Compilation
0368-3133 (Semester A, 2013/1

Lecture 12: Abstract Interpretation

Noam Rinetzky

4)

Slides credit: Roman Manevich, Mooly Sagiv and Eran Yahav

What is a compiler?

“A compiler is a computer program that
transforms source code written in a
programming language (source language)
into another language (target language).

The most common reason for wanting to
transform source code is to create an
executable program.”

--Wikipedia

Stages of compilation

Source
code

(program)

Lexical Syntax Context Portable/
Analysis Analysis Analysis Retargetable
. code generation
Parsing

Text
Token stream
AST
IR

AST + Sym. Tab.

Target code

(executable)

Assembly

Stages of Compilation

Source
code

(program)

Lexical Syntax Context Portable/
Analysis Analysis Analysis Retargetable Ta rgEt COde
Parsin code generation
g (executable)

Text
AST
IR Optimization

IS
o
E=]
I
@
2
[
a0
o
<
=
=

Token stream
AST + Sym. Tab.

“Naive” IR
Assembly

=
e
=
[}
v
2]
<

a
4
[}
2
44
oo
o
2
e
©
a
€
s
&2

Optimization points

source Front
—>
code end

IR—

Code
generator

Program Analysis
Abstract interpretation

1

today

target

code

Program Analysis

* In order to optimize a program, the
compiler has to be able to reason about the
properties of that program

e An analysis is called sound if it never
asserts an incorrect fact about a program

e All the analyses we will discuss in this class
are sound

— (Why?)

IR

Optimization path

done
with IR
optimizations

builder Graph

=

_ | CFG Control-Flow _ optimizations .

Code
. Target
Generation [
L Code
(+optimizations)
IR
Program |
Analysis ;
kV
Annotated
CFG
Optimizing (_/

Transformation

Soundness

“At this point in the
program, x holds some
integer value”

Print (x) ;

int x
int y

if (y

else

Print

Soundness

< 5)
= 137; “At this point in the
program, x is either 137 or 42”
= 42;
(%) ;

(Un) Soundness

int x;
int y;

“At this point in the
program, x is 137"

Print (x) ;

Soundness & Precision

int x;
int y;
if (y
% “At this point in the
program, x is either 137,
else 42, or 271"
b 4

Print (x) ;

Semantics-preserving optimizations

e An optimization is semantics-preserving if it does
not alter the semantics (meaning) of the original
program
v Eliminating unnecessary temporary variables

v Computing values that are known statically at compile-
time instead of computing them at runtime

v’ Evaluating iteration-independent expressions outside
of a loop instead of inside

X Replacing bubble sort with quicksort (why?)
e The optimizations we will consider in this
class are all semantics-preserving

Types of optimizations

Local optimizations

int main() {
int x:
int y;

e An optimization is local if it works on just a int z; G0 © 48,
single basic block y = 137; Yez 3 coto _L0;
S . e if (x == 0)
e An optimization is global if it works on an 3 = s
entire control-flow graph else o —
=Yy ; = ; = t2;
} —-— -
Local optimizations Global optimizations
int main() { int main() {
int x; int x;
int y; int y;
int z; int z;
y = 137; y = 137;
y = 137; IfZ x Goto _LO; y = 137; IfZ x Goto _LO;
if (x == 0) if (x == 0)
z = y; /\ z = y; /\
else else
} Y zZ =Y/ x =y } Y zZ =y x=y

End

End

Global optimizations
int main() Global Analyses
int y;
int z; e Common subexpression elimination
y = 137;
y = 137; i I£Z x Goto _LO; e Copy propagation
if (x == 0)
z =y; /\ e Dead code elimination
else . .
} x =y . . s, * Live variables
— Used for register allocation
End
Live variable analysis- initialization
Global liveness analysis U
IN[s]=(OUT[s] - {a}) U {b, c} 0 /\
a=>b+ c;
a=b+c d=a+ c;
OUT[s]=IN[s2] U IN[s3]
\/
IN[s2] AM ()
a=a+ b;
s2 s3 d=Db + c;
.
{a}
1 Exit .

Live variable analysis

{1
b
c

c + d;
c + d;

{}
a=>b + c;
d=a+ c;

{}
a=a+ b;
d=Db + c;
{a} ¢
{a}
Exit

Live variable analysis
{}

Eaty 2

Inon
a0
+ +

{}
a=D>b + c;
d=a+ c;
\/
‘ {a, b, c}
[IN[sl] (OUT[sl] {a}) U {a, b} ;-a =a + b;

d=Db + c;
(INgs21= (OUT[SZ]. {d)) U fb, c}f (a)

{a}
Exit .

b=c+d;
=c + d;

{a, b, c}
a=a+ b;
d=Db + c;

{a}

{a}
Exit

CFGs with loops - iteration
{}

[Entey ——>2 2t
c=c+ d;

{b, c}
a=b+ c;
d=a+c
{a, b, c}
“““““““‘\A4////”///’/,,,,
{a, b, c}
a=a+ b;
d=Db + c;
{a}
{a}
Exit 24

{
b=c+
E&Eﬂall““““* = c 4+

CFGs with loops - iteration

{b,

{a,

c}
b + c;
a + c;
b, c}
4’/////’////,,,

{a, b, c}

a=a+ b;

d=Db + c;

{a}

{a}
Exit o5

CFGs with loops - iteration

{c, d}

[Entry F—2 25T Y
c=c+ d;
{b, c}

{b, c}

a=D>b + c;

d=a+ c;

{a, b, c}
{a, b, c}
a=a+ b;
d=Db + c;
{a}

{a}
Exit -

Live variable analysis

{c, d}
[Entry F—2 2SS

c=c¢c + d;

{b, c}
(b, c}A/\‘
a=>b + c;
d=a+ c;
{a, b, c}

{a, b, c}

a=a+ b;

d=Db + c;

{a}

{a}
Exit 27

Live variable analysis

{c, d}

[Entry |—2 25T Y
c=c¢c + d;
{b, c}

{b, c}A/\‘

a=b + c;

d=a+ c;

{a, b, c}

 ;

{a, b, c}
a=a+ b;
d=Db + c;

{a}

{a}
Exit 28

Live variable analysis

{c, d}

[Entry 2257 9
c=c + d;
{b, c}

{b, c}

a=>b + c;

d=a+ c;

{a, b, c}

 ;

{a, b, c}
a=a+ b;
d=Db + c;
{a, c, d}

Live variable analysis

{c, d}
[Entry F—2 25T Y
c=c + d;
{b, c}
{b, c}
a=>b + c;
d=a+ c;
{a, b, c}
 ;
{a, b, c}
a=a+ b;
d=Db + c;
{a, cl d}
{a}
Exit

Live variable analysis

{c, d}
[Entry F——>2 25T Y

CE=NCIENAY

4»\

{b, c} e o
a=>b + c; X
d=a+c; S
{a, b, c} o o)

{a, b, c}

a=a+ b;

d=Db + c;

{a, c, d}

Live variable analysis

{c, d}
[Entry |—2 25T 9
CE=NCIENdY
{b, c}
(b, c}‘/\
a=b + c;
d=a+ c;
{a, b, c}
 ;
{a, b, c}
a=a + b;
d=Db + c;
{a, cl d}
{a}
Exit

{a, b}
c =a+ b;

{a, b, c}

32

Live variable analysis

{c, d}
[Entzy F— 2251 9
c=c+ d;
{a, b, c}
{b, c}
a=>b + c;
d=a+ c;
{a, b, c}
 ;
{a, b, c}
a=a+b
d=Db + c
{a, cl d}
{a}
Exit

Live variable analysis

{a, c, d}

[Entry F—2 257 9
c=c¢c + d;
{a, b, c}

{b, c}

a=D>b + c;

d=a+ c;

{a, b, c}

 ;
{a, b, c}
a=a+b
d=Db + c
{a, cl d}
{a}
Exit

{a, c, d}
[Entry F—2 2SS
c=c¢c + d;
{a, b, c}
(b, c}‘/\
a=>b + c;
d=a+ c;
{a, b, c}
{a, b, c}
a=a+ b;
d=Db + c;
{a, c, d}

{a}
Exit

Global liveness analysis: Kill/Gen

‘/////////A\\\\ii\\
IN[s2] IN[s3]

Kill Gen

IN[s]=(OUT[s] —{a}) U {b, c}

a=b+c

s2

UT[s]=IN[s2] U IN[s3]

s3

36

Formalizing data-flow analyses

e Define an analysis of a basic block as a
quadruple (D, V, L, F, I) where
— D is a direction (forwards or backwards)

— Vis a set of values the program can have at any
point

— Fis a family of transfer functions defining the
meaning of any expression as a functionf:V—V

— lis the initial information at the top (or bottom)
of a basic block

Liveness Analysis

¢ Direction: Backward
¢ Values: Sets of variables

¢ Transfer functions: Given a set of variable assignments V
and statementa="b + c:

¢ Remove a from V (any previous value of a is now dead.)
e Add b and cto V (any previous value of b or c is now live.)
e Formally: V,,=(V,,\{a}) U{b,c}
¢ |nitial value: Depends on semantics of language
— E.g., function arguments and return values (pushes)

— Result of local analysis of other blocks as part of a
global analysis

e Merge: |I= U 38

Available Expressions

Direction: Forward
Values: Sets of expressions assigned to variables

Transfer functions: Given a set of variable
assignments V and statementa = b + c:

— Remove from V any expression containing a as a
subexpression

— Add to V the expressiona=b + ¢

— Formally: V. = (V,,\ {e | e contains a}) U{a =b +c}
Initial value: Empty set of expressions

e Merge: || =7

Why does this work? (Live Var.)

e To show correctness, we need to show that
— The algorithm eventually terminates, and
— When it terminates, it has a sound answer
e Termination argument:
— Once a variable is discovered to be live during some point of the
analysis, it always stays live
— Only finitely many variables and finitely many places where a
variable can become live
e Soundness argument (sketch):

— Each individual rule, applied to some set, correctly updates
liveness in that set

— When computing the union of the set of live variables, a variable
is only live if it was live on some path leaving the statement

40

Abstract Interpretation

e Theoretical foundations of program
analysis

e Cousot and Cousot 1977

e Abstract meaning of programs

— “Executed” at compile time
¢ Execution = Analysis

Another view of program analysis

e We want to reason about some property of
the runtime behavior of the program

e Could we run the program and just watch
what happens?

¢ Idea: Redefine the semantics of our
programming language to give us
information about our analysis

Another view of program analysis

e \We want to reason about some property of
the runtime behavior of the program

e Could we run the program and just watch
what happens?

Another view of program analysis

e The only way to find out exactly what a
program will actually do is to run it

® Problems:
— The program might not terminate

— The program might have some behavior we
didn't see when we ran it on a particular input

44

Another view of program analysis

e The only way to find out exactly what a
program will actually do is to run it

® Problems:
— The program might not terminate

— The program might have some behavior we
didn't see when we ran it on a particular input

e Inside a basic block, it is simpler
— Basic blocks contain no loops
— There is only one path through the basic block

Another view of program analysis

e The only way to find out exactly what a
program will actually do is to run it

® Problems:
— The program might not terminate

— The program might have some behavior we
didn't see when we ran it on a particular input

e Inside a basic block, it is simpler
— Basic blocks contain no loops
— There is only one path through the basic block
— But still ... »

Assigning new semantics (Local)

e Example: Available Expressions

e Redefine the statement a=b + c to mean
“a now holds the value of b + ¢, and any
variable holding the value a is now invalid”

* “Run” the program assuming these new
semantics

Assigning new semantics (Global)

e Example: Available Expressions

e Redefine the statement a=b + c to mean
“a now holds the value of b + ¢, and any
variable holding the value a is now invalid”

e “Run” the program assuming these new
semantics

e Merge information from different paths

48

Abstract Interpretation

Example: Available Expressions

Redefine the statement a = b + ¢ to mean
“a now holds the value of b + ¢, and any
variable holding the value a is now invalid”

“Run” the program assuming these new
semantics

Merge information from different paths

Treat the optimizer as an interpreter for
these new semantics

Theory of Program Analysis

e Building up all of the machinery to design this

analysis was tricky

¢ The key ideas, however, are mostly independent of

the analysis:

— We need to be able to compute functions describing
the behavior of each statement

— We need to be able to merge several subcomputations
together

— We need an initial value for all of the basic blocks

e There is a beautiful formalism that captures many

of these properties

50

Join semilattices

A join semilattice is a ordering defined on a set of
elements

-0<1<2<..

- {}< {0}<{0,1}, {1,2} <{0,1,2} £ {1,2,3,4}
Any two elements have some join that is the smallest
element larger than both elements
There is a unique bottom element, which is smaller than
all other elements

— The join of two elements represents combining
(merging) information from two elements by an
overapproximation

The bottom element represents “no information yet” or
“the least conservative possible answer”

Join semilattice for liveness

element

52

What is the join of {b} and {c}? What is the join of {b} and {c}?

What is the join of {b} and {a,c}? What is the join of {b} and {a,c}?

What is the join of {a} and {a,b}?

What is the join of {a} and {a,b}?

58

Formal definitions

A join semilattice is a pair (V, LI), where
V is a domain of elements

LI is a join operator that is

— commutative: x L]y =y LI X

— associative: (x LIy) Llz=x Ll (y LI 2)

— idempotent: x | x =x

If x LIy =2z, we say that z is the join

or (least upper bound) of x and y

Every join semilattice has a bottom element
denoted L such that L [| x =x for all x

Join semilattices and ordering

Greater

60

Join semilattices and ordering

Least precise
== VN
'.
c}

v

Most precise

Join semilattices and orderings

Every join semilattice (V, LI) induces an
ordering relationship = over its elements

DefinexEyiffx|ly=y

Need to prove

— Reflexivity: x = x

— Antisymmetry: If x EyandyE x, thenx =y
— Transitivity: If x EyandyZ z, thenx =z

62

An example join semilattice

The set of natural numbers and the max function
Idempotent
— max{a, a}=a
Commutative
— max{a, b} = max{b, a}
Associative
— max{a, max{b, c}} = max{max{a, b}, c}
Bottom element is O:
— max{0, a}=a
What is the ordering over these elements?

A join semilattice for liveness

Sets of live variables and the set union operation
Idempotent:

- xUx=x

Commutative:

- xUy=yUx

Associative:

- (xUy)Uz=xU(yUz)

Bottom element:

— The empty set: @ U x = x

What is the ordering over these elements?

64

Semilattices and program
analysis

e Semilattices naturally solve many of the
problems we encounter in global analysis

¢ How do we combine information from
multiple basic blocks?

e What value do we give to basic blocks we
haven't seen yet?

e How do we know that the algorithm always
terminates?

Semilattices and program
analysis

Semilattices naturally solve many of the problems
we encounter in global analysis

How do we combine information from multiple
basic blocks?
— Take the join of all information from those blocks

What value do we give to basic blocks we haven't
seen yet?
— Use the bottom element

How do we know that the algorithm always
terminates?

— Actually, we still don't! More on that later

66

A general framework

e Aglobal analysis is a tuple (D, V, L, F, l), where
— Dis a direction (forward or backward)

e The order to visit statements within a basic block, not the
order in which to visit the basic blocks

— Vis a set of values
— Llis a join operator over those values
— F is a set of transfer functions f: V— V
— lis an initial value
e The only difference from local analysis is the
introduction of the join operator

Running global analyses

Assume that (D, V, LI, F, 1) is a forward analysis
Set OUT[s] = L for all statements s

Set OUT[entry] = |

Repeat until no values change:

— For each statement s with predecessors
P, Py - s Py
e Set IN[s] = OUT[p,] LI OUT[p,] LI ... LI OUT[p,]
* Set OUT([s] = f, (IN[s])

The order of this iteration does not matter
— This is sometimes called chaotic iteration

68

The dataflow framework

e This form of analysis is called the dataflow
framework

e Can be used to easily prove an analysis is
sound

e With certain restrictions, can be used to
prove that an analysis eventually
terminates

— Again, more on that later

Global constant propagation

e Constant propagation is an optimization
that replaces each variable that is known to
be a constant value with that constant

* An elegant example of the dataflow
framework

Global constant propagation

exit L

Global constant propagation

exit Q

72

Global constant propagation

exit [«

Constant propagation analysis

¢ |n order to do a constant propagation, we need to
track what values might be assigned to a variable at
each program point
e Every variable will either
— Never have a value assigned to it,
— Have a single constant value assigned to it,
— Have two or more constant values assigned to it, or
— Have a known non-constant value.

— Our analysis will propagate this information
throughout a CFG to identify locations where a value is
constant

Properties of constant
propagation

e For now, consider just some single variable x
e At each point in the program, we know one of three
things about the value of x:

— x is definitely not a constant, since it's been assigned two
values or assigned a value that we know isn't a constant

— X is definitely a constant and has value k
— We have never seen a value for x
¢ Note that the first and last of these are not the same!

— The first one means that there may be a way for x to have
multiple values
— The last one means that x never had a value at all

Defining a join operator

¢ The join of any two different constants is Not-a-Constant
— (If the variable might have two different values on entry to a
statement, it cannot be a constant)
¢ The join of Not a Constant and any other value is Not-a-
Constant
— (If on some path the value is known not to be a constant, then on
entry to a statement its value can't possibly be a constant)
¢ The join of Undefined and any other value is that other value

— (If x has no value on some path and does have a value on some
other path, we can just pretend it always had the assigned value)

76

A semilattice for constant propagation

e One possible semilattice for this analysis is
shown here (for each variable):

‘Not—a—gonstant‘

Undefined

The lattice is infinitely wide

A semilattice for constant propagation

e One possible semilattice for this analysis is
shown here (for each variable):

‘Not—a—gopstant‘

S

Undefined

* Note:
* The join of any two different constants is Not-a-Constant
The join of Not a Constant and any other value is Not-a-Constant
* The join of Undefined and any other value is that other value

78

Global constant propagation

entry
Undefined x =6;
: Undefined
y = x; z =Yy
x=Undefined Undefined Undefined
y=Undefined >«
z=Undefined
w=Undefined W B Esp
Undefined
Z = x;
Undefined
Undefined 79

Global constant propagation

entry

Undefined x =6
Undefined

y = %x; z =y,
Undefined Undefined
\

>4

w = X;
Undefined

zZ = X;
Undefined

Undefined 80

Global constant propagation

entry
Undefined

Undefined

X = 6;
Undefined

y = x;
Undefined

>4

w = X;
Undefined

Z = X;
Undefined

Undefined

z =y;
Undefined

Global constant propagation

entry
Undefined

Undefined

X = 6;

X = 6, y=zZ=w=l

L ==t

y = x;
Undefined

>4

w = X;
Undefined

zZ = X;
Undefined

Undefined

z =y;
Undefined

Global constant propagation

entry
Undefined

Undefined

P'x = 6;

X = 6, y=z=w=l

y = %/
Undefined

>4

w = X;
Undefined

Z = x;
Undefined

Undefined

z =y;
Undefined

Global constant propagation

entry
Undefined

Undefined
X = 6;
/ﬁ\
X=6
y = %x; z =y,
Undefined Undefined
w = X;
Undefined
zZ = X;
Undefined
Undefined

Global constant propagation

entry
Undefined

Undefined

X = 6;
X =6

/\

X=6
y = %x;
X=6,y=6

\

>4

w = X;
Undefined

Z = X;
Undefined

x = 4;
Undefined

z =y;
Undefined

Global constant propagation

entry
Undefined

Undefined
X = 6;
X =6
/\
X=6
y = x; zZ =Yy,
X=6,y=6 Undefined
\

>4

w = x;\§§§

Undeﬁ}ned _________

zZ = X;
Undefined

x = 4;
Undefined

y=6 || y=Undefined
gives what?

Global constant propagation

entry
Undefined

Undefined

X = 6;
X =6

/\

X=6
y = x;
X=6,y=6

x=6,y=6
w = X;
Undefined

Z = x;
Undefined

x = 4;
Undefined

z =y;
Undefined

Global constant propagation

entry
Undefined

Undefined

X = 6;
X =6

/\

X=6
y = x;
X=6,y=6

x=6,y=6
w = X;
Undefined

zZ = X;
Undefined

x = 4;
Undefined

z =y;
Undefined

Global constant propagation

entry
Undefined

Undefined

X = 6;
X =6

/\

X=6
y = x;
X=6,y=6

x=6,y=6
w = X;
X=y=w=6

Z = X;
Undefined

x = 4;
Undefined

z =y;
Undefined

Global constant propagation

entry
Undefined

Undefined

X = 6;
X =6

/\

X=6
y = x;
X=6,y=6

x=6 ,y=6
w = x;
X=y=w=6

zZ = X;
Undefined

x = 4;
Undefined

z =y;
Undefined

90

Global constant propagation

entry
Undefined

Undefined

X 6;
X 6

/\

X=6
y = x;
X=6,y=6

x=6,y=6
w = x;
X=Yy=W=6

X=y=w=6
zZ = X;
Undefined

x = 4;
Undefined

z =y;
Undefined

Global constant propagation

entry
Undefined

Undefined

X 6;
X 6

/\

X=6
y = x;
X=6,y=6

x=6,y=6
w = x;
X=y=w=6

X=y=w=6
zZ = x;
X=y=w=2z=6

x = 4;
Undefined

z =y;
Undefined

92

Global constant propagation Global constant propagation

entry Undefined entry Undefined
Undefined x = 6; Undefined x =6;
A/FG\ 4/“6\
x=6 x=6
y = %x; z =Y/ y = x; zZ =Yy,
x=6,y=6 Undefined x=6,y=6 Undefined
\ \
x=6,y=6 x=6 ,y=6
w = X; w = X;
x=y=w=6 X=y=w=6
XIy=w= 6 X=y=w= 6
Z = X; zZ = X;
X=Yy=Ww=2z=6 X=Yy=W=2=6
X=Yy=w=2z= 6
Undefined 93 Undefined 94

Global constant propagation Global constant propagation

entry Undefined entry Undefined
Undefined x=6; Undefined x =6
‘/“6\ 4/“6\
X=6 X=6
y = %X/ z =Y y = %x; zZ =Y/
x=6,y=6 Undefined x=6,y=6 Undefined
x=6,y=6 x=6,y=6
w = X; w = X;
X=y=w=6 X=y=w=6
X=y=w=6 X=y=w=6
zZ = X; zZ = X;
X=y=w=2z=6 X=y=w=2z=6

X=y=w=2z= 6
x = 4;
x=4, y=w=z=6

X=y=w=z=6
x = 4;
x=4, y=w=z=6

96

Global constant propagation

entry
Undefined

Undefined

X = 6;
X =6

/\

X=6
y = x;
X=6,y=6

X
z

6
_y;
Undefined

x=6,y=6
w = X;
X=y=w=6

X=y=w=6
zZ = X;

X=Yy=Ww=2z=6

X=y=w=2z= 6
x = 4;
x=4, y=w=z=6

Global constant propagation

entry
Undefined

Undefined

X = 6;
X =6

/\

X=6
y = x;
X=6,y=6

X
z

6
_y;
Undefined

\

x=6 ,y=6
w = x;
X=y=w=6

X=y=w=6
zZ = X;

X=Yy=W=2=6

X=y=w=2z= 6
x = 4;

x=4, y=w=z=6

98

Global constant propagation

entry
Undefined

Undefined
X = 6;
X =6
/ \
X=6 X =6
y = %X/ z =Y/
X=6,y=6 X =6
P
x=6,y=6
w = X;
X=Yy=W=6
X=y=w= 6
zZ = X;
X=y=w=2z=6

X=y=w=2z= 6
x = 4;
x=4, y=w=z=6

Global constant propagation

entry
Undefined

Undefined
X = 6;
X =6
/\
X=6 X =6
y = x; z =Yy
x=6,y=6 x =6
P
x=6,y=6
w = x;
X=y=w=6
X=y=w=6 x=6 || x=4 gives
— - @ — What?
zZ = X;
X=y=w=2z=6

X=y=w=2z= 6
x = 4;

x=4, y=w=z=6

100

Global constant propagation

entry
Undefined

Undefined
X = 6;
A/FG\
X=6 = 6
y = x; z =Yy,
x=6,y=6 X =6
- @ E=>
x=6,y=6
w = X
X=y=w=6

y=w=6, x=T
zZ = X;

X=Yy=W=2z=6

X=Yy=w=2z= 6
x = 4;

x=4, y=w=z=6 101

Global constant propagation

entry Undefined
Undefined x =6;
4/“6\
X=6 X =6
y = x; zZ =Y/
X=6,y=6 X =6
- @ E=>
x=6 ,y=6
w = x;
X=Yy=w=6
y=w=6, X=T
zZ = x;
Y=w=6, 2=X=T

X=y=w=2z= 6

x=4, y=w=z=6 102

Global constant propagation

entry
Undefined

Undefined
X = 6;
X =6
/\
x=6 X =6
Yy = x; zZ =Yy
x=6,y=6 X =6
e
x=6,y=6
w = X;
X=y=w=6
y=w=6, x=T
zZ = X;
Y=w=6 , Z=x=T

X=y=w=z= 6
x = 4;
x=4 ,y=w=6,z=T 103

Global constant propagation

entry Undefined
Undefined x = 6;
=
X=6 X =6
y = %x; z =y,
X=6,y=6 X =6
==
x=6,y=6
w = X;
X=y=w=6
y=w=6,x=T
zZ = X;
y=w=6
y=w=6 , z=x=T
x=4,y=w=6,z=T 104

Global constant propagation Global constant propagation
entry Undefined entry Undefined
Undefined x=6; Undefined x = 6;
X =6 X =6
xX=6,y=6 X =6 X=6,y=6 X =6
x=6,y=6 x=6,y=6
w = X w = X;
x=y=w=6 X=y=w=6
y=W=6,X=T y=w=6 , Z=X=T
zZ = X; zZ = X;
Y=W=6 Y=W=6, Z=X=T
Y=w=6 , Z=x=T y=w=6 , Z=x=T
x=4,y=w=6,z=T 105 x=4,y=w=6,z=T 106
Global constant propagation
g — Dataflow for constant
. X = 6; .
e x = 6 propagation
/ \
x=6 X =6 e Direction: Forward
y = x; z =y e Semilattice: Vars— {Undefined, 0, 1, -1, 2, -2, ...,
x=6,v=6\‘ ‘/x=/6 Not-a-Constant}
=6 ;‘:6 — Join mapping for variables point-wise
w ='x, {x~>1,y~1,201} | {x~1,y~2,z~Not-a-Constant} =
x=v=w;6 {x~1,y~Not-a-Constant,z~Not-a-Constant}
Global analysis e Transfer functions:
reached fixpoint |y=w=6, z=x=r - f,_(V) = V|, (update V by mapping x to k)
z = X; —_ =]
y=w=6, zZ=x=T .f.x=a+b(V) Vl.XH? .
¢ |nitial value: x is Undefined
y=w=6, z=x=T — (When might we use some other value?)
x=4,y=w=6,z=T 107 108

Dataflow for constant
propagation

Direction: Forward
Semilattice: Vars— {Undefined, 0, 1, -1, 2, -2, ...,
Not-a-Constant}

— Join mapping for variables point-wise
{x~1,y~1,2~1} || {x~1,y~2,z2—~Not-a-Constant} =
{x—1,y~Not-a-Constant,z—~Not-a-Constant}

Transfer functions:

— f(V) = V|, (update V by mapping x to k)

- fx=a+b(v) = Vl o2

Initial value: x is Undefined

— (When might we use some other value?)

109

Proving termination

e Qur algorithm for running these analyses
continuously loops until no changes are
detected

e Given this, how do we know the analyses
will eventually terminate?

— In general, we don‘t

110

Terminates?

Liveness Analysis

e Avariable is live at a point in a program if
later in the program its value will be read
before it is written to again

Join semilattice definition

A join semilattice is a pair (V, LI), where
Vis a domain of elements

LI is a join operator that is

— commutative: x LJy=y LI X

— associative: (x LIy) Llz=x Ll (y Ll 2)

— idempotent: x | x = x

If x LIy =z, we say that z is the join

or (Least Upper Bound) of x and y

Every join semilattice has a bottom element
denoted L such that L | | x = x for all x

113

Partial ordering induced by join

e Every join semilattice (V, L) induces an
ordering relationship = over its elements

e DefinexCyiffxly=y

e Need to prove
— Reflexivity: x = x
— Antisymmetry: If x EyandyE x, thenx =y
— Transitivity: If x EyandyZ z, thenx =z

114

A join semilattice for liveness

Sets of live variables and the set union operation
Idempotent:

- xUx=x

Commutative:

- xUy=yUx
Associative:

- (xUy)Uz=xU(yUz)

Bottom element:

— The empty set: @ U x = x

Ordering over elements = subset relation

115

Join semilattice example for liveness

Dataflow framework

e Aglobal analysisis a tuple (D, V, LI, F, 1),
where
— D is a direction (forward or backward)

¢ The order to visit statements within a basic block,
NOT the order in which to visit the basic blocks

— Vs a set of values (sometimes called domain)
— L] is a join operator over those values

— F is a set of transfer functions f, : V— V
(for every statement s)

— | is an initial value

117

Running global analyses

e Assume that (D, V, LI, F, I) is a forward analysis

e For every statement s maintain values before - IN[s] - and after
- OUT[s]

e Set OUT[s] = L for all statements s

e Set OUT[entry] =1

¢ Repeat until no values change:

— For each statement s with predecessors
PRED[s]={py, P2, -, Py}
e SetIN[s] = OUT[p,] LI OUT[p,] LI ... LI OUT[p,]
e Set OUT[s] = £,(IN[s])

e The order of this iteration does not matter
— Chaotic iteration

118

Proving termination

e QOur algorithm for running these analyses
continuously loops until no changes are
detected

e Problem: how do we know the analyses will
eventually terminate?

119

A non-terminating analysis

e The following analysis will loop infinitely on
any CFG containing a loop:

e Direction: Forward

e Domain: N

¢ Join operator: max

e Transfer function: f(n)=n+1
e |nitial value: 0

120

A non-terminating analysis

start

XSimain

end

Initialization

start

X+

end

122

Fixed-point iteration

start
0

x++

end

Choose a block

start

X ++

end

124

lteration 1

lteration 1

start

x++

end

126

Choose a block

lteration 2

128

lteration 2

lteration 2

start

x++

end

Choose a block

lteration 3

132

lteration 3

133

lteration 3

start

x++

end

134

Why doesn’t this terminate?

Values can increase without bound

Note that “increase” refers to the lattice
ordering, not the ordering on the natural
numbers

The height of a semilattice is the length of the
longest increasing sequence in that semilattice
The dataflow framework is not guaranteed to
terminate for semilattices of infinite height
Note that a semilattice can be infinitely large
but have finite height

— e.g. constant propagation

Height of a lattice

An increasing chain is a sequence of elements
lCaCa,=.. =3,

— The length of such a chain is k

The height of a lattice is the length of the maximal
increasing chain

For liveness with n program variables:
- {lciviicivyv,lc..c{v,...,v,.}

For available expressions it is the number of expressions of
the forma=b op ¢

— For n program variables and m operator types: m-n3

136

Another non-terminating
analysis

e This analysis works on a finite-height
semilattice, but will not terminate on
certain CFGs:

e Direction: Forward

e Domain: Boolean values true and false
e Join operator: Logical OR

e Transfer function: Logical NOT

¢ |nitial value: false

A non-terminating analysis

start

x=Ix

end

Initialization

start
false

Fixed-point iteration

start
false

140

Choose a block lteration 1

start start

false false
y

false

x=1x x=Ix

false false
end end

141 2
Iteration 1 Iteration 2

start start

false false

false
x=Ix
true

end

lteration 2

start
false

true
x=!x
false

lteration 3

start
false

false
x=Ix
false

end

lteration 3

start
false

Why doesn’t it terminate?

e Values can loop indefinitely
e Intuitively, the join operator keeps pulling
values up

e |f the transfer function can keep pushing
values back down again, then the values

might cycle forever

148

Why doesn’t it terminate?

Values can loop indefinitely

Intuitively, the join operator keeps pulling
values up

If the transfer function can keep pushing
values back down again, then the values
might cycle forever

How can we fix this?

149

Monotone transfer functions

¢ A transfer function f is monotone iff
if x =y, then f(x) = fly)

¢ Intuitively, if you know less information about a
program point, you can't “gain back” more
information about that program point

e Many transfer functions are monotone, including
those for liveness and constant propagation

e Note: Monotonicity does not mean that x = f(x)
— (This is a different property called extensivity)

Liveness and monotonicity

A transfer function fis monotone iff

if x =y, then f(x) = f(y)
Recall our transfer function fora=b + cis
—fazp+ (V)= (V—{a}) U{b, c}
Recall that our join operator is set union

and induces an ordering relationship
XCYiff XY

Is this monotone?

Is constant propagation monotone?

e A transfer function f is monotone iff
if x =y, then f(x) = fly)

e Recall our transfer functions
- fx=k(V) =V|
— frcainlV) = V] ionota-constant (@5Sign Not-a-Constant)

(update V by mapping x to k)

x—k

¢ |s this monotone?

‘Not—a—ponstant‘

S

Undefined

152

The grand result

e Theorem: A dataflow analysis with a finite-
height semilattice and family of monotone
transfer functions always terminates

e Proof sketch:

— The join operator can only bring values up

— Transfer functions can never lower values back
down below where they were in the past
(monotonicity)

— Values cannot increase indefinitely (finite height)

An “optimality” result

e A transfer function fis distributive if

fla LI b) = fla) LI fb)

for every domain elements a and b

e If all transfer functions are distributive then
the fixed-point solution is the solution that
would be computed by joining results from all
(potentially infinite) control-flow paths
— Join over all paths

e Optimal if we ignore program conditions

154

An “optimality” result

If(*)
A

else
B;

If(*)
C
else
D;

Fll WU U 2 Sl Ufolf(w) U

Jo(a(LDLf(L) Sl p(fp(L)

An “optimality” result

e A transfer function f is distributive if

fla LI b) = fla) U f(b)

for every domain elements aand b

¢ |f all transfer functions are distributive then the

fixed-point solution is equal to the solution
computed by joining results from all (potentially
infinite) control-flow paths

— Join over all paths

e Optimal if we pretend all control-flow paths can be

executed by the program

e Which analyses use distributive functions?

156

Loop optimizations

Most of a program’s computations are done inside
loops

— Focus optimizations effort on loops
The optimizations we’ve seen so far are independent of
the control structure
Some optimizations are specialized to loops

— Loop-invariant code motion

— (Strength reduction via induction variables)

Require another type of analysis to find out where
expressions get their values from

— Reaching definitions

* (Also useful for improving register allocation)

157

Loop invariant computation

start

158

Loop invariant computation

start

t*4 and y+z
have same value on
each iteration

Code hoisting

start

,_..
*
S~

< N ~+<

=
<
o
N

X<wW

160

What reasoning did we use?

Both t and z are defined
only outside of loop

start

constants are trivially loop-
invariant

y is defined inside loop but it is
loop invariant since t*4 is loop-
invariant

end

What about now?

start 2=

Now t is not loop-invariant and so
aret*4andy

end

162

Loop-invariant code motion

d:it=a,0pa,

— dis a program location

a, op a, loop-invariant (for a loop L) if computes the
same value in each iteration

— Hard to know in general

Conservative approximation

— Each g; is a constant, or

— All definitions of a; that reach d are outside L, or

— Only one definition of of a, reaches d, and is loop-invariant

itself

Transformation: hoist the loop-invariant code outside
of the loop

Reaching definitions analysis

¢ A definition d: t = ... reaches a program location if there is a
path from the definition to the program location, along which
the defined variable is never redefined

164

Reaching definitions analysis

Reaching definitions analysis dliy=.
start A2 t=
A definition d: t = ... reaches a program location if there is a
path from the definition to the program location, along which d3:z=...
the defined variable is never redefined
Direction: Forward
Domain: sets of program locations that are definitions -
Join operator: union dd:iy=t*4
Transfer function: {}
fd; a=b op c(RD) = (RD - defs(a)) U {d} d4:x < ytz end
d: not—a-def(RD) =RD
— Where defs(a) is the set of locations defining a (statements of the
form a=...) i
Initial value: {}
d6: x=x+1
165 166
Reaching definitions analysis Initialization
dl:y=... dl:y=...
start M d2:t= ... start d2:t= ...
{
d3:z=... d3:z=...
{}
A y
dd:y=t*4 1 0 dd:y=t*4 N
ddx<y+z Ehy dd:x<y+z end
{}
ds:x=x+1 ds:x=x+1

18]

168

Ilteration 1 Ilteration
it {}
dl:y=... dl:y=.
{d1}
start d2:it=... start d2:it=...
Y {d1, d2}
d3:z=... d3:z=...
0O {d1, d2, d3}
v v
ddry=t*4 p dd:y=t*4 =
183 (83
d4: end) end
xX<y+z ddx<y+z
{ {}
ds:x=x+1 ds:x=x+1
{ 4
169 170
Iteration 2 lteration 2
{ {}
dl:y=... dl:y=...
d1} {d1}
start Q0 t= start D=
) {d1, d2} b {dl, d2}
d3:z=... d3:z=...
(d1, d2, d3} {d1, d2, d3}
y v
{d1, d2, d3}
d4d:y=t*4 - ddy=t*4 N
f f
x<y-+z 2 x<y-+z a2
it {
ds:x=x+1 ds:x=x+1
f i

S

18]

172

4 B
dl:y=... dl:y=...
start (1) start (1)
N > d2:t=... - > d2:t=...
£ {d1, d2} i {d1, d2}
d3:z=... d3:z=...
{d1, d2, d3} {d1, d2, d3}
4 4
{d1, d2, d3} {dl1, d2, d3}
dd:y=t*4 dd:y=t*4
{ n
{d2, d3, d4} > eh}d {d2, d3, d4} > e;‘d
x<y+z x<y+tz
{} {d2, d3, d4}
ds:x=x+1 dS:x=x+1
{} {}
173
{ {}
dl:y=... dl:y=...
{d1} {d1}
start d2:t= start d2:t=
2 > d2:t=... > d2:t=...
4 (d1, d2} U {d1, d2}
d3:z=... d3:z=...
{d1, d2, d3} {d1, d2, d3}
4 4
{d1, d2, d3} {d1, d2, d3}
dd:y=t*4 o dd:y=t*4 o
{d2, d3, d4} q e;'d {d2, d3, d4} > e}]’d
x<y-+tz x<y-+z
{d2, d3, d4} {d2, d3, d4}
{d2, d3, d4} {d2, d3, d4}
ds:x=x+1 ds:x=x+1
! {d2, d3, d4, d5}
175

lteration 4

Ilteration 4
4 B
dl:y=... dl:y=.
{d1} {d1}
stja}lt > d2t= sta.rt » d2:t=...
£ {d1, d2} 3 {d1, d2}
d3:z d3: z
{d1, d2, d3} {d1, d2, d3}
A A
{d1, d2, d3} {d1, d2, d3, d4, d5}
d4:y=t*4 0 d4:y=t*4 p
{d2, d3, d4} o A (G " end
x<y+z x<y+tz
{d2, d3, d4} {d2, d3, d4}
(d2, d3, d4) (d2, d3, d4}
ds:x=x+1 ds:x=x+1
{d2, d3, d4, d5} {d2, d3, d4, d5}
177 178
Ilteration 4 lteration 5
{} {}
dl:y=... dl:y=...
d1} {d1}
St b2 t= .. Bt b d2t=..
4 (d1, d2} U {d1, d2}
d3:z=... d3:z=...
{d1, d2, d3} {d1, d2, d3}
y

(dl, d2, d3, d4, d5}

dd:y=t*4

{d2, d3, d4, d5}
Xx<y-+z

{d2, d3, d4, d5}

}

{d2, d3, d4}
ds:x=x+1

{d2, d3, d4, d5}

4

(d1, d2, d3, d4, d5}

dd:y=t*4

{d2, d3, d4, d5}
Xx<y-+z

{d2, d3, d4, d5}

_|{d2, d3, d4, d5}

}

{d2, d3, d4}
ds:x=x+1

{d2, d3, d4, d5}

end

180

lteration 6

U
dl:y=...
{d1}
start M d2:t= ...
£ {d1, d2}
d3:z=...
{d1, d2, d3}

A
{d1, d2, d3, d4, d5}

d4d:y=t*4

f 1
{d2, d3, d4, d5} pi{d2, 43, 44, d5}

end

x<y+z
(d2, d3, d4, d5

|

{d2, d3, d4, d5}
ds:x=x+1
{d2, d3, d4, d5}

Which expressions are loop invariant?

s
It

dl:y
{d1}
ot

> d2

y is defined only in d4 —inside
of loop but depends on t and

4, both loop-invariant

{d1, d2}
d3:z=...
{d1, d2, d3}

v

x is defined only in d5 —
inside of loop so is not a

loop-invariant

d2, d3, ggAd5}
d4:y=t*4

tis defined only in
d2 - outside of loop

(d2, d3, d4, d5}

x < y SilZ
(d2, d3, d4, d>

|

(42, d3, d4, d5}
dsix=x+1
{d2, d3, d4, d5}

end

Jl(d2, d3, d4, ds}

z is defined only in
d3 — outside of loop

182

Inferring loop-invariant
expressions

For a statement s of the formt=a, op a,

A variable g; is immediately loop-invariant if all
reaching definitions IN[s]={d,,...,d,} for a, are
outside of the loop

LOOP-INV = immediately loop-invariant variables
and constants

LOOP-INV = LOOP-INVU {x | d:x=a, 0op a,, disin
the loop, and both a, and a, are in LOOP-INV}

— Iterate until fixed-point

An expression is loop-invariant if all operands are
loop-invariants

Computing LOOP-INV

start

{}
dl:y=..
{d1}
> d2:t=..

{d1, d2}
d3:z=..
{d1, d2, d3}

{d1, d2, d3, d4, d5}
dd:y=t*4
{d2, d3, d4, d5}
X<y+z
{d2, d3, d4, d5}

y1d2, d3, d4

l

{d2, d3, d4, d5}
d5:x=x+1
{d2, d3, d4, d5}

end

184

LOOP-INV = {t, z}

Computing LOOP-INV Computing LOOP-INV
{} {}
dl:y=.. dl:y=..
{d1} {d1}
start > d2:t=... start > d2:t=..
0 (d1, d2) 0 (d1, d2)
d3:z=.. d3:z=..
{d1, d2, d3} {d1, d2, d3}
(immediately) (immediately)
LOOP-INV = {t}
{d1{ d2) d3, d4, d5}
dmy:C34

{d1, d2, d3, d4, d5}
dd:yxt*4
d2, d3, d4 d2, d3, d4
{d2, d3, d4, d5} oo {dz&om ds} »oo
X<y+z X<y
{d2, d3, d4, d5} {d2, d3, d4, d5}
{d2, d3, d4, d5} (d2, d3, d4, d5}
d5:x=x+1 d5:x=x+1
{d2, d3, d4, d5} {d2, d3, d4, d5}
186
{ {
dl:y=.. dl:y=..
{d1} {d1}
St?}” b2t St?}” > d2:t=..
{d1, d2} {d1, d2}
d3:z=.. d3:z=..
{d1, d2, d3} {d1, d2, d3}
(immediately) (immediately)
LOOP-INV = {t, z} LOOP-INV = {t, 2}
{d1, d2, d3, d4, d5} {d1, d2, d3, d4, d5}
dazy=t-3 d2, d3, d4 da:y=t"4 d2, d3, d4
{d2, d ds) wis {d2, d3, d4, d5} >
X 0 Z X<y+z
(d2, d3:44, d5} {d2, d3, d4, d5}
{d2, d3, d4, d5}

d5:x=x+1

{d2, d3, d4, d5}

187

l

{d2, d3, d4\d5
d5: x@ 1

{d2, d3, d4, d5}

188

Computing LOOP-INV Computing LOOP-INV
! {
d1:y{:j... dl:y=..
{d1} {d1}
St?}” b d2:t=.. St{a}” > d2:t=..
{d1, d2} {d1, d2}
d3:z=... d3:z=..
{d1, d2, d3} {d1, d2, d3}
LOOP-INV = {t, z, 4} LOOP-INV = {t, 7, 4, y}
{d1, d2, d3, d4, d5} {d1, d2, d3, d4, d5}
dd:y=t*4 da:y=t*4
P G o dz'edngé da (da, d3, d4, d5) N dz,ednaci d4
X<y+z X<y+z
{d2, d3, d4, d5} {d2, d3, d4, d5}
{d2, d3, d4, d5}
d5:x=x+1

{d2, d3, d4, d5}

189

Induction variables

|

{d2, d3, d4, d5}
dS5:x=x+1

{d2, d3, d4, d5}

190

jis a linear function of
the induction variable
with multiplier 4

while (i < x) {

j=a+ 4 *i
aljl =3
i=i+1

i is incremented by a loop-
invariant expression on each
iteration — this is called an
induction variable

Strength-reduction

Prepare initial
value

j=a+ 4 * i
while (i < x) {

j=3+ 4ﬁlncrementby
aljl = 3 multiplier

i=1i+1

192

Summary of optimizations

Available Expressions

Common-subexpression elimination
Copy Propagation

Constant Propagation

Constant folding

Live Variables

Dead code elimination
Register allocation

Reaching Definitions

Loop-invariant code motion

193

Ad

e Advanced course on program analysis and
verification

e Workshop on compile time techniques for
detecting malicious JavaScripts

— With Trusteer
e Now IBM

194

