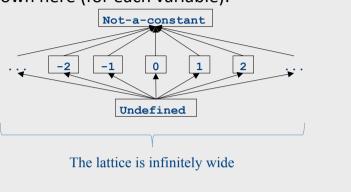
• One possible semilattice for this analysis is shown here (for each variable):



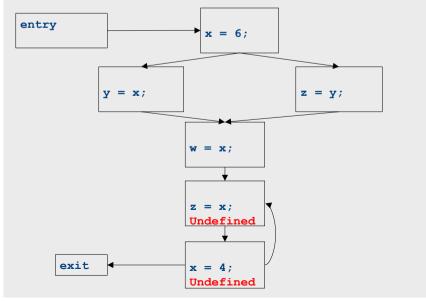
- · Note:
 - The join of any two different constants is Not-a-Constant
 - The join of **Not a Constant** and any other value is **Not-a-Constant**
 - The join of **Undefined** and any other value is that other value

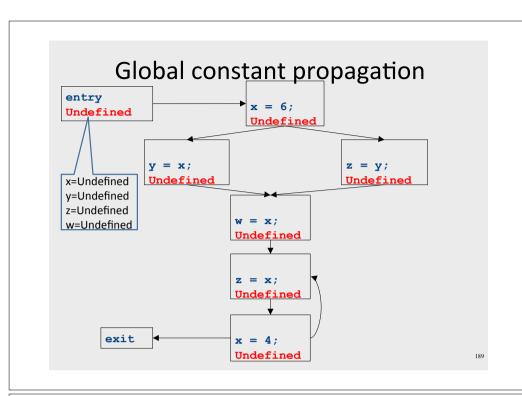
A semilattice for constant propagation

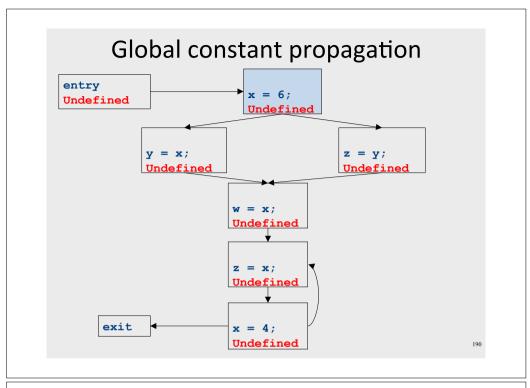
• One possible semilattice for this analysis is shown here (for each variable):

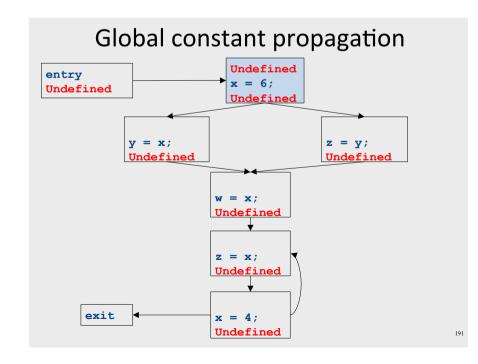


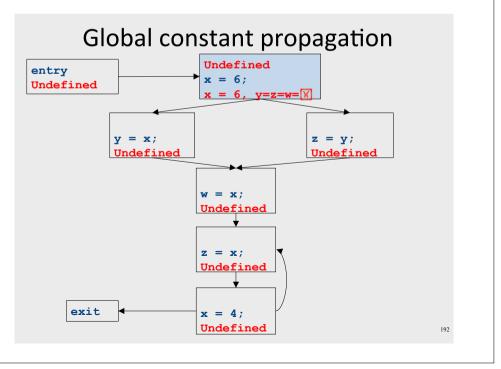
Global constant propagation

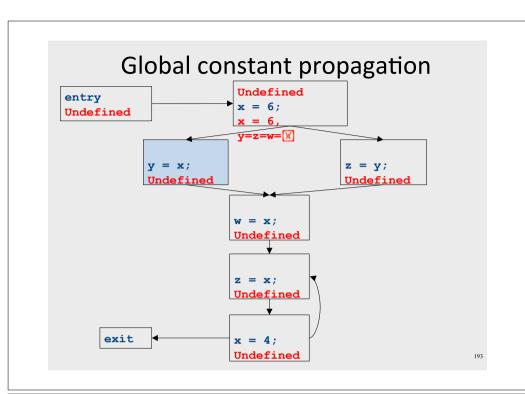


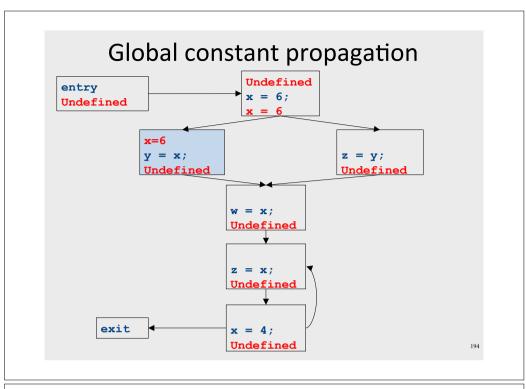


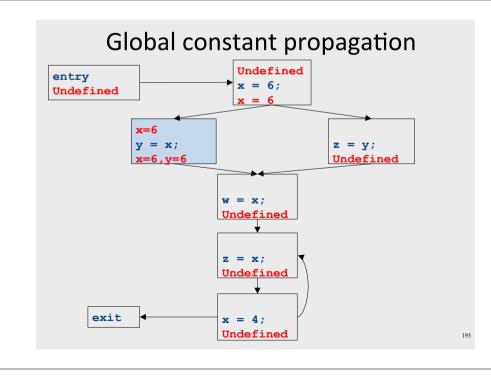


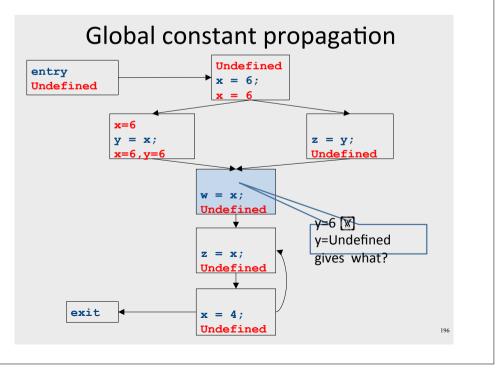


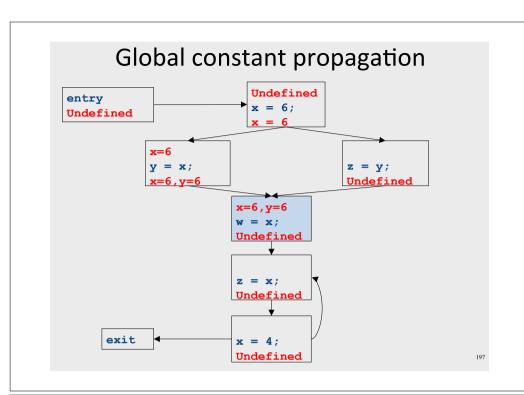


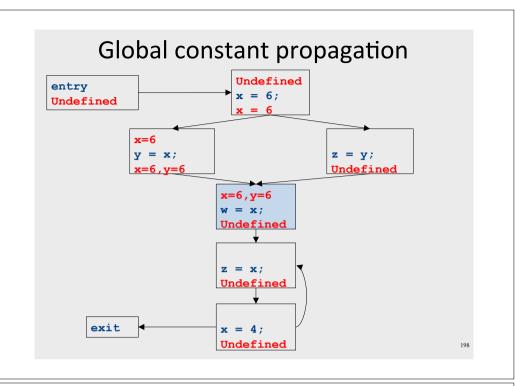


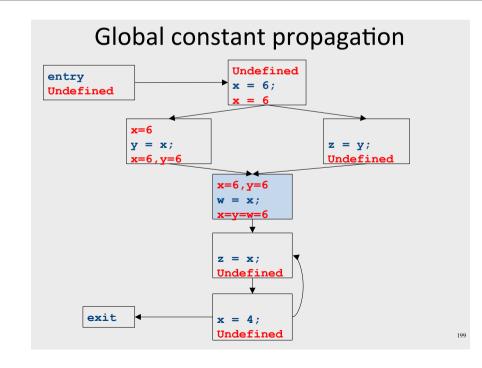


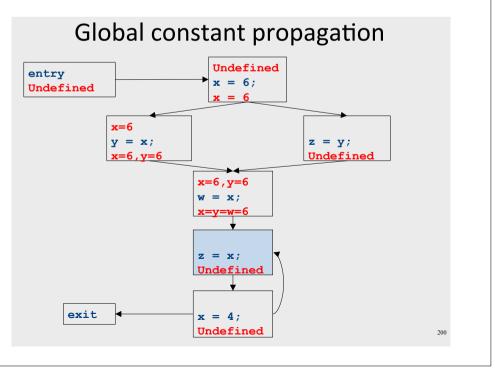


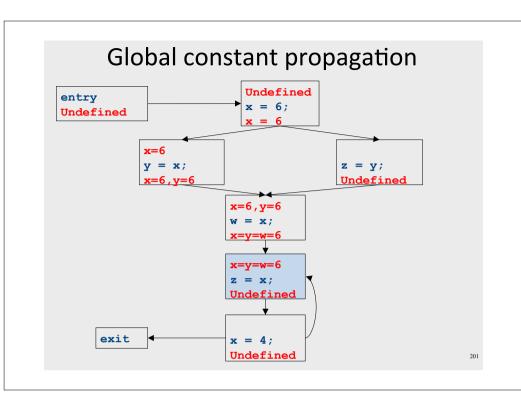


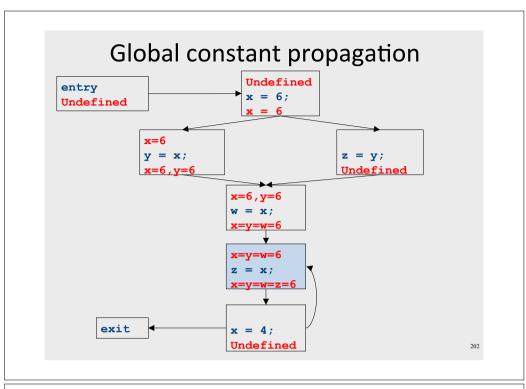


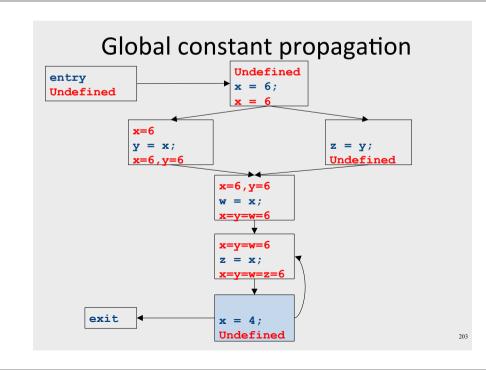


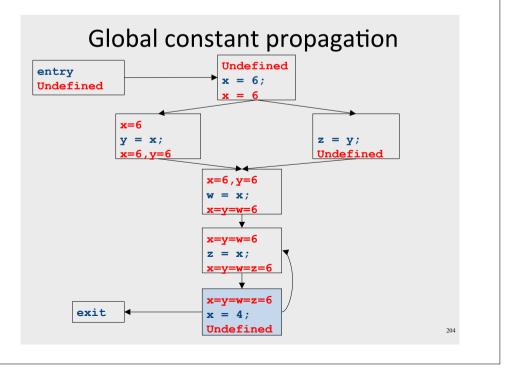


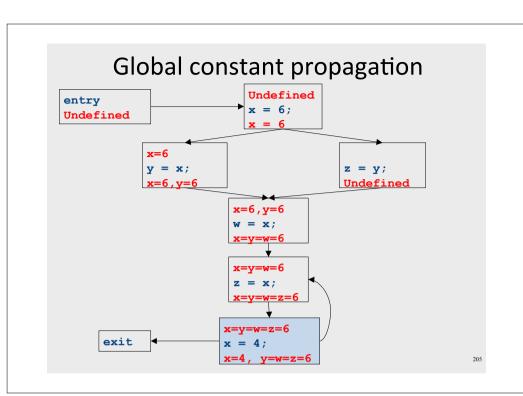


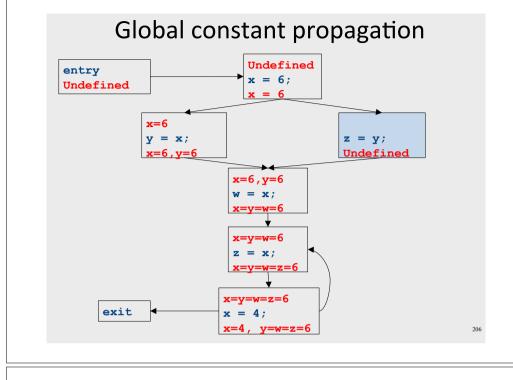


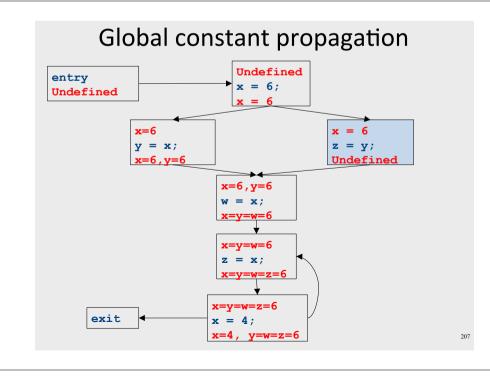


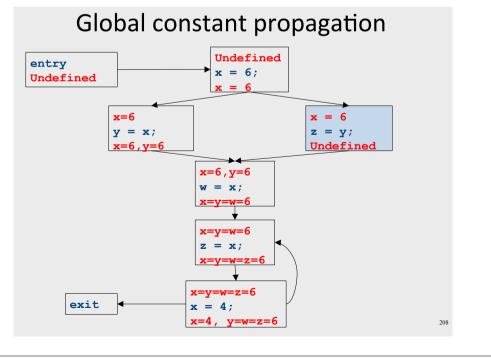


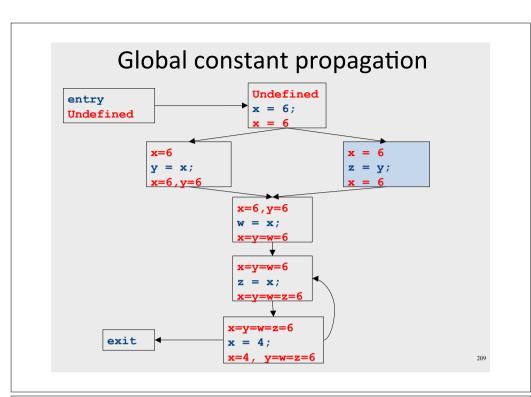


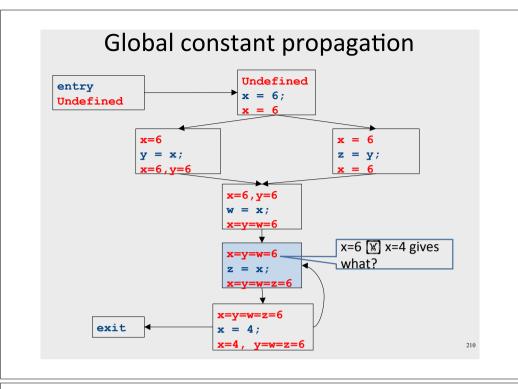


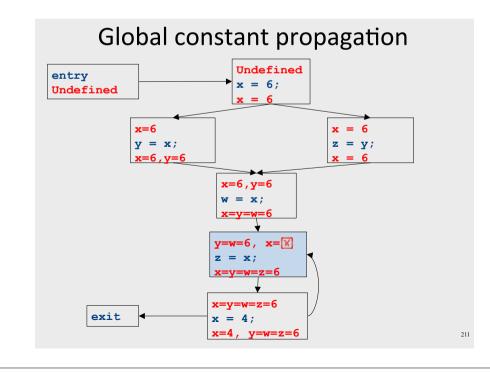


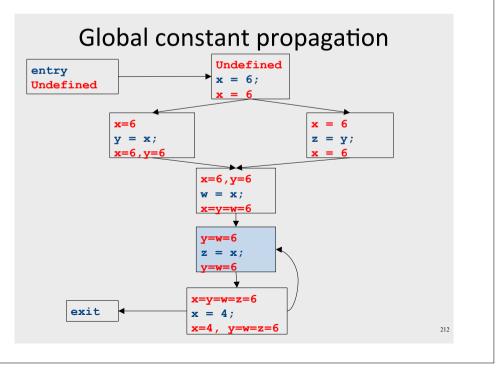


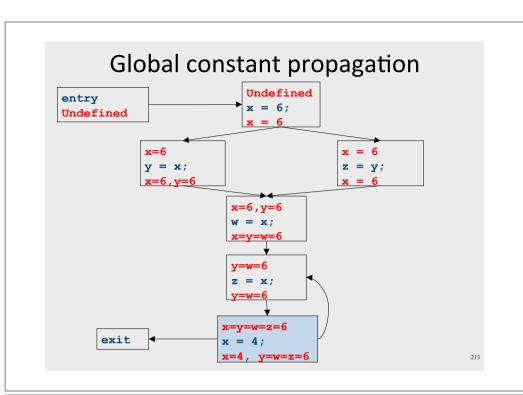


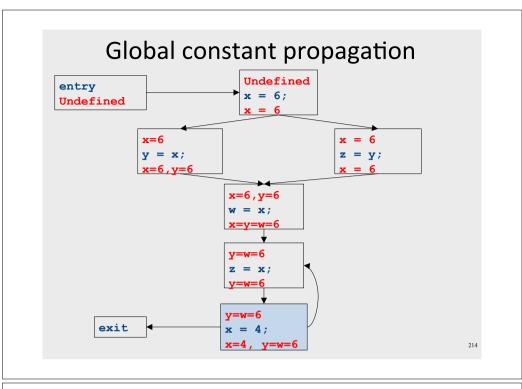


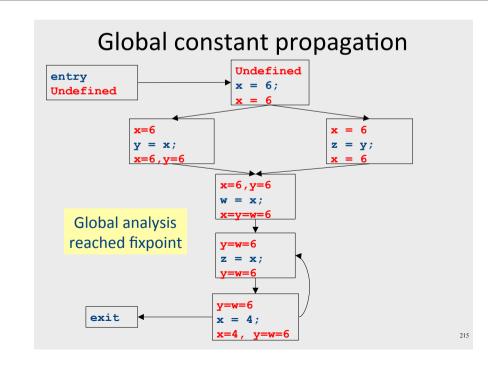


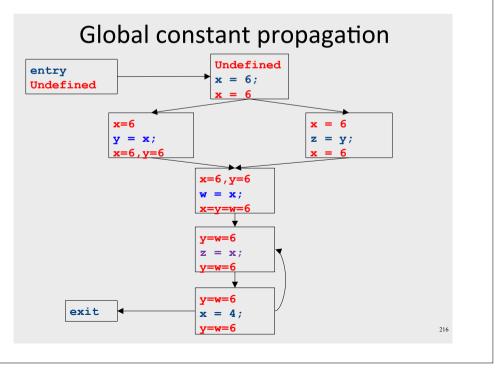


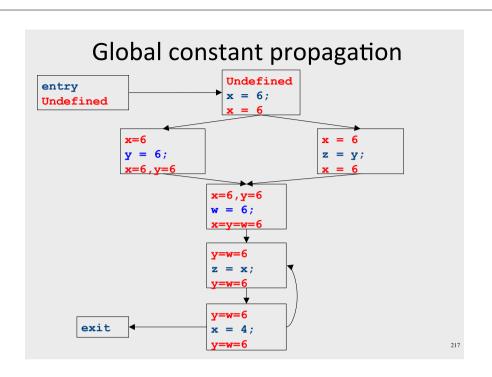












Dataflow for constant propagation

- Direction: Forward
- Semilattice: Vars 【 (Undefined, 0, 1, -1, 2, -2, ..., Not-a-Constant)
 - Join mapping for variables point-wise {x\mathbb{M}1,y\mathbb{M}1,z\mathbb{M}1}\mathbb{M}\mathbb{K}\mathbb{M}1,y\mathbb{M}2,z\mathbb{M}Not-a-Constant} = {x\mathbb{M}1,y\mathbb{M}Not-a-Constant,z\mathbb{M}Not-a-Constant}
- Transfer functions:
 - $f_{x=k}(V) = V|_{x[x]k}$ (update V by mapping x to k)
 - $f_{x=a+b}(V) = V |_{x[Not-a-Constant]}$
- Initial value: x is Undefined
 - (When might we use some other value?)

218

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Given this, how do we know the analyses will eventually terminate?
 - In general, we don't

Terminates?

Liveness Analysis

• A variable is live at a point in a program if later in the program its value will be read before it is written to again

221

Partial ordering induced by join

- Every join semilattice (V, ☒) induces an ordering relationship ☒ over its elements
- Define x 🕱 y iff x 🕅 y = y
- Need to prove
 - Reflexivity: x ☒ x
 - Antisymmetry: If $x \boxtimes y$ and $y \boxtimes x$, then x = y
 - Transitivity: If x ⋈ y and y ⋈ z, then x ⋈ z

Join semilattice definition

- A join semilattice is a pair (V, W), where
- V is a domain of elements
- 🗑 is a join operator that is
 - commutative: x ⋈ y = y ⋈ x
 - associative: (x ⋈ y) ⋈ z = x ⋈ (y ⋈ z)
 - idempotent: x ⋈ x = x
- If x y = z, we say that z is the join or (Least Upper Bound) of x and y
- Every join semilattice has a bottom element denoted w such that w x = x for all x

22

A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:

$$-x \times x = x$$

• Commutative:

$$-x \mathbf{W} y = y \mathbf{W} x$$

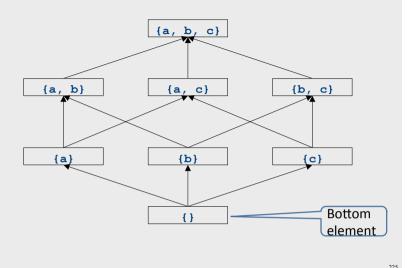
Associative:

$$-(x \times y) \times z = x \times (y \times z)$$

• Bottom element:

• Ordering over elements = subset relation

Join semilattice example for liveness



Dataflow framework

- A global analysis is a tuple (D, V, W, F, I), where
 - D is a direction (forward or backward)
 - The order to visit statements within a basic block, **NOT** the order in which to visit the basic blocks
 - − V is a set of values (sometimes called domain)
 - ☒ is a join operator over those values
 - F is a set of transfer functions f_s: V ⋈ V (for every statement s)
 - I is an initial value

226

Running global analyses

- Assume that (**D**, **V**, **X**, **F**, **I**) is a forward analysis
- For every statement s maintain values before IN[s] and after - OUT[s]
- Set OUT[s] = W for all statements s
- Set OUT[entry] = I
- Repeat until no values change:
 - For each statement s with predecessors PRED[s]={p₁, p₂, ..., p_n}
 - Set IN[s] = OUT[p₁] ☒ OUT[p₂] ☒ ... ☒ OUT[pn]
 - Set OUT[s] = f_s(IN[s])
- The order of this iteration does not matter
 - Chaotic iteration

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Problem: how do we know the analyses will eventually terminate?

2:

A non-terminating analysis

• The following analysis will loop infinitely on any CFG containing a loop:

• Direction: Forward

• Domain: ℕ

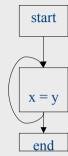
• Join operator: max

• Transfer function: f(n) = n + 1

• Initial value: 0

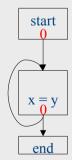
229

A non-terminating analysis

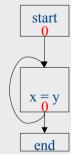


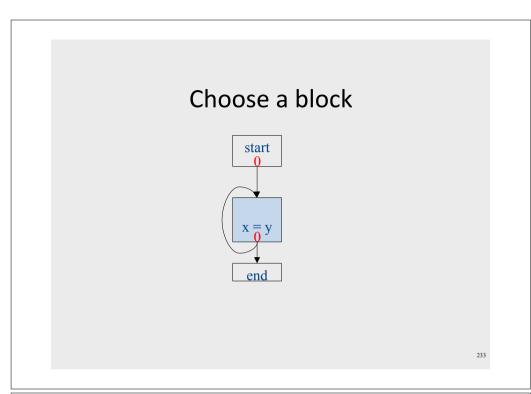
2

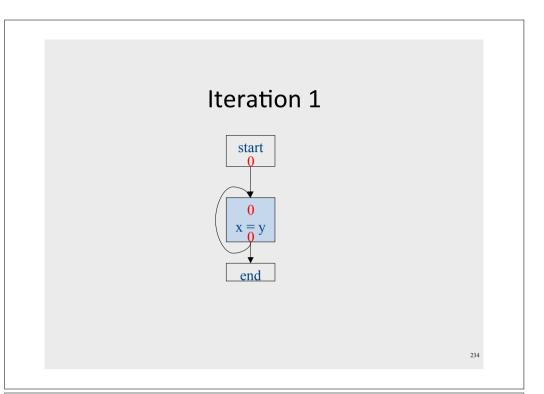
Initialization

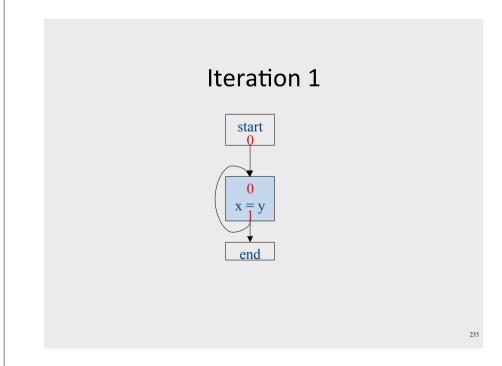


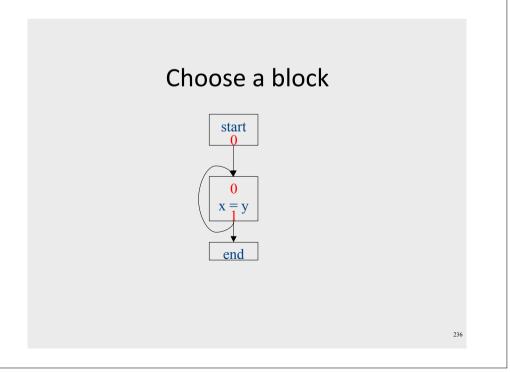
Fixed-point iteration

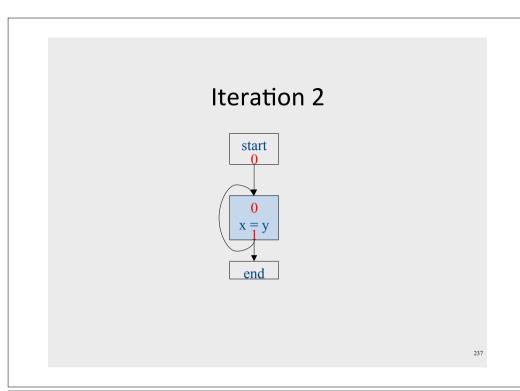


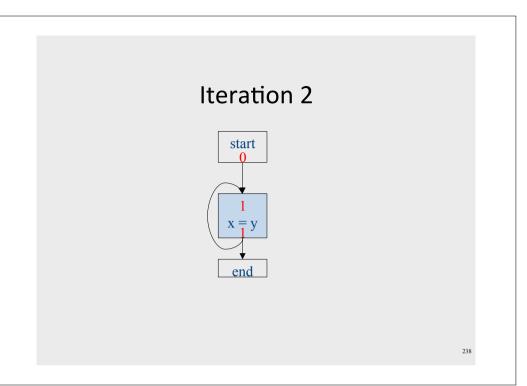


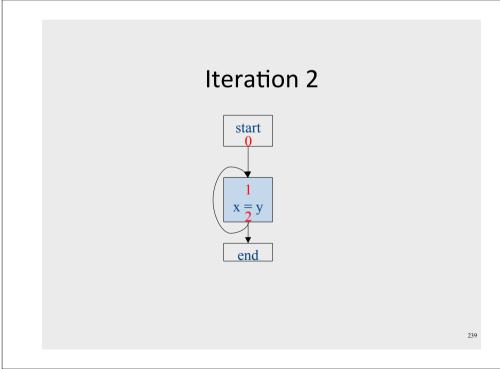


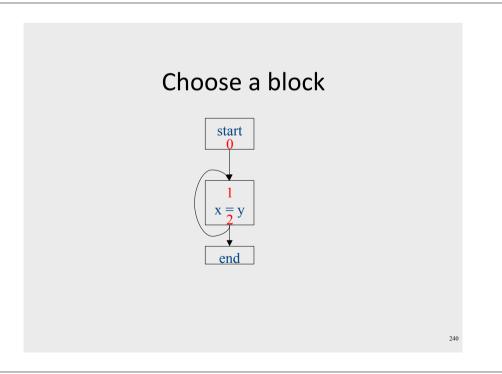




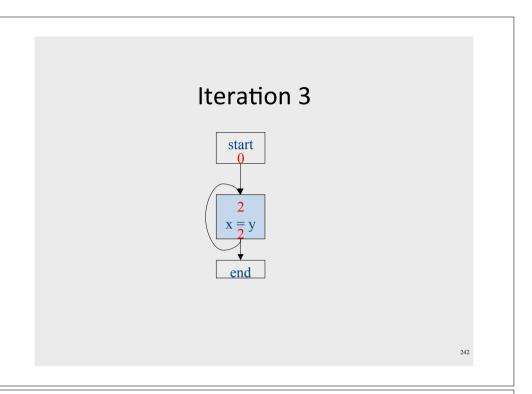


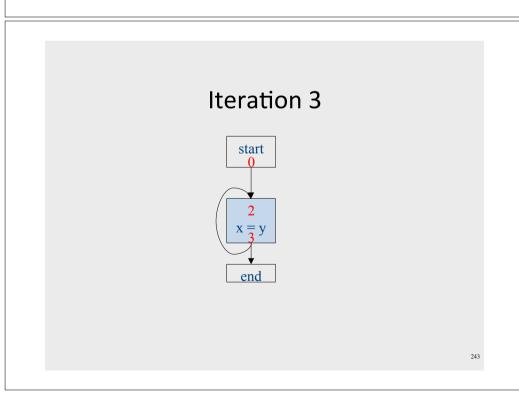


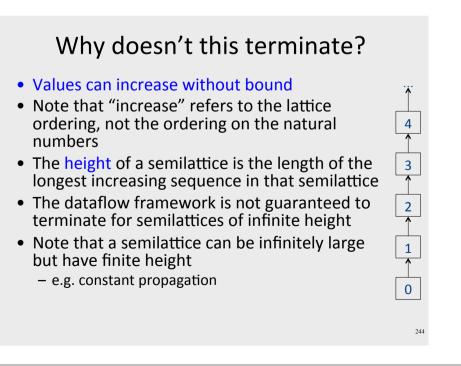




Iteration 3 Start 1 x = y end







Height of a lattice

- An increasing chain is a sequence of elements
 An increasing chain is a sequence of elements
 An increasing chain is a sequence of elements
 An increasing chain is a sequence of elements
 - The length of such a chain is k
- The height of a lattice is the length of the maximal increasing chain
- For liveness with *n* program variables:
 - {} \mathbb{X} { v_1 } \mathbb{X} { v_1 , v_2 } \mathbb{X} ... \mathbb{X} { v_1 ,..., v_n }
- For available expressions it is the number of expressions of the form a=b op c
 - For n program variables and m operator types: $m \mathbb{K} n^3$

245

Another non-terminating analysis

 This analysis works on a finite-height semilattice, but will not terminate on certain CFGs:

• Direction: Forward

• Domain: Boolean values true and false

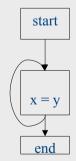
• Join operator: Logical OR

• Transfer function: Logical NOT

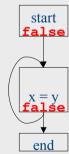
• Initial value: false

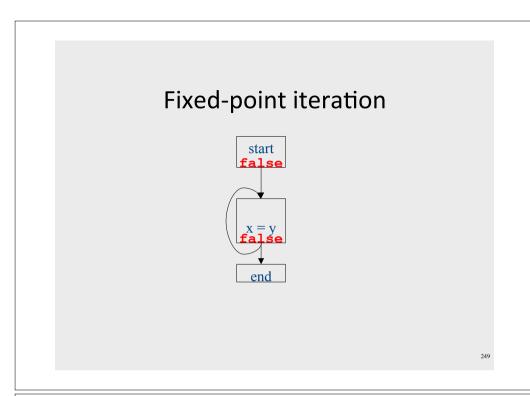
246

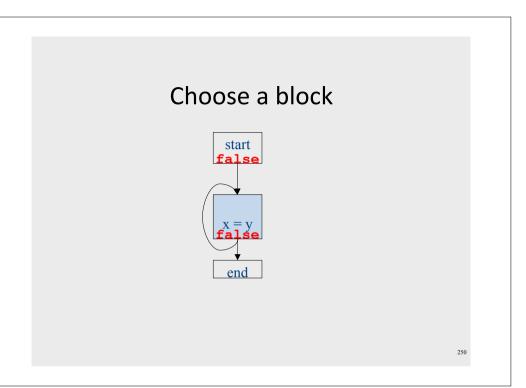
A non-terminating analysis

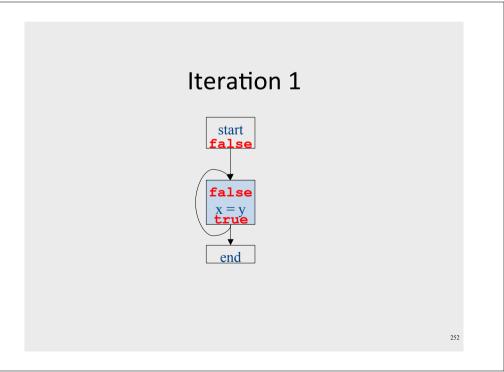


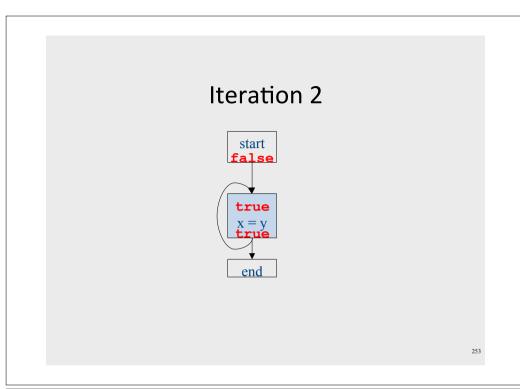
Initialization

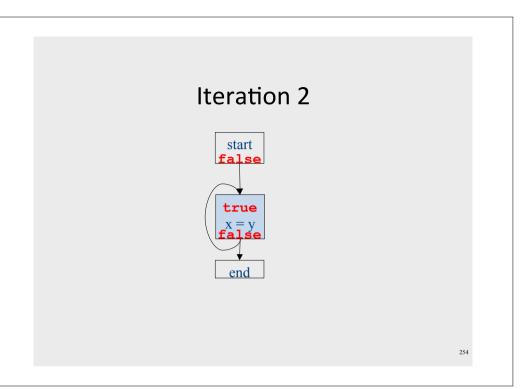


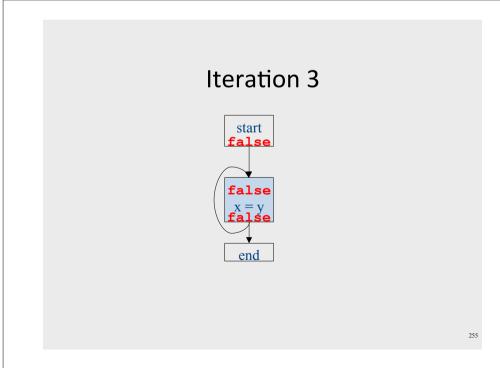


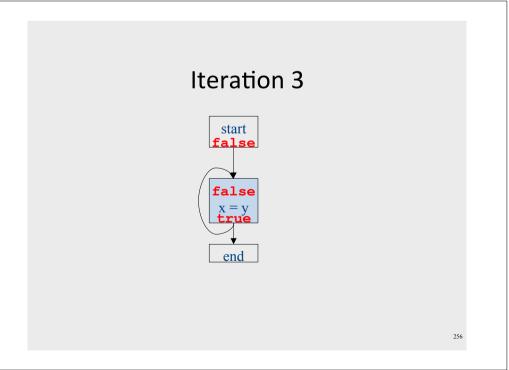






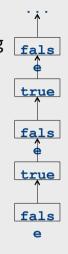






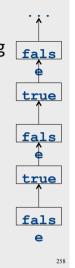
Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever



Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever
- How can we fix this?



Monotone transfer functions

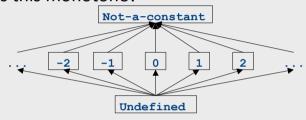
- A transfer function f is monotone iff
 if x ⋈ y, then f(x) ⋈ f(y)
- Intuitively, if you know less information about a program point, you can't "gain back" more information about that program point
- Many transfer functions are monotone, including those for liveness and constant propagation
- Note: Monotonicity does **not** mean that
 x x f(x)
 - (This is a different property called extensivity)

Liveness and monotonicity

- A transfer function f is monotone iff
 if x w y, then f(x) f(y)
- Recall our transfer function for $\mathbf{a} = \mathbf{b} + \mathbf{c}$ is $-f_{\mathbf{a} = \mathbf{b} + \mathbf{c}}(\mathsf{V}) = (\mathsf{V} \{\mathbf{a}\}) \ \ \ \ \ \ \ \{\mathbf{b}, \mathbf{c}\}$
- Recall that our join operator is set union and induces an ordering relationship
 X X Y iff X XY
- Is this monotone?

Is constant propagation monotone?

- A transfer function f is monotone iff
 if x ⋈ y, then f(x) ⋈ f(y)
- Recall our transfer functions
 - $f_{\mathbf{x} = \mathbf{k}}(V) = V|_{\mathbf{x}[\mathbf{x}]\mathbf{k}}$ (update V by mapping x to k)
 - $f_{x=a+b}(V) = V|_{x | Not-a-Constant}$ (assign Not-a-Constant)
- Is this monotone?



261

An "optimality" result

- A transfer function f is distributive if $f(a \bowtie b) = f(a) \bowtie f(b)$ for every domain elements a and b
- If all transfer functions are distributive then the fixed-point solution is the solution that would be computed by joining results from all (potentially infinite) control-flow paths
 - Join over all paths
- Optimal if we ignore program conditions

The grand result

- Theorem: A dataflow analysis with a finiteheight semilattice and family of monotone transfer functions always terminates
- Proof sketch:
 - The join operator can only bring values up
 - Transfer functions can never lower values back down below where they were in the past (monotonicity)
 - Values cannot increase indefinitely (finite height)

26

An "optimality" result

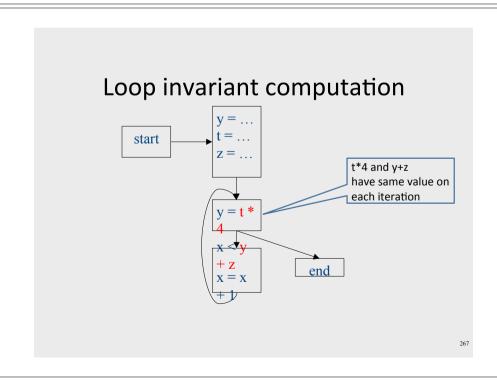
- A transfer function f is distributive if $f(a \bowtie b) = f(a) \bowtie f(b)$ for every domain elements a and b
- If all transfer functions are distributive then the fixed-point solution is equal to the solution computed by joining results from all (potentially infinite) control-flow paths
 - Join over all paths
- Optimal if we pretend all control-flow paths can be executed by the program
- Which analyses use distributive functions?

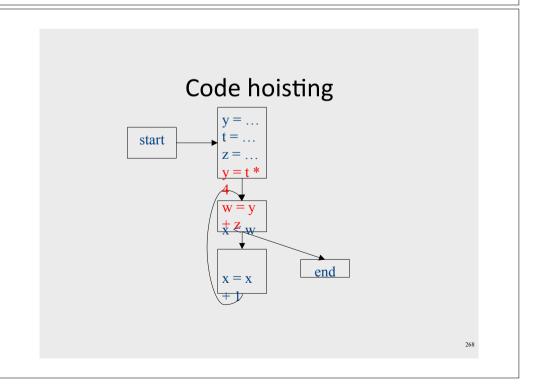
Loop optimizations

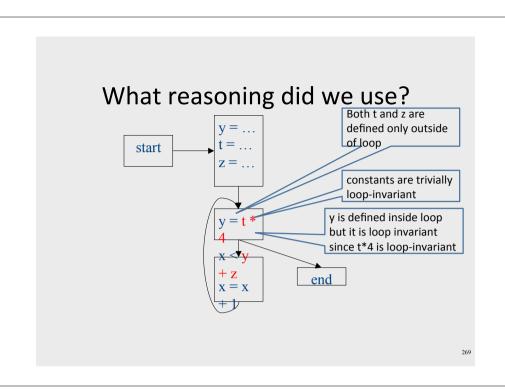
- Most of a program's computations are done inside loops
 - Focus optimizations effort on loops
- The optimizations we've seen so far are independent of the control structure
- Some optimizations are specialized to loops
 - Loop-invariant code motion
 - (Strength reduction via induction variables)
- Require another type of analysis to find out where expressions get their values from
 - Reaching definitions
 - (Also useful for improving register allocation)

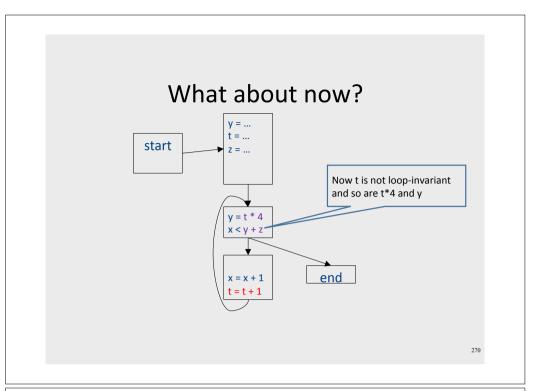
265

Loop invariant computation y = ... t = ... z = ... y + z x = x end









Loop-invariant code motion

- d: $t = a_1 \text{ op } a_2$
 - d is a program location
- a_1 op a_2 loop-invariant (for a loop L) if computes the same value in each iteration
 - Hard to know in general
- Conservative approximation
 - Each a_i is a constant, or
 - All definitions of a_i that reach d are outside L, or
 - Only one definition of of a_i reaches d, and is loop-invariant itself
- Transformation: hoist the loop-invariant code outside of the loop

Reaching definitions analysis

• A definition *d*: t = ... reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined

Reaching definitions analysis

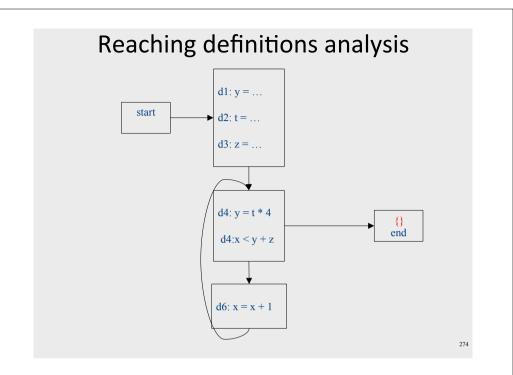
- A definition d: t = ... reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined
- Direction: Forward
- Domain: sets of program locations that are definitions `
- Join operator: union
- Transfer function:

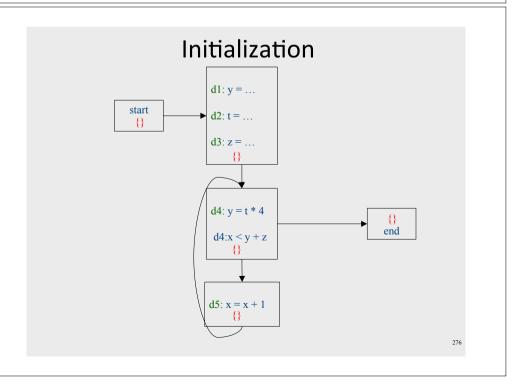
```
f_{d: a=b \ op \ c}(RD) = (RD - defs(a)) \ \mathbb{X} \ \{d\}

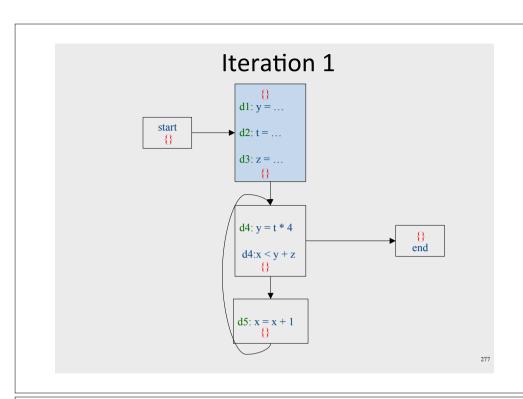
f_{d: not - a - def}(RD) = RD
```

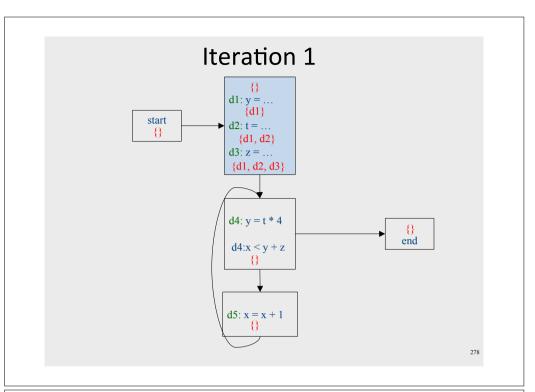
- Where defs(a) is the set of locations defining a (statements of the form a=...)
- Initial value: {}

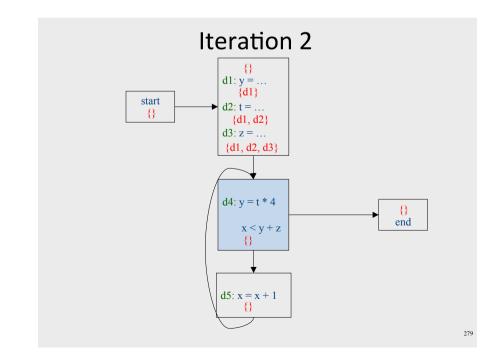
273

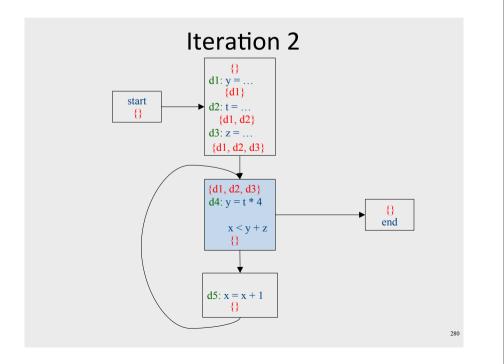


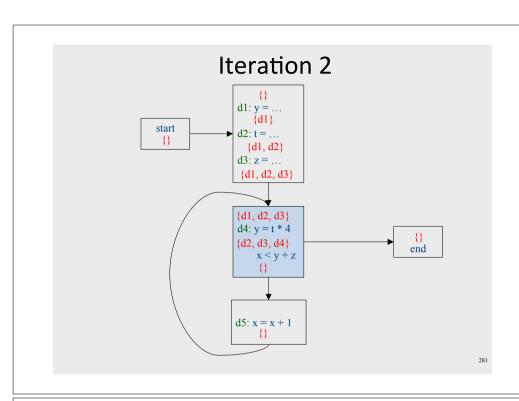


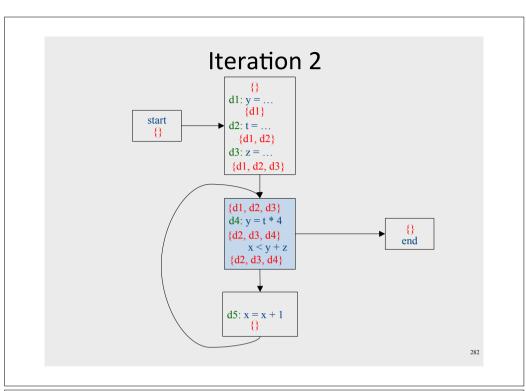


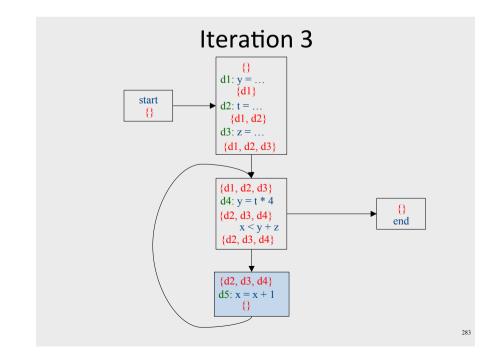


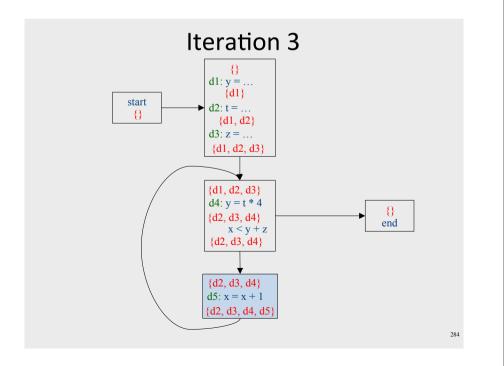


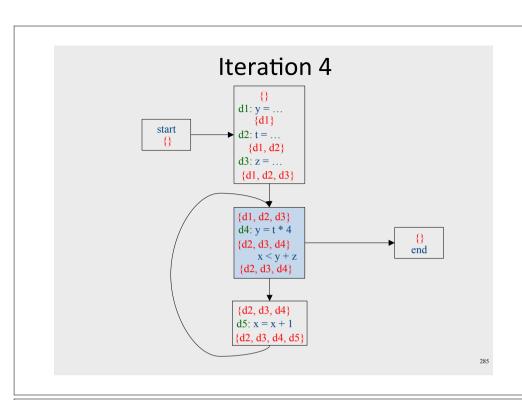


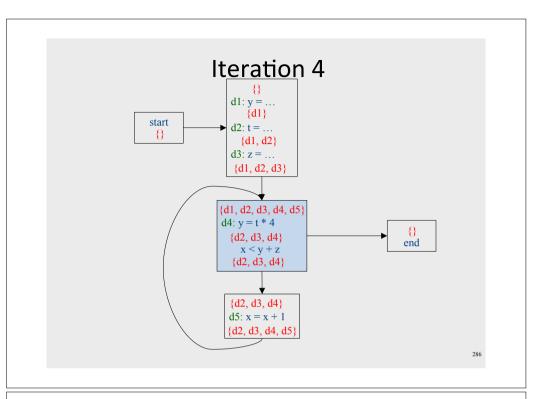


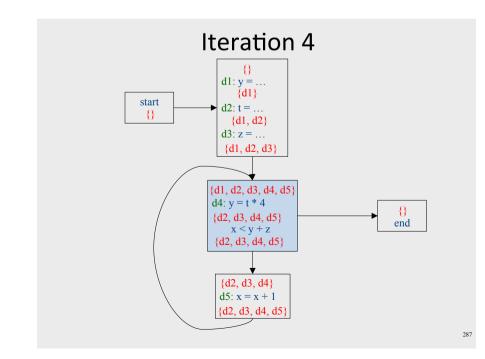


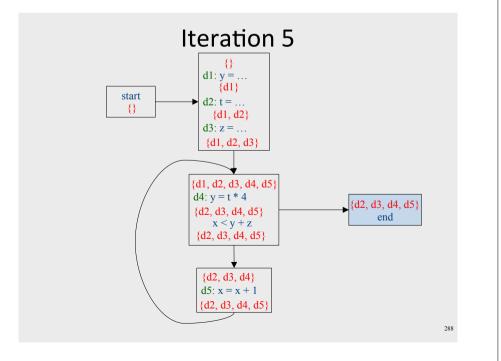


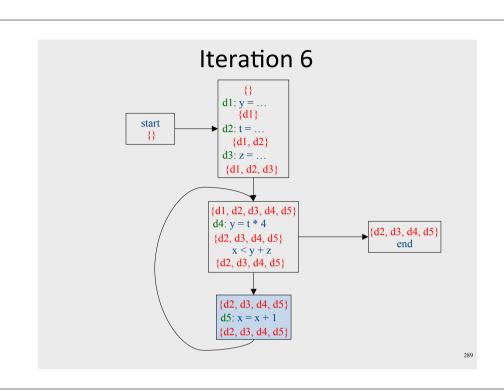






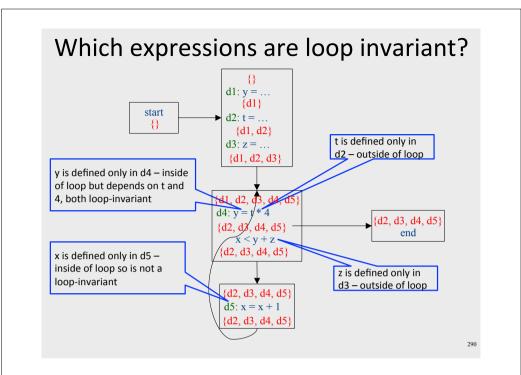


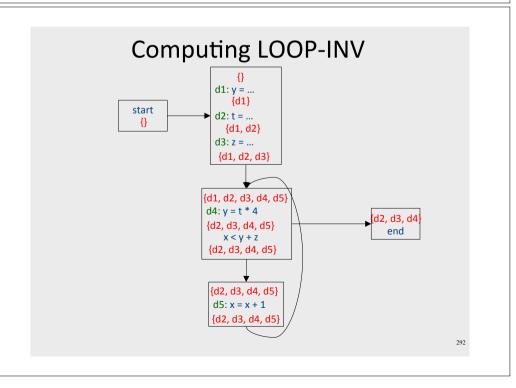


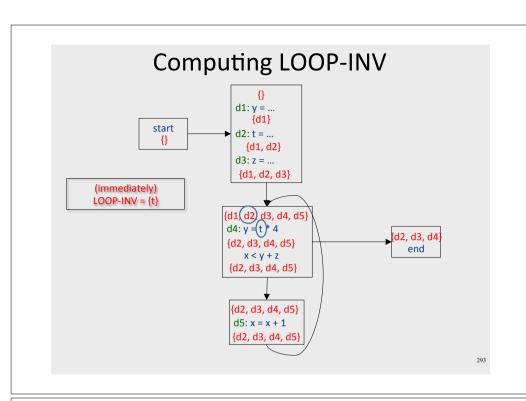


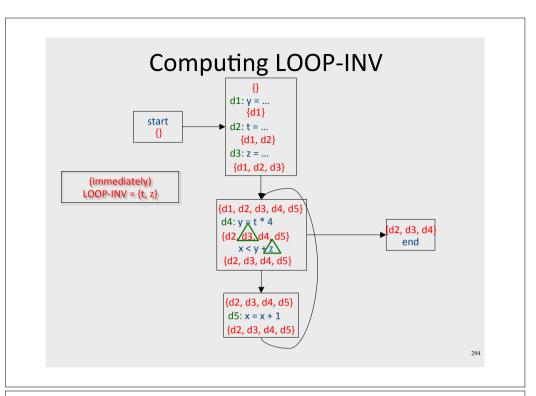
Inferring loop-invariant expressions

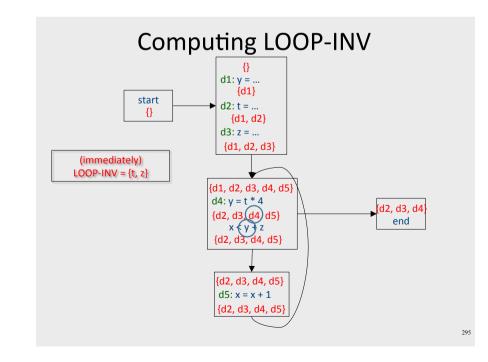
- For a statement s of the form $t = a_1$ op a_2
- A variable a_i is immediately loop-invariant if all reaching definitions IN[s]={d₁,...,d_k} for a_i are outside of the loop
- LOOP-INV = immediately loop-invariant variables and constants LOOP-INV = LOOP-INV \mathbb{K} {x | d: x = a_1 op a_2 , d is in the loop, and both a_1 and a_2 are in LOOP-INV} Iterate until fixed-point
- An expression is loop-invariant if all operands are loop-invariants

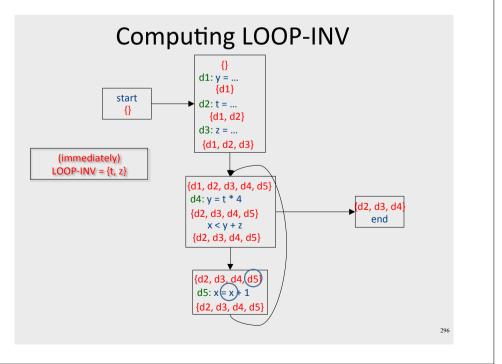


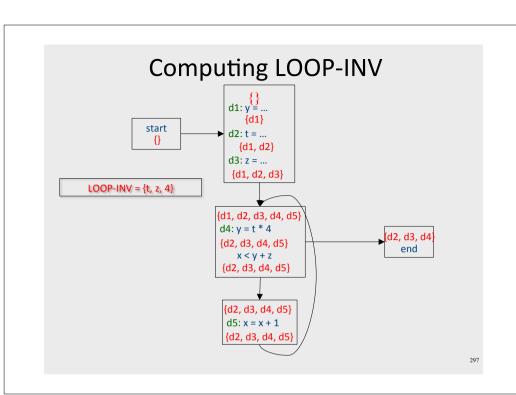


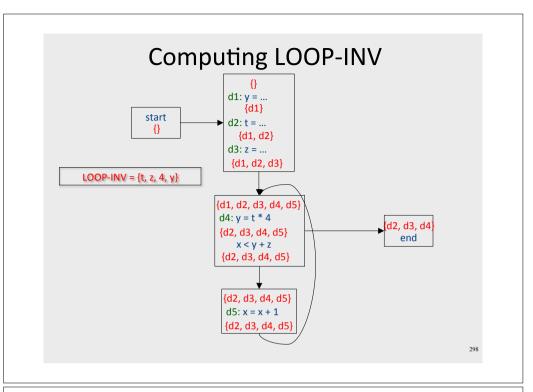


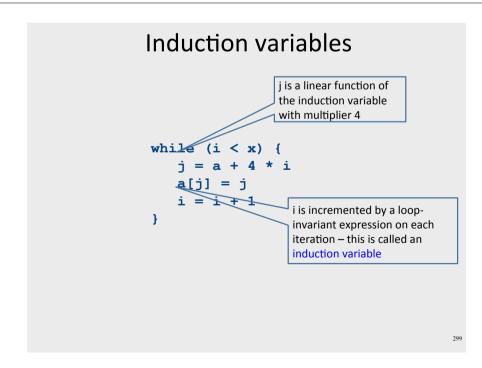












```
Strength-reduction

Prepare initial value

j = a + 4 * i
while (i * Increment by
j = j + 4 multiplier
a[j] = j
i = i + 1
}
```

Summary of optimizations

Analysis	Enabled Optimizations
Available Expressions	Common-subexpression elimination Copy Propagation
Constant Propagation	Constant folding
Live Variables	Dead code elimination
Reaching Definitions	Loop-invariant code motion