Compilation

0368-3133 (Semester A, 2013/14)

Lecture 11: Data Flow Analysis & Optimizations

Noam Rinetzky

Slides credit: Roman Manevich, Mooly Sagiv and Eran Yahav

What is a compiler?

“A compiler is a computer program that

transforms source code written in a

programming language (source language)
into another language (target language).

The most common reason for wanting to

transform source code is to create an
executable program.”

--Wikipedia

Stages of compilation

Lexical Syntax Context Portable/
Source Analysis Analysis Analysis Retargetable
code Parsing code generation
(program)
= 3
< [—
£ €
-
A R | £ -
= c << (2]
9 +
X
2 &
= 2

Target code

(executable)

Assembly

Stages of Compilation

Lexical Syntax Context Portable/
SO urce Analysis Analysis Analysis Retargetable
code Parsing code generation
(program)

Text
AST
IR Optimization

IS
o
E=]
I
@
2
[
a0
o
<
=
=

Token stream
AST + Sym. Tab.

Assembly

Naive” IR
“Assembly”
(symbolic registers)

=
e
=
[}
v
2]
<

Target code

(executable)

Registers

* Most machines have a set of registers, dedicated
memory locations that
— can be accessed quickly,
— can have computations performed on them, and
— are used for special purposes (e.g., parameter passing)

e Usages
— Operands of instructions
— Store temporary results

— Can (should) be used as loop indexes due to frequent
arithmetic operation

— Used to manage administrative info

e e.g., runtime stack

Register Allocation

e Machine-agnostic optimizations
e Assume unbounded number of registers

— Expression trees (tree-local)
— Basic blocks (block-local)

e Machine-dependent optimization
e K registers
¢ Some have special purposes

— Control flow graphs (global register allocation)

Register Allocation for Expression trees

X := b*b-4*a*c

2 2.
E] /\
1b/\1b 1t7 2 %
14/\2*
/\
13 1C

t7 := b * Db X = t7 -4 * a * c

Register Allocation for Basic Blocks

x v
N - Load_Mem a,R1

!L {{ Add_Const 1,R1
Load_Reg R1,X1

+ »
/ \ / \ Load_Reg X1,R1
c d +

. Mult_Reg X1,R1
Add_Mem b,R1
/ \ \\ Add_Mem c,R1
b * 1 Store_Reg R1,x

\< >' Load_Reg X1,R1
Add_Const 1,R1

+
/ \ Mult_Mem d,R1
a 1

Store_Reg R1l,vy

Control Flow Graphs (CFGs)

A directed graph G=(V,E) falce e
nodes V = basic blocks = ————- B>

edges E = control flow

— (B1,B2) € E when control from B1 flows B1

int n;

¥ @p

KD X
[T}
QB o9
* + + +
S =

Basic block = Sequence of i
instructions [EEEEY
— Cannot jump into the middle of a BB

y, dead or alive?

— Cannot jump out of the middle of
the BB

N
I
<o
+
x

Leader-based algorithm

False True False True
int n; int n;
n :=a + 1; n:=a+ 1;
X :=b +n *n+ c; x :(=b +n *n+ c;
n :=n + 1; n:=n+ 1;
y :=d * n; y :=d * n;

=

I
o

N

y + x; y := 0;

N

Variable Liveness

e Astatementx=y+z
— defines x
—usesyandz

e Avariable x is live at a program point if its
value (at this point) is used at a later point

y=42 x undef, y live, z undef
z=73 x undef, y live, z live
X=y+z x is live, y dead, z dead
print(x); x is dead, y dead, z dead

(showing state after the statement)

Global Register Allocation
using Liveness Information

e For every node n in CFG, we have out[n]
— Set of temporaries live out of n

e Two variables interfere if they appear in the same
out[n] of any node n

— Cannot be allocated to the same register

e Conversely, if two variables do not interfere with
each other, they can be assigned the same
register

— We say they have disjoint live ranges

e How to assign registers to variables?

——....) Interference graph
R, stores return value enter: | ¢ <— r3 Callee-saved registers
A sl

Caller-saved registers

Optimization points

int.f(int WU ke G o) JRI T b <
'lnt d=0; v R
;2t<§=i;d+b; gy source Front R Code | target
el di<—d-+b code end } generator code
} while (e>0); e «<—e—1 E i i
} return d; if e > 0 goto loop ! | |
onter ¢ <73 rioeed User Compiler Compiler
. :g Tgiesehe . profile program intraprocedural IR register allocation
e return (r1,r3 live out) change algorithm Interprocedural IR instruction selection
: 1{1—_| RS IR optimizations peephole transformations
= E:%j;: 1 r\rﬂ; \e
if e > 0 goto loop T
Beo 2
o today "
Soundness

Program Analysis

* In order to optimize a program, the
compiler has to be able to reason about the

properties of that program
e An analysis is called sound if it never
asserts an incorrect fact about a program
e All the analyses we will discuss in this class
are sound
— (Why?)

“At this point in the
program, x holds some
integer value”

Print (x) ;

int x
int y

if (y

else

Print

Soundness

< 5)
= 137; “At this point in the
program, x is either 137 or 42”
= 42;
(%) ;

(Un) Soundness

int x;
int y;
if (y
x “At this point in the
else program, x is 137
X

Print (x) ;

Soundness & Precision

int x;
int y;

if (y
X

else
X

“At this point in the
program, x is either 137,
42, 0r 271"

Print (x) ;

Semantics-preserving optimizations

e An optimization is semantics-preserving if it does
not alter the semantics (meaning) of the original
program
v Eliminating unnecessary temporary variables

v Computing values that are known statically at compile-
time instead of computing them at runtime

v’ Evaluating iteration-independent expressions outside
of a loop instead of inside

X Replacing bubble sort with quicksort (why?)
e The optimizations we will consider in this
class are all semantics-preserving

20

A formalism for IR optimization

e Every phase of the compiler uses some new
abstraction:

— Scanning uses regular expressions
— Parsing uses Context Free Grammars (CFGs)

— Semantic analysis uses proof systems and symbol
tables

— IR generation uses ASTs

¢ In optimization, we need a formalism that captures
the structure of a program in a way amenable to
optimization
— Control Flow Graphs (CFGs)

Types of optimizations

e An optimization is local if it works on just a
single basic block

e An optimization is global if it works on an
entire control-flow graph

e An optimization is interprocedural if it
works across the control-flow graphs of
multiple functions

— We won't talk about this in this course

22

Local optimizations

int main() {
int x;
int y;

int z; _t0 = 137;
y = tO0;

y = 137; IfZ x Goto _LO;
if (x == 0)

z = y; /\
else

x = y; _tl =y, _t2 =y;

z = tl1; x = _t2;

} —

Local optimizations

int main() {
int x;
int y;

int z; t0 = 137;
;= t0;

y = 137; IfZ x Goto _LO;
if (x == 0)

2=y /\
else

X =y; _tl =y, _t2 =y

} z = _tl; x = _t2

End

24

int main() {

int x;
int y;
int z;

y = 137;
if (x == 0)
z =y;

else
X =y

Local optimizations

= 137;
IfZ x Goto _LO;

/\

_ti= _t2 =y;
Zh= x=_t2;

Local optimizations
ey

int y;
int z;
y = 137;

y = 137; IfZ x Goto _LO;
if (x == 0)

zZ =Yy; ‘//////A\\\\\\‘
else

x =vy; _tl =y; _t2 =y;

z = tl1; x = t2;
}
End

26

int main() {

int x;
int y;
int z;

y = 137;
if (x == 0)
z = y;

else
X =y,

Local optimizations

o

y = 137;
IfZ x Goto LO;

End

Local optimizations
ey

o

int y;
int z;
y = 137;
y = 137; IfZ x Goto _LO;
if (x == 0)
z =vy; ‘//////A\\\\\\‘
else t2
} *= ¥ z =y; x = _tg

End

28

Local optimizations

int main() {
i
int y;

int z;

= 137;
y = 137; IfZ x Goto _L0;

if (x == 0)

z =y; ‘//////A\\\\\\‘
else

X =y,)

Global optimizations

int main() {

int x;
int y;

int z;

= 137;
y = 137; Ifz x Goto LO;

if (x == 0)

z =Yy; ‘//////A\\\\\\‘
else

X =y, .

Global optimizations
oy

o

int y;
int z;
y = 137;

y = 137; IfZ x Goto _LO;
if (x == 0)

z =y ‘{//////“\\\\\\A
else

X =y,

z =Yy, X =Yy
}
End

Global optimizations
ey

o

int y;
int z;
y = 137;
y = 137; IfZ x Goto _LO;
if (x == 0)
z =y ‘//////A\\\\\\‘
else
} i z = 137; x = 137;

End

32

Local Optimizations

CFG

IR —>
builder

Optimization path

done
with IR
optimizations~

Graph

1

Code
Generation [—*>
(+optimizations)

Control-Flow optimizations | Program |

IR

Analysis

Transformation

Target
Code

.
v
Annotated
CFG

Optimizing <,,,//////

Common subexpression elimination

Object x;
int a;
int b;
siie @g

new Object;
= 4;

= a + b;
.fn(a + b);

¥ oo X

_tmp0 = 4;

Push _tmp0;

_tmpl = Call _Alloc;
Pop tmp2;
*(_tmpl) = _tmp2;
x = _tmpl;

_tmp3 = 4;

a = _tmp3;

_tmp4 = a + b;

c = _tmp4;

_tmp5 = a + b;
_tmpé *(x) ;
_tmp7 = *(_tmpé) ;
Push _tmp5;

Push x;

Call _tmp7;

Common subexpression elimination

Object x;
int a;
int b;
siis @g

= 4;

¥ 0o p X

= new Object;

= a + b;
.fn(a + b);

_tmp0 = 4;
Push _tmp0;

tmpl = Call _Alloc;

Eop tmp2 ;

*(_tmpl) = tmp2;

x = _tmpl;
_tmp3 = 4;
a = _tmp3;

_tmp4 = a + b;

c = _tmp4;

_tmp5 = a + b;

*(x) ;

_tmpé
_tmp7
Push _tmp5;
Push x;

Call tmp7;

* (_tmp6) ;

36

Common subexpression elimination

Object x;
int a;
int b;
int c;

new Object;
= 4;

=a + b;
.fn(a + b);

X 0 X

_tmp0 = 4;

Push _tmp0;

_tmpl = Call Alloc;
Pop tmp2;
*(_tmpl) = tmp2;
X = _tmpl;

_tmp3 = 4;

a = _tmp3;

_tmpd = a + b;

c = _tmp4;

_tmp5 = _tmp4;
_tmpé = *(x);
_tmp7 = *(_tmpé6) ;
Push _tmp5;

Push x;

Call _tmp7;

Common subexpression elimination

Object x;

int
int
int

¥ 0o p X

a;
b;
@g

new Object;
4;
a + b;

.fn(a + b);

_tmp0 = 4;

Push _tmp0;

_tmpl = Call Alloc;
Pop tmp2;
*(_tmpl) = _tmp2;
X = _tmpl;

_tmp3 = 4;

a = _tmp3;

_tmpd = a + b;

c = _tmp4;

_tmp5 = tmp4;
_tmpé = *(x);
__tmp7 * (_tmp6) ;
Push _tmp5;

Push x;

Call tmp7;

Common subexpression elimination

Object x;
int a;
int b;
siie @g

new Object;
= 4;

= a + b;
.fn(a + b);

¥ oo X

_tmp0 = 4;

Push _tmp0;

_tmpl = Call _Alloc;
Pop tmp2;
*(_tmpl) = _tmp2;
x = _tmpl;

_tmp3 = tmp0;

a = _tmp3;

_tmp4 = a + b;

c = _tmp4;

_tmp5 = _tmp4;
_tmpé6 *(x) ;
_tmp7 = *(_tmpé) ;
Push _tmp5;

Push x;

Call _tmp7;

Common subexpression elimination

Object x;

int
int
int

¥ 0o p X

a;
b;
@¢

new Object;
4;
a + b;

.fn(a + b);

_tmp0 = 4;

Push _tmp0;

_tmpl = Call Alloc;
Pop tmp2;

*(_tmpl) = _tmp2;
x = _tmpl;

_tmp3 = _tmp0;

a = _tmp3;

_tmp4 = a + b;

c = _tmp4;

_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmpé) ;
Push _tmp5;

Push x;

Call _tmp7;

40

Common subexpression elimination

Object x;
int a;
int b;
int c;

X = new
Object;
a=4;

c =a+ b;
x.fn(a + b);

_tmp0 = 4;

Push _tmp0;

_tmpl = Call Alloc;
Pop tmp2;
*(_tmpl) = _tmp2;
X = _tmpl;

_tmp3 = _tmp0;

a = _tmp3;

_tmpd = a + b;

c = _tmp4;

_tmp5 = c;

_tmp6 = *(x);
_tmp7 = *(_tmpé6) ;
Push _tmp5;

Push x;

Call _tmp7;

Common Subexpression Elimination

¢ |f we have two variable assignments

vi=aopb

§/.2=aopb

¢ and the values of v1, a, and b have not changed
between the assignments, rewrite the code as

vi=aopb
v2=vl

¢ Eliminates useless recalculation
e Paves the way for later optimizations

)

Copy Propagation

Object x;
int a;
int b;
siie @g

new Object;
= 4;

= a + b;
.fn(a + b);

¥ oo X

_tmp0 = 4;

Push _tmp0;

_tmpl = Call _Alloc;
Pop tmp2;

*(_tmpl) = _tmp2;
x = _tmpl;

_tmp3 = _tmp0;

a = _tmp3;

_tmp4 = a + b;

c = _tmp4;

_tmp5 = c;

_tmp6 = *(x);
_tmp7 = *(_tmp6) ;
Push _tmp5;

Push x;

Call _tmp7;

43

Copy Propagation

Object x;
int a;
int b;
siis @g

= new Object;
= 4;

= a + b;
.fn(a + b);

¥ 0o p X

_tmp0 = 4;

Push _tmp0;

_tmpl = Call Alloc;
Pop tmp2;
*(_tmpl) = _tmp2;
x = _tmpl;

_tmp3 = _tmp0;

a = _tmp3;

_tmp4 = a + b;

c = _tmp4;

_tmp5 = c;

_tmpé *(x) ;
_tmp7 = *(_tmp6) ;
Push _tmp5;

Push x;

Call tmp7;

44

Copy Propagation

Copy Propagation

Object x; _tmp0 = 4; Object x; _tmp0 = 4;
int a; Push _tmp0; int a; Push _tmp0;
int b; _tmpl = Call Alloc; int b; _tmpl = Call Alloc;
int c; Pop tmp2; int c; Pop tmp2;
*(_tmpl) = _tmp2; *(_tmpl) = _tmp2;
X = new Object; x = _tmpl; X = new Object; x = _tmpl;
a=4; _tmp3 = _tmp0; a=4; _tmp3 = _tmp0;
c =a + b; a = _tmp3; c=a+b; a = _tmp3;
x.fn(a + b); _tmpd = a + b; x.fn(a + b); _tmpd = a + b;
c = _tmp4; c = _tmp4;
_tmp5 = c; _tmp5 = c;
_tmp6 = *(_tmpl) ; _tmp6 = *(_tmpl) ;
_tmp7 = *(_tmpé6) ; _tmp7 = *(_tmpé6) ;
Push _tmp5; Push _tmp5;
Push _tmpl; Push _tmpl;
Call _tmp7; Call tmp7;
45 46
Copy Propagation Copy Propagation
Object x; _tmp0 = 4; Object x; _tmp0 = 4;
int a; Push _tmp0; int a; Push _tmp0;
int b; _tmpl = Call _Alloc; int b; _tmpl = Call Alloc;
int c; Pop tmp2; int c; Pop tmp2;
*(_tmpl) = _tmp2; *(_tmpl) = _tmp2;
X = new Object; x = _tmpl; X = new Object; x = _tmpl;
a=4; _tmp3 = _tmp0; a=4; _tmp3 = _tmp0;
c=a+ b; a = _tmp3; c =a+ b; a = _tmp3;
x.fn(a + b); _tmp4 = tmp3 + b; x.fn(a + b); _tmp4 = tmp3 + b;
c = _tmp4; c = _tmp4;
_tmp5 = c; _tmp5 = c;
_tmp6 = *(_tmpl); _tmp6 = *(_tmpl);
_tmp7 = *(_tmpé6) ; _tmp7 = *(_tmpé6) ;
Push _tmp5; Push _tmp5;
Push _tmpl; Push _tmpl;
Call _tmp7; Call tmp7;

47

48

Copy Propagation

Copy Propagation

Object x; _tmp0 = 4; Object x; _tmp0 = 4;
int a; Push _tmp0; int a; Push _tmp0;
int b; _tmpl = Call Alloc; int b; _tmpl = Call Alloc;
int c; Pop tmp2; int c; Pop tmp2;
*(_tmpl) = _tmp2; *(_tmpl) = _tmp2;
X = new Object; x = _tmpl; X = new x = _tmpl;
a=4; _tmp3 = tmp0; Object; _tmp3 = _tmp0;
c =a + b; a = _tmp3; a=4; a = _tmp3;
x.fn(a + b); _tmpd = tmp3 + b; c =a+ b; _tmpd = tmp3 + b;
c = _tmp4; x.fn(a + b); c = _tmp4;
_tmp5 = c; _tmp5 = c;
_tmp6 = *(_tmpl) ; _tmp6 = *(_tmpl) ;
_tmp7 = *(_tmpé6) ; _tmp7 = *(_tmpé6) ;
Push c; Push c;
Push _tmpl; Push _tmpl;
Call _tmp7; Call tmp7;
49 50
Copy Propagation Copy Propagation
Object x; _tmp0 = 4; Object x; _tmp0 = 4;
int a; Push _tmp0; int a; Push _tmp0;
int b; _tmpl = Call _Alloc; int b; _tmpl = Call Alloc;
int c; Pop tmp2; int c; Pop tmp2;
*(_tmpl) = _tmp2; *(_tmpl) = _tmp2;
X = new x = _tmpl; X = new Object; x = _tmpl;
Object; _tmp3 = _tmp0; a=4; _tmp3 = _tmp0;
a=4; a = _tmp3; c =a+ b; a = _tmp3;
c=a+b; _tmp4 = tmp3 + b; x.fn(a + b); _tmp4 = tmp3 + b;
x.fn(a + b); c = _tmp4; c = _tmp4;
_tmp5 = c; _tmp5 = c;
_tmp6 = _tmp2; _tmp6 = tmp2;
_tmp7 = *(_tmpé6) ; _tmp7 = *(_tmp6) ;
Push c; Push c;
Push _tmpl; Push _tmpl;
Call _tmp7; Call tmp7;

52

Copy Propagation

Object x;
int a;
int b;
int c;

new Object;

= 4;

X 0 X

_tmp0 = 4;

Push _tmp0;

_tmpl = Call Alloc;
Pop tmp2;

*(_tmpl) = _tmp2;
X = _tmpl;

_tmp3 = _tmp0;

a = _tmp3;

_tmpd = tmp3 + b;
c = _tmp4;

_tmp5 cy

_tmpé _tmp2;
_tmp7 *(_tmp2) ;
Push c;

Push _tmpl;

Call _tmp7;

Copy Propagation

Object x;
int a;
int b;
int c;

new Object;
4;

a + b;
.fn(a + b);

X 0o p X
nnn

_tmp0 = 4;

Push _tmp0;

_tmpl = Call Alloc;
Pop tmp2;

*(_tmpl) = _tmp2;
X = _tmpl;

_tmp3 = _tmp0;

a = _tmp3;

_tmpd = tmp3 + b;
c = _tmp4;

_tmp5 cy

_tmpé _tmp2;
_tmp7 *(_tmp2) ;
Push c;

Push _tmpl;

Call tmp7;

54

Copy Propagation

_tmp0 = 4;

Push _tmp0;

_tmpl = Call _Alloc;
Pop tmp2;

*(_tmpl) = _tmp2;
x = _tmpl;

_tmp3 = _tmp0;

a = _tmp0;

_tmp4 = tmp0 + b;
c = _tmp4;

_tmp5 c;

_tmp6 = _tmp2;
_tmp7 = *(_tmp2) ;
Push c;

Push _tmpl;

Call _tmp7;

Copy Propagation

e |If we have a variable assignment

vl=v2

then as long as vl and v2 are not
reassigned, we can rewrite expressions of

the form
a=..vl..
as
a=..v2..

provided that such a rewrite is legal

56

Dead Code Elimination

Object x;

x=
a=4;
c=
X

_tmp0 = 4;)

Push _tmp0;

_tmpl = Call Alloc;
Pop tmp2;

*{_tmpl) = tmp2;
X = _tmpl;

_tmp3 = _tmp0;

a = _tmp0;

_tm = _tmp0 + b;
c = _tmp4;

_tmp5 cy

_tmpé _tmp2;
_tmp7 *(_tmp2) ;
Push c;

Push _tmpl;

Call tmp7;

Dead Code Elimination

Object x;
int a;

int b; values
int c; never
read N

X = new
Object;
a=4;
c=a+ b;
x.fn(a + b);

[Valuecs L—1
values

never
read

_tmp0 = 4;
Push _tmp0;
_tmpl = Call Alloc;
Pop tmp2;
*(_tmpl) = _tmp2;
:§§§\\.x = _tmpl;
_tmp3 = _tmp0;
a = _tmp0;
_tmpd = tmp0 + b;
c = _tmp4;
_tmp5 ck
:;;;7’ _tmpé6 _tmp2;
_tmp7 *(_tmp2) ;
Push c;
Push _tmpl;
Call tmp7;

58

Dead Code Elimination

Object x;
int a;
int b;
siie @g

X = new
Object;
a=4;

c =a+ b;
x.fn(a + b);

_tmp0 = 4;

Push _tmp0;

_tmpl = Call _Alloc;
Pop tmp2;

*(_tmpl) = _tmp2;
_tmp4 = tmp0 + b;

c = _tmp4;

_tmp7 = *(_tmp2);
Push c;

Push _tmpl;

Call _tmp7;

Dead Code Elimination

An assignment to a

variable v is called dead

if the value of that assignment is never read

anywhere

Dead code elimination removes dead
assignments from IR

Determining whether an assignment is

dead depends on w

hat variable is being

assigned to and when it's being assigned

60

Applying local optimizations

The different optimizations we've seen so far
all take care of just a small piece of the
optimization

Common subexpression elimination eliminates
unnecessary statements

Copy propagation helps identify dead code
Dead code elimination removes statements
that are no longer needed

To get maximum effect, we may have to apply
these optimizations numerous times

Applying local optimizations
example

® Qov
o nn
Lo 2 o i I\
+ + * *
oopp

62

Applying local optimizations
example

® QU

mnonon

o oo

+ + * *
o)

Which optimization should we apply here?

Applying local optimizations
example

i umn
ooow
+ + *

2

® QOO
o0

Which optimization should we apply here?

Common sub-expression elimination

64

Applying local optimizations
example

nnonon
(o 2 o i o)
+ 4+

L

® QU
(o 2e]

Which optimization should we apply here?

Applying local optimizations
example

oo
o uwn
oo oe
+ 4+ »
ge ®

Which optimization should we apply here?

Copy propagation

66

Applying local optimizations

example
b=a* a;
c =Db;
d=b + b;
e =b + b;

Which optimization should we apply here?

Applying local optimizations
example

o nn
o

® QOO

Which optimization should we apply here?

Common sub-expression elimination (again)

68

Other types of local
optimizations
e Arithmetic Simplification

— Replace “hard” operations with easier ones
—eg.rewritex = 4 * a;asx = a << 2;
e Constant Folding

— Evaluate expressions at compile-time if they
have a constant value.

—eg.rewritex = 4 * 5; asx = 20;

Optimizations and analyses

* Most optimizations are only possible given
some analysis of the program's behavior

e In order to implement an optimization, we
will talk about the corresponding program
analyses

70

Available expressions

® Both common subexpression elimination and copy
propagation depend on an analysis of the available
expressions in a program

e An expression is called available if some variable in
the program holds the value of that expression

* In common subexpression elimination, we replace
an available expression by the variable holding its
value

* |n copy propagation, we replace the use of a
variable by the available expression it holds

Finding available expressions

e Initially, no expressions are available

e Whenever we execute a statement
a=bopc:
— Any expression holding a is invalidated
— The expression a = b op ¢ becomes available

e Idea: Iterate across the basic block, beginning
with the empty set of expressions and
updating available expressions at each
variable

72

Available expressions example

a =b>b;
{a=Db}
c = b;
{ a=Db, ¢c=Db}
d =a + b;
{ a=b, c=b, d=a+ b}
e =a + b;
{a=b, c=b,d=a+b, e=a+ Db}
d = b;

Common sub-expression elimination

a =b>b;
{a=Db}
c = b;
{ a=Db, ¢c=Db}
d =a + b;
{ a=b, c=b, d=a+ Db}
e =a + b;
{a=b, c=b,d=a+b, e=a+ Db}
d = b;

{ 1

a =b;
{a=Db}
c =b;
{a=Db, c=Db}
d =a + b;
{ a=b, c=b, d=a+b}
e = a + b;
{ a=b, c=b,d=a+b, e=a+ Db}
d = b;

a =b;
{a=Db}
c = a;
{a=Db, c=Db}
d =a + b;
{a=b, c=b, d=a+ Db}
e = d;

Live variables

e The analysis corresponding to dead code
elimination is called liveness analysis

e Avariable is live at a point in a program if
later in the program its value will be read
before it is written to again

e Dead code elimination works by computing
liveness for each variable, then eliminating
assignments to dead variables

Computing live variables

e To know if a variable will be used at some point,
we iterate across the statements in a basic block
in reverse order

¢ Initially, some small set of values are known to be
live (which ones depends on the particular
program)

e When we see the statementa=b op c:

— Just before the statement, a is not alive, since its value
is about to be overwritten

— Just before the statement, both b and c are alive, since
we're about to read their values

— (what if we have a=a + b?) 7%

to Liveness analysis

a = b;

{ a, b}
c = a;

{ a, b}
d =a + b;

{ a, b, d}
e = d;

{ a, b, e}
d = a;

{ b, d, e}
f =e;

Which statements are dead?

{ b, d} - given

t bb} Dead Code Elimination

{ a b}
= a;

{ a, b}
= a + b;

{ a, b, d}
= d;

{ a, b, e}
= a;

{ b, d, e}
= e;

{ b, d}

Which statements are dead?

d

e

d

t > 1 Dead Code Elimination

4

{a b}

{ a, b}
= a + b;

{ a, b, d}
=d;

{ a, b, e}
= a;

{ b, d, e}

{ b, d}

‘") Liveness analysis Il

Which statements are dead?

‘>’ Liveness analysis Il

Which statements are dead?

‘>’ Dead code elimination

Which statements are dead?

t® 1 Dead code elimination ' °0 Liveness analysis I

{a, b} (a, b} Which statements are dead?
d =a + b; d =a + b;

{ a, b, d}

{ a, b} { a, b}
d = a; d = a;

{ b, d} { b, d}
' ° 7 Dead code elimination ' °) Dead code elimination

Which statements are dead?

{ a, b}

{ a, b}
d = a;
{ b, d}

Dead code elimination

If we further apply
copy propagation
this statement can
be eliminated too

A combined algorithm

e Start with initial live variables at end of
block

e Traverse statements from end to beginning
e For each statement
— If assigns to dead variables — eliminate it

— Otherwise, compute live variables before
statement and continue in reverse

90

A combined algorithm

A combined algorithm

92

A combined algorithm

A combined algorithm

c = a cC = a
d=a+b d=a+b
e =d; e =d;
d = a d=a

f = e;

{ b, d} { b, d}
L A combined algorithm L A combined algorithm
c = a cC = a
d=a+b d=a+b
e = d; e = d;

{ a, b} { a, b}
d = a; d = a;

{ b, d} { b, d}

96

A combined algorithm

A combined algorithm

c = a cC = a
d=a+b d=a+b
{ a, b} { a, b}
d = a; d = a;
{ b, d} { b, d}
L A combined algorithm L A combined algorithm
c = a cC = a
{ a, b} { a, b}
d = a; d = a;
{ b, d} { b, d}

100

A combined algorithm

{ a, b}
d = a;

{ b, d}

t 51 A combined algorithm

a = b;

{ a, b}
d = a;

{ b, d}

102

A combined algorithm

103

High-level goals

* Generalize analysis mechanism
— Reuse common ingredients for many analyses
— Reuse proofs of correctness

e Generalize from basic blocks to entire CFGs

— Go from local optimizations to global
optimizations

104

Formalizing local analyses

Input Value

| Transfer Function I

v

Vout — fa=b+c(vin)

Output Value
Vour

ou’

105

Available Expressions

Input Value

in

!

‘a=b+c

! /]

Output Value Expressions of the forms
\Y, a=... and x=..a..

out

‘

‘ V.. = (V,, \ {e | e contains a}) [¥] {a=b+c}

106

Live Variables

Input Value

Vin - (Vout \ {a}) {W} {b ’ C}

Output Value
V

out

Information for a local analysis

e What direction are we going?
— Sometimes forward (available expressions)
— Sometimes backward (liveness analysis)

e How do we update information after
processing a statement?
— What are the new semantics?
— What information do we know initially?

108

Formalizing local analyses

e Define an analysis of a basic block as a
qguadruple (D, V, F, 1) where
— Dis a direction (forwards or backwards)
— Vis a set of values the program can have at any
point
— Fis a family of transfer functions defining the
meaning of any expression as a functionf: V [W] vV

— | is the initial information at the top (or bottom) of
a basic block

109

Available Expressions

Direction: Forward
Values: Sets of expressions assigned to variables

Transfer functions: Given a set of variable
assignments V and statementa=b +c:

— Remove from V any expression containing a as a
subexpression

— Add to V the expressiona=b +c
— Formally: V . = (V,,\ {e | e contains a}) {¥] {a=b +c}
Initial value: Empty set of expressions

110

Liveness Analysis

Direction: Backward

Values: Sets of variables

Transfer functions: Given a set of variable assignments V
and statementa=b +c:

e Remove a from V (any previous value of a is now dead.)

Add b and c to V (any previous value of b or c is now live.)
Formally: V, = (V,, \{a}) (¥] {b, c}
Initial value: Depends on semantics of language

— E.g., function arguments and return values (pushes)

— Result of local analysis of other blocks as part of a
global analysis m

Running local analyses

Given an analysis (D, V, F, 1) for a basic block
Assume that D is “forward;” analogous for the
reverse case

Initially, set OUT[entry] to |

For each statements, in order:

— Set IN[s] to OUT[prev], where prev is the previous
statement

— Set OUT([s] to f (IN[s]), where f is the transfer
function for statement s

12

Global Optimizations

113

Global analysis

e A global analysis is an analysis that works
on a control-flow graph as a whole

e Substantially more powerful than a local
analysis
— (Why?)

e Substantially more complicated than a local
analysis
- (Why?)

114

Local vs. global analysis

Many of the optimizations from local analysis can still
be applied globally

— Common sub-expression elimination

— Copy propagation

— Dead code elimination
Certain optimizations are possible in global analysis that
aren't possible locally:

— e.g. code motion: Moving code from one basic block into

another to avoid computing values unnecessarily

Example global optimizations:

— Global constant propagation

— Partial redundancy elimination

115

Loop invariant code motion example

W =X -Y;,
while (t < { I:> while (t < 120) {
z =z + 4 zZ =2z2 + w;
} }

value of expression x —y is
not changed by loop body

Why global analysis is hard

e Need to be able to handle multiple
predecessors/successors for a basic block

* Need to be able to handle multiple paths
through the control-flow graph, and may need
to iterate multiple times to compute the final
value (but the analysis still needs to
terminate!)

e Need to be able to assign each basic block a
reasonable default value for before we've
analyzed it

117

Global dead code elimination

¢ Local dead code elimination needed to
know what variables were live on exit from
a basic block

e This information can only be computed as
part of a global analysis

e How do we modify our liveness analysis to
handle a CFG?

118

CFGs without loops

[Bntry F—2

c + d;
c + d;

|

Xx=c + d;
= + b
a=>b + c; y @
Xx =a + b;
y =c + d;
Exit 119

CFGs without loops

{a, ¢, d} - -
b=c+d; Which variables may
- e =c + d; be live on some
{a, b, c, d}4execution path?
— 2
b, c, d
,{{=Z+;_ {a, b, ¢, d}
a=>b + c,' y=a+b;
{a, b, ¢, d} fa, b, ¢, d}
{a, b, ¢, d}
X =a + b;
y =c + d;
{x, vy}
{x, vy}

Exit

120

CFGs without loops

{a! bl c!
y = a + b;

{af bl c!

d}

d}

{a, c, d}
[Entry F—2 27 T
e =c¢c + d;
{a, b, c, d}
{b, ¢, d}
X =c + d;
a=>b + c;
{a, b, ¢, d}
 ;
{a, b, c, d}
X =a + b;
y =c + d;
{x, y}
v
{x, vy}
Exit

CFGs without loops

>4

o
oo
+ +
8y

Exit

122

CFGs without loops

[Entry |—>P T Y
Entr
a=b+c
\
Xx =a + b;
y =c + d;

Exit

Major changes — part 1

* In a local analysis, each statement has
exactly one predecessor

* |n a global analysis, each statement may
have multiple predecessors

¢ A global analysis must have some means of
combining information from all
predecessors of a basic block

124

CFGs without loops CFGs without loops
{c, d} {c, d}
b = + d; b = + d;
{b, c, d} {a, b, c, d}
{bl c, d} {b, c, d}
x=cva iy T x=c+d A
a=>b + c; y ! a=>b + c; y ’
{a, b, ¢, d} D oy G {a, b, ¢, d} {a, b, ¢, d}
e — <
{a, b, c, d} {a, b, ¢, d}
X =a + b; X =a + b;
=c + d; y=c+d;
{x, y} {x, y}
{x, vy} {x, vy}
Exit . Exit .
CFGs without loops
{2, ¢, d Major changes — part 2
[Entry F—2 25T Y
e =c + d;
{a, b, ¢, d} e In a local analysis, there is only one possible
) path through a basic block
{b, c, d} .
x=c+d; g 197 C E e |n a global analysis, there may be many paths
y = a + b;
a=b+c; through a CFG
{a, b, c, d} {fa, b, ¢, d} . .
- e May need to recompute values multiple times
{a, b, c, d} as more information becomes available
= b; . .
A e Need to be careful when doing this not to loop
{x, y} infinitely!
! — (More on that later)
{x, y}
Exit 127 128

CFGs with loops

e Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths

e When we add loops into the picture, this is no longer
true

e Not all possible loops in a CFG can be realized in the
actual program

‘Ifz x goto Top

v
= 2;

e

129

CFGs with loops

Up to this point, we've considered loop-free CFGs,
which have only finitely many possible paths

When we add loops into the picture, this is no longer
true

Not all possible loops in a CFG can be realized in the
actual program

Sound approximation: Assume that every possible
path through the CFG corresponds to a valid execution

— Includes all realizable paths, but some additional paths as
well

— May make our analysis less precise (but still sound)
— Makes the analysis feasible; we'll see how later

130

CFGs with loops

[Entey —2 2t ¥
=c + d;

CcC =

a=b+c
d=a+c
a=a+ b;
d=Db + c;
?

{a}
Exit 131

Major changes — part 3

* In a local analysis, there is always a well
defined “first” statement to begin
processing

* |In a global analysis with loops, every basic
block might depend on every other basic
block

e To fix this, we need to assign initial values
to all of the blocks in the CFG

132

CFGs with loops - initialization CFGs with loops - iteration

}

Q0 o~

c + d;
c + d;

{1
b
Entry F—]

c + d;
c + d;

{} {
a=>b+ c a=b+c
d=a+ c d=a+ c;
{} {}
a=a+ b; a=a+ b;
d=Db + c; d=Db + c;
{a}
I I
{a} {a}
Exit - Exit -
CFGs with loops - iteration CFGs with loops - iteration
{} {}
(omeey 221 ey 22205

+ +
~ 0 0

o p O

p ~
nn

-~ Q. N ~

Exit 136

CFGs with loops - iteration

{}
b c + d;
@ c +d

’

{b, c}

a=>b + c;
d=a+ c;
{a, b, c}

{a, b, c}

a=a+ b;

d=Db + c;
{a} ¢
{a}
Exit

137

CFGs with loops - iteration

{b, c}

a=D>b + c;
d=a+ c;
{a, b, c}

L

{a, b, c}
a=a+b;
d=Db + c;
{a}
{a}
Exit

138

CFGs with loops - iteration

{c, d}
[Entey —>2 2 St &
@ =@ < 6l
{b, c}
{b, c}A/\‘
a=>b + c;
d=a+ c;
{a, b, c}
{a, b, c}
a=a+ b;
d=Db + c;

{a}

{a}
Exit

CFGs with loops - iteration

{c, d}
[Entey |—2 2t ¥
c=c + d;
{b, c}
{b, c}A/\‘
a=b + c;
d=a+ c;
{a, b, c}
 *
{a, b, c}
a=a+ b;
d=Db + c;
{a}
{a}
Exit

{a, b}

{a, b, c}

c =a+ b;

140

CFGs with loops - iteration CFGs with loops - iteration

{c, d} {iciid}
[ntey 2251 % [Entey F——0 250 &
%\ Bo)
{b, c} {b, c}
a=b+ c; ts, 2 == e ey
d=a+ c; d=a+ c;
{a, b, c} {a, b, c}
{a, b, c} {a, b, c}
a=a+ b; a=a+ b;
d=Db + c; d=Db + c;
{a} {al Cc, d}
{a} {a}
Exit Ll Exit 4
CFGs with loops - iteration CFGs with loops - iteration
{c, d} {c, d}
(omeey 221 e 02005
{b, c} {b, c}

A ﬁ/\

{b, c} {b, c}
a=b+ c; a=b+c; ia; :}+ b;
d=a+ c; d=a+ c; ;
{a, b, c} {a, b, c} {a, b, c}
““““““““A ““““““““A

{a/ bl C} {a, b, C}

a=a+ b; a=a+ b;

d=Db + c; d=Db + c;

{a, c, d} {a, c, d}

{a} {a}

Exit 5 Exit i

CFGs with loops - iteration CFGs with loops - iteration
{c, d} {c, d}

[Entry F——>2 2 ¢t % (Entey - Jb = c+ d;
EnEny c=c + d; EnEny c=c + d;

‘%\ {a, b, c}
{b, c} {b, c}
a=>b+ c; {a, b} a=Db+ c;
d=a+ c; d=a+ c;
{a, b, ¢} {a, b, c}
{a, b, c} {a, b, c}
a=a+ b; a=a+b;
d=Db + c; d=Db + c;
{al c, d} {a, Cc, d}
{a} {a}
Exit 75 Exit e
CFGs with loops - iteration CFGs with loops - iteration
{a, ¢, d} {a, c, d}
b=c+ d; b=c+ d;
{al bl C} {a, b, C}
{b! C}A {b, C}A
a=b+c; ia; :}+ b a=b+c;
d=a+ c; ! d=a+ c;
{a, b, c} Ly ;@) {a, b, c}
 ; _‘
{a/ bl C} {a, b, C}
a=a+ b; a=a+ b;
d=Db + c; d=Db + c;
{a, ¢, d} {a, ¢, d}

{a} {a}
Exit - Exit o

Summary of differences

e Need to be able to handle multiple
predecessors/successors for a basic block

* Need to be able to handle multiple paths
through the control-flow graph, and may need
to iterate multiple times to compute the final
value

— But the analysis still needs to terminate!

e Need to be able to assign each basic block a
reasonable default value for before we've
analyzed it

149

Global liveness analysis

Initially, set IN[s] = { } for each statement s

Set IN[exit] to the set of variables known to be
live on exit (language-specific knowledge)
Repeat until no changes occur:

— For each statement s of the forma=b +c¢, in any
order you'd like:
e Set OUT(s] to set union of IN[p] for each successor p of s
e Set IN[s] to (OUT[s] — a) 4] {b, c}.

Yet another fixed-point iteration!

150

Global liveness analysis

IN[s]=(UT[s] - {a}) [¥] {b, c}

a=b+c
OUT[s]=IN[s2] [¥] IN[s3]
IN[s2] IN[s3]
s2 s3

Why does this work?

e To show correctness, we need to show that
— The algorithm eventually terminates, and
— When it terminates, it has a sound answer
e Termination argument:

— Once a variable is discovered to be live during some point of the
analysis, it always stays live
— Only finitely many variables and finitely many places where a
variable can become live
e Soundness argument (sketch):

— Each individual rule, applied to some set, correctly updates
liveness in that set

— When computing the union of the set of live variables, a variable
is only live if it was live on some path leaving the statement

152

Abstract Interpretation

e Theoretical foundations of program
analysis

e Cousot and Cousot 1977

e Abstract meaning of programs
— Executed at compile time

Another view of local
optimization
¢ In local optimization, we want to reason

about some property of the runtime
behavior of the program

e Could we run the program and just watch
what happens?

e |dea: Redefine the semantics of our
programming language to give us
information about our analysis

Properties of local analysis

e The only way to find out what a program will
actually dois to run it

e Problems:
— The program might not terminate
— The program might have some behavior we didn't

see when we ran it on a particular input

e However, this is not a problem inside a basic
block
— Basic blocks contain no loops
— There is only one path through the basic block

Assigning new semantics

e Example: Available Expressions

* Redefine the statement a =b + c to mean
“a now holds the value of b + ¢, and any
variable holding the value a is now invalid”

e Run the program assuming these new
semantics

e Treat the optimizer as an interpreter for
these new semantics

156

Theory to the rescue

e Building up all of the machinery to design this
analysis was tricky

¢ The key ideas, however, are mostly independent of
the analysis:

— We need to be able to compute functions describing
the behavior of each statement

— We need to be able to merge several subcomputations
together

— We need an initial value for all of the basic blocks

e There is a beautiful formalism that captures many
of these properties

157

Join semilattices

A join semilattice is a ordering defined on a set of
elements
Any two elements have some join that is the smallest
element larger than both elements
There is a unique bottom element, which is smaller
than all other elements

Intuitively:

— The join of two elements represents combining information

from two elements by an overapproximation

The bottom element represents “no information yet” or
“the least conservative possible answer”

158

Join semilattice for liveness

?

What is the join o

160

What is the join of {b} and {c}?

What is the join of {b} and {a,c}? What is the join of {a} and {a,b}?

What is the join of {a} and {a,b}?

165

Formal definitions

A join semilattice is a pair (V, [¥]
Vis a domain of elements

[¥] is a join operator that is

— commutative: x (Y] y =y {¥] x

— associative: (x] y) [¥] z=x [¥] (y ¥] 2)
- idempotent x) x=x

If x] y =z, we say that z is the join
or (least upper bound) of x and y

Every join semilattice has a bottom element
denoted {¥] such that (¥} (¥] x = x for all x

), where

166

Join semilattices and ordering

Greater

Lower

167

Join semilattices and ordering

Least precise

{a b
[{a, by | -.

Most precise

168

Join semilattices and orderings

[¥] over its elements
My=y

ordering relationship
Define x [¥] y iff x
Need to prove

— Reflexivity: x {¥] x
— Antisymmetry: If x (4] yand y (¥] x, thenx =y
— Transitivity: If x (¥] y and y [¥] z, then x [¥] z

169

An example join semilattice

The set of natural numbers and the max function
Idempotent

— max{a, a}=a

Commutative

— max{a, b} = max{b, a}
Associative

— max{a, max{b, c}} = max{max{a, b}, c}

Bottom element is O:

— max{0, a} = a

What is the ordering over these elements?

170

A join semilattice for liveness

Sets of live variables and the set union operation
Idempotent:

Commutative:

- x[My=y M x

Associative:

- (xMy)Mz=x{](y[42)

Bottom element:

— The empty set: @ [¥] x = x
What is the ordering over these elements?

Semilattices and program
analysis

Semilattices naturally solve many of the
problems we encounter in global analysis

How do we combine information from
multiple basic blocks?

What value do we give to basic blocks we
haven't seen yet?

How do we know that the algorithm always
terminates?

172

Semilattices and program
analysis

e Semilattices naturally solve many of the problems
we encounter in global analysis

¢ How do we combine information from multiple
basic blocks?

— Take the join of all information from those blocks

¢ What value do we give to basic blocks we haven't
seen yet?
— Use the bottom element

e How do we know that the algorithm always
terminates?

— Actually, we still don't! More on that later

173

Semilattices and program
analysis

Semilattices naturally solve many of the problems
we encounter in global analysis

How do we combine information from multiple
basic blocks?
— Take the join of all information from those blocks

What value do we give to basic blocks we haven't
seen yet?
— Use the bottom element

How do we know that the algorithm always
terminates?

— Actually, we still don't! More on that later

174

A general framework

¢ Aglobal analysis is a tuple (D, V, [¥], F, I), where
— Dis a direction (forward or backward)

e The order to visit statements within a basic block, not the
order in which to visit the basic blocks

— Vs a set of values
— is a join operator over those values
— Fis a set of transfer functions f: V [¥] V
— lis an initial value
e The only difference from local analysis is the
introduction of the join operator

Running global analyses

Assume that (D, V, [¥], F, I) is a forward analysis
Set OUT([s] = [¥] for all statements s

Set OUT[entry] = |

Repeat until no values change:

— For each statement s with predecessors
p:[l pz; 000) pn:

* Set OUT([s] = f, (IN[s])
The order of this iteration does not matter
— This is sometimes called chaotic iteration

176

For comparison

e Set IN[s] ={} for all
statements s

e Set OUT[exit] = the set of
variables known to be live

e Set OUT[s] = {¥]
statements s

e Set OUT[entry] =1

 Repeat until no values on exit
change: ¢ Repeat until no values
— For each statement s change:
with predecessors — For each statement s of the
Py Py s Pyt form a=b+c:
* Set IN[s] = OUT[p,] (¥ e Set OUT[s] = set union of IN[x]

OUTI[p,] (] ... (] for each successor x of s
OUT[p,] * Set IN[s] = (OUT[s]-{a}) [¥] {b,c}

e Set OUT[s] = f (IN[s])

177

The dataflow framework

e This form of analysis is called the dataflow
framework

e Can be used to easily prove an analysis is
sound

e With certain restrictions, can be used to
prove that an analysis eventually
terminates

— Again, more on that later

178

Global constant propagation

e Constant propagation is an optimization
that replaces each variable that is known to
be a constant value with that constant

* An elegant example of the dataflow
framework

Global constant propagation

exit L‘

180

Global constant propagation

exit [«

Global constant propagation

exit |«

182

Constant propagation analysis

¢ |n order to do a constant propagation, we need to
track what values might be assigned to a variable at

each program point
e Every variable will either
— Never have a value assigned to it,
Have a single constant value assigned to it,
Have two or more constant values assigned to it, or
Have a known non-constant value.

Our analysis will propagate this information
throughout a CFG to identify locations where a value is
constant

Properties of constant
propagation

e For now, consider just some single variable x
¢ At each point in the program, we know one of three

things about the value of x:

— x is definitely not a constant, since it's been assigned two
values or assigned a value that we know isn't a constant

— X is definitely a constant and has value k
— We have never seen a value for x
¢ Note that the first and last of these are not the same!

— The first one means that there may be a way for x to have
multiple values
— The last one means that x never had a value at all

184

Defining a join operator

e The join of any two different constants is Not-a-Constant

— (If the variable might have two different values on entry to a
statement, it cannot be a constant)

¢ The join of Not a Constant and any other value is Not-a-
Constant

— (If on some path the value is known not to be a constant, then on
entry to a statement its value can't possibly be a constant)

¢ The join of Undefined and any other value is that other value

— (If x has no value on some path and does have a value on some
other path, we can just pretend it always had the assigned value)

185

A semilattice for constant propagation

e One possible semilattice for this analysis is
shown here (for each variable):

‘Not—a—gopstant‘

S

Undefined

The lattice is infinitely wide

186

A semilattice for constant propagation

* One possible semilattice for this analysis is
shown here (for each variable):

‘Not—a—constant‘

Undefined

* Note:
* The join of any two different constants is Not-a-Constant
* The join of Not a Constant and any other value is Not-a-Constant
* The join of Undefined and any other value is that other value

Global constant propagation

entry

W = X;
zZ = X;
Undefined

Undefined 188

Global constant propagation

entry
Undeined

x=Undefined
y=Undefined
z=Undefined

y = x;
Undefined

X = 6;
Undefined

>4

w = X;
Undefined

Z = X;
Undefined

x = 4;
Undefined

z =y;
Undefined

189

Global constant propagation

entry
Undefined

X = 6;

y = x;
Undefined

Undefined

>4

w = X;
Undefined

zZ = X;
Undefined

Undefined

z =y;
Undefined

190

Global constant propagation

entry
Undefined

Undefined

y = x;
Undefined

X = 6;
Undefined

>4

w = X;
Undefined

Z = x;
Undefined

x = 4;
Undefined

z =y;
Undefined

Global constant propagation

entry
Undefined

Undefined

P'x = 6;

X = 6, y=z=w=[¥]

y = x;
Undefined

>4

w = X;
Undefined

zZ = X;
Undefined

Undefined

z =y;
Undefined

192

Global constant propagation

entry
Undefined

Undefined

>

X = 6;
X =6

y = %x;
Undefined

>4

w = X;
Undefined

Z = X;
Undefined

Undefined

z =y;
Undefined

193

Global constant propagation

entry Undefined
Undefined x =6;
4/“6\
X=6
y = x; zZ =Yy,
Undefined Undefined
w = X;
Undefined
zZ = X;
Undefined
Undefined

194

Global constant propagation

entry
Undefined

Undefined
X = 6;
- N
X=6
Yy = X; z =Y
X=6,y=6 Undefined
w = X;
Undefined
zZ = X;
Undefined
Undefined

Global constant propagation

entry
Undefined

Undefined
X = 6;
X =6
/\
X=6
y = %x; z =y,
x=6,y=6 Undefined

w = X;
Undefined

zZ = X;
Undefined

x = 4;
Undefined

y=Undefined

gives what?

196

Global constant propagation

entry
Undefined

Undefined

X = 6;
X =6

/\

X=6
y = x;
X=6,y=6

\

x=6,y=6
w = X;
Undefined

Z = X;
Undefined

x = 4;
Undefined

z =y;
Undefined

197

Global constant propagation

entry
Undefined

Undefined

X = 6;
X =6

/\

X=6
y = x;
X=6,y=6

\

x=6 ,y=6
w = X;
Undefined

zZ = X;
Undefined

x = 4;
Undefined

z =y;
Undefined

198

Global constant propagation

entry
Undefined

Undefined

X 6;
X 6

/\

X=6
y = x;
X=6,y=6

x=6,y=6
w = x;
X=Yy=W=6

Z = x;
Undefined

x = 4;
Undefined

z =y;
Undefined

Global constant propagation

entry
Undefined

Undefined

X 6;
X 6

/\

X=6
y = x;
X=6,y=6

x=6,y=6
w = x;
X=y=w=6

zZ = x;
Undefined

x = 4;
Undefined

z =y;
Undefined

200

Global constant propagation Global constant propagation
entry Undefined entry Undefined
Undefined x=6; Undefined x = 6;
X =6 X =6
x=6 xX=6
X=6,y=6 Undefined X=6,y=6 Undefined
x=6,y=6 x=6,y=6
w = X; w = X;
x=y=w=6 X=y=w=6
XIy=w= 6 X=y=w= 6
Z = X; zZ = X;
Undefined X=Y=W=2=6
Undefined 201 Undefined 202
Global constant propagation Global constant propagation
entry Undefined entry Undefined
Undefined x=6; Undefined x =6;
X =6 X = 6
x=6 X=6
xX=6,y=6 Undefined X=6,y=6 Undefined
\5‘ \#~
x=6,y=6 x=6,y=6
w = X; w = X;
X=Y=W= 6 X=y=w= 6
X=y=w= 6 X=y=w= 6
zZ = X; zZ = X;
X=y=w=2z=6 X=y=w=2z=6
x=y=w=z=6
Undefined 203 Undefined 204

Global constant propagation

entry
Undefined

Undefined

X = 6;
X =6

/\

X=6
y = x;
X=6,y=6

z =y;
Undefined

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;

X=Yy=Ww=2z=6

X=y=w=2=6
x = 4;
x=4, y=w=z=6

205

Global constant propagation

entry
Undefined

Undefined

X = 6;
X =6

/\

X=6
y = x;
X=6,y=6

zZ =y;
Undefined

\

x=6 ,y=6
w = x;
X=y=w=6

X=y=w=6
zZ = X;

X=Yy=W=2=6

X=y=w=2z= 6
x = 4;

x=4, y=w=z=6 206

Global constant propagation

entry
Undefined

Undefined
X = 6;
A/HG\
X=6 X =6
y = x; z =Yy
x=6,y=6 Undefined
x=6,y=6
w = x;
X=Yy=W=6
X=y=w=6
Z = x;
X=y=w=2z=6

X=y=w=2z= 6
x = 4;
x=4, y=w=z=6

207

Global constant propagation

entry
Undefined

Undefined
X = 6;
=
X=6 X =6
y = %x; zZ =Y/
X=6,y=6 Undefined
x=6,y=6
w = X;
X=y=w=6
X=y=w= 6
zZ = X;
X=y=w=2z=6

X=y=w=z=6
x = 4;
x=4, y=w=z=6 208

Global constant propagation

entry
Undefined

Undefined
X = 6;
A/FG\
xX=6 =N6
y = %x; =Yy
X=6,y=6 X =6
- @ E=>
x=6,y=6
w = X;
X=y=w=6
X=y=w= 6
Z = X;
X=Yy=Ww=2z=6

X=y=w=2z= 6

X

= 4;

x=4, y=w=z=6

209

Global constant propagation

entry
Undefined

Undefined
X = 6;
/6\
x=6 =6
y = x; z =y,
X=6,y=6 X =6
- @ x=2
x=6 ,y=6
w = X;
X=y=w=6
— x=6 (¥] x=4 gives
«_—1what?

zZ = x;

X=Y=W=2=6

X=y=w=2z= 6
x = 4;
x=4, y=w=z=6

210

Global constant propagation

entry
Undefined

Undefined
X = 6;
X =6
/\
X=6 =6
y = %X/ =Yy
xX=6,y=6 =6
e
x=6,y=6
w = X;
X=Yy=W=6

y=w=6, x=[¥]

zZ = X;
X=y=w=2z=6

X=y=w=z=6

X

=4;

x=4, y=w=z=6

Global constant propagation

entry
Undefined

Undefined
X = 6;
X =6
/\
X=6 X =6
y = %x; z =y,
X=6,y=6 X =6
P
x=6,y=6
w = X;
X=y=w=6
y=w=6
zZ = X;
y=w=6

X=y=w=z=6
x = 4;
x=4, y=w=z=6

212

Global constant propagation Global constant propagation
entry Undefined entry Undefined
Undefined #=06 Undefined = =6
X =6 X =6
y = %x; zZ =Yy y = %x; zZ =Yy
x=6,y=6 = 6 x=6,y=6 = 6
 —e— ——e—
x=6,y=6 x=6,y=6
w = X; w =X,
x=y=w=6 X=y=w=6
y=w=6 Y=W=6
z = X; zZ = X;
y=w=6 y=w=6
x=y=w=z=6 y=w=6
x=4, y=w=z=6 213 x=4, y=w=6 214
Global constant propagation Global constant propagation
entry Undefined entry Undefined
Undefined x=6; Undefined x =6;
X =6 X =6
4//””//’///' ‘\\\\\\\\\‘\\# 4//””//’///' ‘\\\\\\\\\‘\\#
x=6 X =6 x=6 X =6
Y = X; z =y y = X; zZ =y,
xX=6,y=6 X =6 X=6,y=6 X =6
 —e— ——e—
x=6,y=6 x=6,y=6
w = X; w = X;
. X=y=w=6 X=v=w=6
Global analysis
reached fixpoint y=w=6 y=w=6
z = X; z = X;
Y=w=6 y=w=6
y=w=6 y=w=6
x=4, y=w=6 215 y=w=6 216

Global constant propagation

Undefined
X = 6;
X =6

entry
Undefined

x=6,y=6
w = 6;
X=y=w=6

y=w= 6
zZ = X;
y=w=6

y=w= 6

y=w=6 217

Dataflow for constant
propagation

Direction: Forward
Semilattice: Vars{¥] {Undefined, 0, 1, -1, 2, -2, ...,
Not-a-Constant}

— Join mapping for variables point-wise
{x[¥]1,y[¥]1,z[«]1} (%] {x[¥]1,y[¥]2,2[¥]Not-a-Constant}
= {x(¥]1,y¥]Not-a-Constant,z{¥]Not-a-Constant}

Transfer functions:

= fe=x(V) = V|« (update V by mapping x to k)

= fr=as(V) = V| mnot-a-constant (3SSign Not-a-Constant)

Initial value: x is Undefined

— (When might we use some other value?)

218

Proving termination

e QOur algorithm for running these analyses
continuously loops until no changes are
detected

e Given this, how do we know the analyses
will eventually terminate?

— In general, we don‘t

219

Terminates?

220

Liveness Analysis

e Avariable is live at a point in a program if
later in the program its value will be read
before it is written to again

Join semilattice definition

A join semilattice is a pair (V, [¥]
Vis a domain of elements

[¥] is a join operator that is

— commutative: x ¥] y =y [¥] x

— associative: (x 4] y) (4] z=x[¥] (y [¥] 2)
— idempotent: x [¥] x = x

|y =1z, we say that z is the join
or (Least Upper Bound) of xand y

Every join semilattice has a bottom element
denoted ¥] such that {¥} {¥]} x = x for all x

), where

222

Partial ordering induced by join

e Every join semilattice (V, [¥]}) induces an
ordering relationship [¥] over its elements

Mjyiffxejy=y
* Need to prove
— Reflexivity: x {¥]} x

— Antisymmetry: If x] yand y [¥] x, thenx =y
— Transitivity: If x [¥] (%] z, then x [¥] z

223

A join semilattice for liveness

Sets of live variables and the set union operation
Idempotent:

Commutative:

- xMy=yMx

Associative:

- (xMy) M z=x{ (v 2)

Bottom element:

— The empty set: @ [¥] x = x
Ordering over elements = subset relation

224

Join semilattice example for liveness

225

Dataflow framework

e Aglobal analysis is a tuple (D, V, [¥], F, 1),
where

— D is a direction (forward or backward)

¢ The order to visit statements within a basic block,
NOT the order in which to visit the basic blocks

— Vs a set of values (sometimes called domain)
[¥] is a join operator over those values
— F is a set of transfer functions f, : V [¥] V
(for every statement s)
— |l is an initial value

226

Running global analyses

e Assume that (D, V, {¥], F, I) is a forward analysis

¢ For every statement s maintain values before - IN[s] - and after
- OUT[s]

¢ Set OUT[s] = [¥] for all statements s

e Set OUT[entry] =1

* Repeat until no values change:

— For each statement s with predecessors

PRED[s]={ps, P3, - » Pn}
* Set IN[s] = OUT[p,] [¥] OUT[p,] [¥] ... (] OUT[p,]
* Set OUTI[s] = f,(IN[s])

e The order of this iteration does not matter
— Chaotic iteration

227

Proving termination

e QOur algorithm for running these analyses
continuously loops until no changes are
detected

e Problem: how do we know the analyses will
eventually terminate?

228

A non-terminating analysis

e The following analysis will loop infinitely on
any CFG containing a loop:

e Direction: Forward

e Domain: N

e Join operator: max

e Transfer function: f(n)=n+1

¢ |nitial value: O

A non-terminating analysis

start

d

X
Il
=

end

230

Initialization

231

Fixed-point iteration

232

Choose a block lteration 1

start start

y

0

X = X =
0 0
end end

Iteration 1 Choose a block

235 236

lteration 2 lteration 2

start start
y
0 1
XYy XYy
A y
end end

lteration 2 Choose a block

239 240

lteration 3 lteration 3
start start
1 2
ij ng
end end
Why doesn’t this terminate?
Iteration 3 Values can increase without bound
Note that “increase” refers to the lattice
start ordering, not the ordering on the natural
Q numbers
The height of a semilattice is the length of the
2 longest increasing sequence in that semilattice
X3y The dataflow framework is not guaranteed to
terminate for semilattices of infinite height
ond Note that a semilattice can be infinitely large

243

but have finite height
— e.g. constant propagation

244

Height of a lattice

- The Iength of such a chaln is k

The height of a lattice is the length of the maximal
increasing chain

For liveness with n program variables:

= {0 {vad 0] {vyvo} 4D - D] vy, v}

For available expressions it is the number of
expressions of the form a=b op ¢

— For n program variables and m operator types:

m{¥)n3

Another non-terminating
analysis

e This analysis works on a finite-height
semilattice, but will not terminate on
certain CFGs:

e Direction: Forward

e Domain: Boolean values true and false
e Join operator: Logical OR

e Transfer function: Logical NOT

e |nitial value: false

246

A non-terminating analysis

start

247

Initialization

248

Fixed-point iteration

Choose a block

start start
false| false|
£214 £a14
end end
lteration 1 lteration 1

251

start

252

lteration 2 lteration 2
start start
false| false|
true true
S Fals
end end
lteration 3 lteration 3

255

256

Why doesn’t it terminate?

e Values can loop indefinitely

e Intuitively, the join operator keeps pulling
values up

e |f the transfer function can keep pushing
values back down again, then the values
might cycle forever

Values can loop indefinitely

Intuitively, the join operator keeps pulling
values up

If the transfer function can keep pushing
values back down again, then the values
might cycle forever

How can we fix this?

Why doesn’t it terminate?

258

Monotone transfer functions

¢ A transfer function f is monotone iff
if x 4] y, then f(x) (¥] fly)

¢ Intuitively, if you know less information about a
program point, you can't “gain back” more
information about that program point

e Many transfer functions are monotone, including
those for liveness and constant propagation

¢ Note: Monotonicity does not mean that
x (4] f(x)

— (This is a different property called extensivity)

259

Liveness and monotonicity

A transfer function fis monotone iff

Recall our transfer function fora=b + cis
fa=b+c(V) = (V{a}) {br C}
Recall that our join operator is set union

and induces an ordering relationship
] Y iff X (W]

Is this monotone?

260

Is constant propagation monotone?

e A transfer function f is monotone iff
if x (W] y, then f(x) [¥]
e Recall our transfer functions

— fx=x(V) = V|« (update V by mapping x to k)

- fx=a+b(v) =V | x[¥]Not-a-Constant (assign Not-a-
Constant)

¢ |s this monotone?

‘Not—a—constant‘

EEq)

Undefined

The grand result

Theorem: A dataflow analysis with a finite-
height semilattice and family of monotone
transfer functions always terminates
Proof sketch:

— The join operator can only bring values up

— Transfer functions can never lower values back
down below where they were in the past
(monotonicity)

— Values cannot increase indefinitely (finite height)

262

An “optimality” result

e A transfer function f is distributive if

fla (¥] b) = fla) [¥] f(b)

for every domain elements a and b

e If all transfer functions are distributive then
the fixed-point solution is the solution that
would be computed by joining results from all
(potentially infinite) control-flow paths
— Join over all paths

e Optimal if we ignore program conditions

263

An “optimality” result

A transfer function f is distributive if

fla (¥] b) = fla) [¥] f(b)

for every domain elements aand b

If all transfer functions are distributive then the
fixed-point solution is equal to the solution
computed by joining results from all (potentially
infinite) control-flow paths

— Join over all paths

Optimal if we pretend all control-flow paths can be
executed by the program

Which analyses use distributive functions?

264

Loop optimizations

Most of a program’s computations are done inside
loops

— Focus optimizations effort on loops
The optimizations we’ve seen so far are independent of
the control structure
Some optimizations are specialized to loops

— Loop-invariant code motion

— (Strength reduction via induction variables)

Require another type of analysis to find out where
expressions get their values from

— Reaching definitions

* (Also useful for improving register allocation)

265

Loop invariant computation

start t=...

A

Il
—
*

kK«

| N
<

end

[
>

4 o=+

266

Loop invariant computation

start = acc

t*4 and y+z
have same value on
each iteration

end

267

Code hoisting

start

4

end

268

What reasoning did we use?

Bothtand z are
y=... defined only outside

start = acc

A

constants are trivially
loop-invariant
v

t 7 y is defined inside loop
but it is loop invariant
since t*4 is loop-invariant

r Il N

ST e Np
&

269

What about now?

start |, :

Now t is not loop-invariant
and soaret*4 andy

end

270

Loop-invariant code motion

d:it=a,0pa,

— dis a program location

a, op a, loop-invariant (for a loop L) if computes the
same value in each iteration

— Hard to know in general
Conservative approximation

— Each g; is a constant, or

— All definitions of a; that reach d are outside L, or

— Only one definition of of a, reaches d, and is loop-invariant
itself

Transformation: hoist the loop-invariant code outside
of the loop

271

Reaching definitions analysis

¢ A definition d: t = ... reaches a program location if there is a
path from the definition to the program location, along which
the defined variable is never redefined

272

Reaching definitions analysis

Reaching definitions analysis dliy=.
start A2 t=
A definition d: t = ... reaches a program location if there is a
path from the definition to the program location, along which d3:z=...
the defined variable is never redefined
Direction: Forward
Domain: sets of program locations that are definitions -
Join operator: union dd:iy=t*4
Transfer function: {}
Sd-azb op «(RD) = (RD - defs(a)) (¥} {d} d4x<y+z end
d: not—a-def(RD) =RD
— Where defs(a) is the set of locations defining a (statements of the
form a=...) i
Initial value: {}
d6: x=x+1
273 274
Reaching definitions analysis Initialization
dl:y=... dl:y=...
start M d2:t= ... start d2:t= ...
{
d3:z=... d3:z=...
{}
A y
dd:y=t*4 1 0 dd:y=t*4 N
ddx<y+z Ehy dd:x<y+z end
{}
ds:x=x+1 ds:x=x+1

275

18]

276

Ilteration 1 Ilteration
it {}
dl:y=... dl:y=.
{d1}
start d2:it=... start d2:it=...
Y {d1, d2}
d3:z=... d3:z=...
0O {d1, d2, d3}
v v
ddry=t*4 p dd:y=t*4 =
183 (83
d4: end) end
xX<y+z ddx<y+z
{ {}
ds:x=x+1 ds:x=x+1
{ 4
277 278
Iteration 2 lteration 2
{ {}
dl:y=... dl:y=...
d1} {d1}
start Q0 t= start D=
) {d1, d2} b {dl, d2}
d3:z=... d3:z=...
(d1, d2, d3} {d1, d2, d3}
y v
{d1, d2, d3}
d4d:y=t*4 - ddy=t*4 N
f f
x<y-+z 2 x<y-+z a2
it {
ds:x=x+1 ds:x=x+1
f i

S

279

18]

280

lteration 2

lteration 2

4 B
dl:y=... dl:y=...
start (1} start i}
N > d2:t=... - > d2:t=...
£ {d1, d2} i {d1, d2}
d3:z= d3:z=...
{d1, d2, d3} {d1, d2, d3}
4 4
{dl1, d2, d3} {dl, d2, d3}
dd:y=t*4 dd:y=t*4
{ n
{d2, d3, d4} b Gk " end
x<y+z x<y+tz
{} {d2, d3, d4}
ds:x=x+1 dS:x=x+1
{ {}
281 282
{J {}
dl:y=... dl:y=...
{d1} {d1}
start 0 t= start D t=
2 t=.. > d2:t=...
d (d1, 2} 4 (d1, 42}
d3:z=... d3:z=...
{d1, d2, d3} {dl1, d2, d3}
4 4
{d1, d2, d3} {d1, d2, d3}
dd:y=t*4 o dd:y=t*4 o
{d2, d3, d4} e;'d {d2, d3, d4} > e}]’d
x<y-+tz x<y-+z
{d2, d3, d4} {d2, d3, d4}

l

{d2, d3, d4}
ds:x=x+1

{}

283

l

{d2, d3, d4}
ds:x=x+1
{d2, d3, d4, d5}

284

lteration 4

Ilteration 4
4 B
dl:y=... dl:y=...
{d1} {d1}
stja}lt > d2t= sta.rt » d2:t=...
£ {d1, d2} 3 {d1, d2}
d3:z d3: z
{d1, d2, d3} {d1, d2, d3}
A A
{d1, d2, d3} {d1, d2, d3, d4, d5}
dd:y=t*4 0 dd:y=t*4 n
{d2, d3, d4} o A (G " end
x<y+z x<y+tz
{d2, d3, d4} {d2, d3, d4}
(d2, d3, d4) (d2, d3, d4}
ds:x=x+1 ds:x=x+1
{d2, d3, d4, d5} {d2, d3, d4, d5}
285 286
Iteration 4 Iteration 5
{} {}
dl:y=... dl:y=...
d1} {d1}
St b2 t= .. start b2t
4 (d1, d2} U {d1, d2}
d3:z=... d3:z=...
{d1, d2, d3} {d1, d2, d3}
y

(dl, d2, d3, d4, d5}

dd:y=t*4

{d2, d3, d4, d5}
Xx<y-+z

{d2, d3, d4, d5}

}

{d2, d3, d4}
ds:x=x+1

{d2, d3, d4, d5}

287

4

(d1, d2, d3, d4, d5}

dd:y=t*4

{d2, d3, d4, d5}

Xx<y-+z

{d2, d3, d4, d5}

_|{d2, d3, d4, d5}

}

{d2, d3, d4}
ds:x=x+1

{d2, d3, d4, d5}

end

288

lteration 6

it
dl:y=...
{d1}
start > d2:t= ..
£ {d1, d2}
d3:z=...
{d1, d2, d3}

A
{d1, d2, d3, d4, d5}

d4d:y=t*4

f 1
{d2, d3, d4, d5} pi{d2, 43, 44, d5}

end

x<y+z
(d2, d3, d4, d5

|

{d2, d3, d4, d5}
ds:x=x+1
{d2, d3, d4, d5}

Which expressions are loop invariant?

start
i8]

s
It

dl:y
{d1}
ot

> d2

y is defined only in d4 —inside
of loop but depends on t and

4, both loop-invariant

{d1, d2}
d3:z=...
{d1, d2, d3}

y

.

x is defined only in d5 —
inside of loop so is not a

loop-invariant

a2, 3, uctts}
d4:y=¢*4

tis defined only in
d2 - outside of loop

Jl(d2, d3, d4, ds}

(d2, 43, d4, d5}

X < y SilZ
(d2, d3, d4, d>

|

(42, d3, d4, d5}
dsix=x+1
{d2, d3, d4, d5}

end

z is defined only in
d3 — outside of loop

290

Inferring loop-invariant
expressions

For a statement s of the formt=a, op a,

A variable g; is immediately loop-invariant if all
reaching definitions IN[s]={d,,...,d,} for a, are
outside of the loop

LOOP-INV = immediately loop-invariant variables
and constants
LOOP-INV = LOOP-INV ¥] {x | d: x=a;0p a,, disin
the loop, and both a, and a, are in LOOP-INV}

— Iterate until fixed-point

An expression is loop-invariant if all operands are
loop-invariants

291

Computing LOOP-INV

start

{}
dl:y=..
{d1}
> d2:t=..

{d1, d2}
d3:z=..
{d1, d2, d3}

{d1, d2, d3, d4, d5}

dd:y=t*4

{d2, d3, d4, d5}
X<y+z

{d2, d3, d4, d5}

y1d2, d3, d4

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}

end

292

LOOP-INV = {t, z}

Computing LOOP-INV Computing LOOP-INV
{} {}
dl:y=.. dl:y=..
{d1} {d1}
start > d2:t=... start > d2:t=..
0 (d1, d2) 0 (d1, d2)
d3:z=.. d3:z=..
{d1, d2, d3} {d1, d2, d3}
(immediately) (immediately)
LOOP-INV = {t}
{d1{ d2) d3, d4, d5}
da: y:é‘ 4

{d1, d2, d3, d4, d5}
dd:yxt*4
d2, d3, d4 d2, d3, d4
{d2, d3, d4, d5} oo {dz&om ds} »oo
X<y+z X<y
{d2, d3, d4, d5} {d2, d3, d4, d5}
{d2, d3, d4, d5} (d2, d3, d4, d5}
d5:x=x+1 d5:x=x+1
{d2, d3, d4, d5} {d2, d3, d4, d5}
294
{ {
dl:y=.. dl:y=..
{d1} {d1}
St?}” b2t St?}” > d2:t=..
{d1, d2} {d1, d2}
d3:z=.. d3:z=..
{d1, d2, d3} {d1, d2, d3}
(immediately) (immediately)
LOOP-INV = {t, z} LOOP-INV = {t, 2}
{d1, d2, d3, d4, d5} {d1, d2, d3, d4, d5}
dd:y=tZ4 d2, d3, da day=t*4 d2, d3, da
{d2, d ds) wis {d2, d3, d4, d5} >
X 0 z X<y+z
(d2, d3:44, d5} {d2, d3, d4, d5}
{d2, d3, d4, d5}

d5:x=x+1

{d2, d3, d4, d5}

295

l

{d2, d3, d4\d5
d5: x@ 1

{d2, d3, d4, d5}

296

Computing LOOP-INV Computing LOOP-INV
! {}
d1:y{:j... dl:y=..
{d1} {d1}
St?}” b d2:t=.. St{a}” > d2:t=..
{d1, d2} {d1, d2}
d3:z=... d3:z=..
{d1, d2, d3} {d1, d2, d3}
LOOP-INV = {t, z, 4} LOOP-INV = {t, z, 4, y}
{d1, d2, d3, d4, d5} {d1, d2, d3, d4, d5}
dd:y=t*4 da:y=t*4
4T <5 o dz'edngé da (da, d3, d4, d5) N dz,ednaci d4
X<y+z X<y+z
{d2, d3, d4, d5} {d2, d3, d4, d5}
{d2, d3, d4, d5}

d5:x=x+1
{d2, d3, d4, d5}

297

Induction variables

|

{d2, d3, d4, d5}
dS5:x=x+1

{d2, d3, d4, d5}

298

jis a linear function of
the induction variable
with multiplier 4

(i < x) {

i is incremented by a loop-
invariant expression on each
iteration — this is called an
induction variable

299

Strength-reduction

Prepare initial

j = a + 4 * i
while (i Icrement by
j = j + 4 ipli
aljl =3
i =1i+4+1

300

Summary of optimizations

Available Expressions | Common-subexpression elimination

Copy Propagation
Constant Propagation |Constant folding
Live Variables Dead code elimination

Reaching Definitions |Loop-invariant code motion

301

