Compilation

0368-3133 (Semester A, 2013/14)

Lecture 12: Abstract Interpretation

Noam Rinetzky

Slides credit: Roman Manevich, Mooly Sagiv and Eran Yahav

Source code (program) Lexical Analysis Parsing Lexical Analysis Portable/ Retargetable code generation Retargetable code generation Algumessy A

What is a compiler?

"A compiler is a computer program that transforms source code written in a programming language (source language) into another language (target language).

The most common reason for wanting to transform source code is to create an executable program."

--Wikipedia

Source code (program)

Wasemply,
Westemploke optimization (sympolic registers)

Assembly

Assemb

Optimization path done Code Target with IR Generation optimizations (+optimizations) **CFG** Control-Flow optimizations Program builder Graph **Analysis Annotated CFG** Optimizing Transformation

Program Analysis

- In order to optimize a program, the compiler has to be able to reason about the properties of that program
- An analysis is called **sound** if it never asserts an incorrect fact about a program
- All the analyses we will discuss in this class are sound
 - (Why?)

Soundness

```
int x;
int y;

if (y < 5)
    x = 137;

else
    x = 42;

Print(x);</pre>
"At this point in the program, x holds some integer value"
```

Soundness int x; int y; if (y < 5) x = 137; else x = 42; Print(x);</pre> "At this point in the program, x is either 137 or 42"

```
(Un) Soundness

int x;
int y;

if (y < 5)
    x = 137;
else
    x = 42;

Print(x);</pre>
"At this point in the program, x is 137"
```

```
Soundness & Precision
```

```
int x;
int y;

if (y < 5)
    x = 137;
else
    x = 42;

Print(x);</pre>
"At this point in the program, x is either 137,
42, or 271"
```

Semantics-preserving optimizations

- An optimization is semantics-preserving if it does not alter the semantics (meaning) of the original program
 - ✓ Eliminating unnecessary temporary variables
 - ✓ Computing values that are known statically at compiletime instead of computing them at runtime
 - ✓ Evaluating iteration-independent expressions outside of a loop instead of inside
 - X Replacing bubble sort with quicksort (why?)
- The optimizations we will consider in this class are all semantics-preserving

Types of optimizations

- An optimization is local if it works on just a single basic block
- An optimization is global if it works on an entire control-flow graph

13

Local optimizations int main() { int x; int y; int z; y = 137; if (x == 0) z = y; else x = y; } Local optimizations start y = 137; IfZ x Goto _L0; x = y; End End IfZ x Goto _L0; x = y;

Local optimizations int main() { start int x; int y; int z; t0 = 137: $\overline{y} = t0;$ y = 137;IfZ x Goto L0; if (x == 0)z = y;t1 = y;x = y; $\bar{x} = t2;$ $\overline{z} = t1;$ start

Global optimizations int main() { int x; int y; int z; y = 137; if (x == 0) z = y; else x = y; } If x Goto L0; x = y; End

Global optimizations int main() { int x; int y; int z; y = 137; if (x == 0) z = y; else x = y; } z = y; else x = y; }

Global Analyses

- Common subexpression elimination
- Copy propagation
- Dead code elimination
- Live variables
 - Used for register allocation

Global liveness analysis $\frac{IN[s]=(OUT[s]-\{a\})\cup\{b,c\}}{ouT[s]=IN[s2]\cup IN[s3]}$

Formalizing data-flow analyses

- Define an analysis of a basic block as a quadruple (D, V, □, F, I) where
 - **D** is a direction (forwards or backwards)
 - V is a set of values the program can have at any point
 - ⊔ merging (joining) information
 - ${\bf F}$ is a family of transfer functions defining the meaning of any expression as a function ${\bf f}:{\bf V}\to{\bf V}$
 - I is the initial information at the top (or bottom) of a basic block

37

Available Expressions

- Direction: Forward
- Values: Sets of expressions assigned to variables
- Transfer functions: Given a set of variable assignments V and statement a = b + c:
 - Remove from V any expression containing a as a subexpression
 - Add to V the expression a = b + c
 - − Formally: $V_{out} = (V_{in} \setminus \{e \mid e \text{ contains } a\}) \cup \{a = b + c\}$
- Initial value: Empty set of expressions
- Merge: **□** = ?

Liveness Analysis

• **Direction:** Backward

• Values: Sets of variables

- Transfer functions: Given a set of variable assignments V and statement a = b + c:
- Remove a from V (any previous value of a is now dead.)
- Add b and c to V (any previous value of b or c is now live.)
- Formally: $V_{in} = (V_{out} \setminus \{a\}) \cup \{b, c\}$
- Initial value: Depends on semantics of language
 - E.g., function arguments and return values (pushes)
 - Result of local analysis of other blocks as part of a global analysis
- Merge: **□** = **∪**

38

Why does this work? (Live Var.)

- To show correctness, we need to show that
 - The algorithm eventually terminates, and
 - When it terminates, it has a sound answer
- Termination argument:
 - Once a variable is discovered to be live during some point of the analysis, it always stays live
 - Only finitely many variables and finitely many places where a variable can become live
- Soundness argument (sketch):
 - Each individual rule, applied to some set, correctly updates liveness in that set
 - When computing the union of the set of live variables, a variable is only live if it was live on some path leaving the statement

Abstract Interpretation

- Theoretical foundations of program analysis
- Cousot and Cousot 1977
- Abstract meaning of programs
 - "Executed" at compile time
 - Execution = Analysis

41

Another view of program analysis

- We want to reason about some property of the runtime behavior of the program
- Could we run the program and just watch what happens?

Another view of program analysis

- We want to reason about some property of the runtime behavior of the program
- Could we run the program and just watch what happens?
- Idea: Redefine the semantics of our programming language to give us information about our analysis

42

Another view of program analysis

- The only way to find out exactly what a program will actually do is to run it
- Problems:
 - The program might not terminate
 - The program might have some behavior we didn't see when we ran it on a particular input

Another view of program analysis

- The only way to find out exactly what a program will actually do is to run it
- Problems:
 - The program might not terminate
 - The program might have some behavior we didn't see when we ran it on a particular input
- Inside a basic block, it is simpler
 - Basic blocks contain no loops
 - There is only one path through the basic block

45

Assigning new semantics (Local)

- Example: Available Expressions
- Redefine the statement a = b + c to mean
 "a now holds the value of b + c, and any variable holding the value a is now invalid"
- "Run" the program assuming these new semantics

Another view of program analysis

- The only way to find out exactly what a program will actually do is to run it
- Problems:
 - The program might not terminate
 - The program might have some behavior we didn't see when we ran it on a particular input
- Inside a basic block, it is simpler
 - Basic blocks contain no loops
 - There is only one path through the basic block
 - But still ...

46

Assigning new semantics (Global)

- Example: Available Expressions
- Redefine the statement a = b + c to mean
 "a now holds the value of b + c, and any variable holding the value a is now invalid"
- "Run" the program assuming these new semantics
- Merge information from different paths

Abstract Interpretation

- Example: Available Expressions
- Redefine the statement a = b + c to mean
 "a now holds the value of b + c, and any variable holding the value a is now invalid"
- "Run" the program assuming these new semantics
- Merge information from different paths
- Treat the optimizer as an interpreter for these new semantics

49

Join semilattices

- A join semilattice is a ordering defined on a set of elements
 - $-0 \le 1 \le 2 \le ...$
 - $\{\} \le \{0\} \le \{0,1\}, \{1,2\} \le \{0,1,2\} \not \le \{1,2,3,4\}$
- Any two elements have some *join* that is the smallest element larger than both elements
- There is a unique *bottom* element, which is smaller than all other elements
 - The join of two elements represents combining (merging) information from two elements by an overapproximation
- The bottom element represents "no information yet" or "the least conservative possible answer"

Theory of Program Analysis

- Building up all of the machinery to design this analysis was tricky
- The key ideas, however, are mostly independent of the analysis:
 - We need to be able to compute functions describing the behavior of each statement
 - We need to be able to merge several subcomputations together
 - We need an initial value for all of the basic blocks
- There is a beautiful formalism that captures many of these properties

50

Join semilattice for liveness

What is the join of {a} and {a,b}? (a, b) (b, c) (a) (b) (c)

Formal definitions

- A join semilattice is a pair (V, □), where
- V is a domain of elements
- ☐ is a join operator that is
 - commutative: $x \sqcup y = y \sqcup x$
 - associative: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$
 - idempotent: $x \sqcup x = x$
- If x
 ∪ y = z, we say that z is the join or (least upper bound) of x and y
- Every join semilattice has a bottom element denoted ⊥ such that ⊥ □ x = x for all x

)

Join semilattices and orderings

- Every join semilattice (V, □) induces an ordering relationship □ over its elements
- Define $x \sqsubseteq y$ iff $x \sqcup y = y$
- Need to prove
 - Reflexivity: $x \sqsubseteq x$
 - Antisymmetry: If $x \sqsubseteq y$ and $y \sqsubseteq x$, then x = y
 - Transitivity: If $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$

62

An example join semilattice

- The set of natural numbers and the max function
- Idempotent
 - max{a, a} = a
- Commutative
 - $\max\{a, b\} = \max\{b, a\}$
- Associative
 - $\max\{a, \max\{b, c\}\} = \max\{\max\{a, b\}, c\}$
- Bottom element is 0:
 - $\max\{0, a\} = a$
- What is the ordering over these elements?

A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:
 - $x \cup x = x$
- Commutative:
 - $x \cup y = y \cup x$
- Associative:
 - $(x \cup y) \cup z = x \cup (y \cup z)$
- Bottom element:
 - The empty set: $\emptyset \cup x = x$
- What is the ordering over these elements?

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
- What value do we give to basic blocks we haven't seen yet?
- How do we know that the algorithm always terminates?

65

A general framework

- A global analysis is a tuple (**D**, **V**, □, **F**, **I**), where
 - **D** is a direction (forward or backward)
 - The order to visit statements within a basic block, not the order in which to visit the basic blocks
 - V is a set of values.
 - \sqcup is a join operator over those values
 - **F** is a set of transfer functions f : V → V
 - I is an initial value
- The only difference from local analysis is the introduction of the join operator

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
 - Take the join of all information from those blocks
- What value do we give to basic blocks we haven't seen yet?
 - Use the bottom element
- How do we know that the algorithm always terminates?
 - Actually, we still don't! More on that later

00

Running global analyses

- Assume that (**D**, **V**, □, **F**, **I**) is a forward analysis
- Set OUT[s] = ⊥ for all statements s
- Set OUT[entry] = I
- Repeat until no values change:
 - For each statement s with predecessors

 $p_1, p_2, ..., p_n$:

- $\bullet \ \, \mathsf{Set} \ \mathsf{IN}[\mathsf{s}] = \mathsf{OUT}[\mathsf{p}_1] \ \sqcup \ \mathsf{OUT}[\mathsf{p}_2] \ \sqcup \ ... \ \sqcup \ \mathsf{OUT}[\mathsf{p}_\mathsf{n}]$
- Set OUT[s] = f_s (IN[s])
- The order of this iteration does not matter
 - This is sometimes called chaotic iteration.

68

The dataflow framework

- This form of analysis is called the dataflow framework
- Can be used to easily prove an analysis is sound
- With certain restrictions, can be used to prove that an analysis eventually terminates
 - Again, more on that later

Global constant propagation

- Constant propagation is an optimization that replaces each variable that is known to be a constant value with that constant
- An elegant example of the dataflow framework

70

Global constant propagation

Global constant propagation

Global constant propagation

73

Properties of constant propagation

- For now, consider just some single variable x
- At each point in the program, we know one of three things about the value of **x**:
 - x is definitely not a constant, since it's been assigned two values or assigned a value that we know isn't a constant
 - x is definitely a constant and has value k
 - We have never seen a value for x
- Note that the first and last of these are **not** the same!
 - The first one means that there may be a way for x to have multiple values
 - The last one means that **x** never had a value at all

Constant propagation analysis

- In order to do a constant propagation, we need to track what values might be assigned to a variable at each program point
- Every variable will either
 - Never have a value assigned to it,
 - Have a single constant value assigned to it,
 - Have two or more constant values assigned to it, or
 - Have a known non-constant value.
 - Our analysis will propagate this information throughout a CFG to identify locations where a value is constant

/4

Defining a join operator

- The join of any two different constants is **Not-a-Constant**
 - (If the variable might have two different values on entry to a statement, it cannot be a constant)
- The join of Not a Constant and any other value is Not-a-Constant
 - (If on some path the value is known not to be a constant, then on entry to a statement its value can't possibly be a constant)
- The join of **Undefined** and any other value is that other value
 - (If x has no value on some path and does have a value on some other path, we can just pretend it always had the assigned value)

A semilattice for constant propagation

• One possible semilattice for this analysis is shown here (for each variable):

The lattice is infinitely wide

77

Global constant propagation entry x = 6; Undefined Undefined y = x;z = y;Undefined x=Undefined Undefined v=Undefined z=Undefined w = x: w=Undefined z = x: exit x = 4; Undefined

A semilattice for constant propagation

• One possible semilattice for this analysis is shown here (for each variable):

- · Note:
 - The join of any two different constants is Not-a-Constant
 - The join of Not a Constant and any other value is Not-a-Constant
 - The join of **Undefined** and any other value is that other value

/8

Dataflow for constant propagation

- Direction: Forward
- Semilattice: Vars→ {Undefined, 0, 1, -1, 2, -2, ..., Not-a-Constant}
 - Join mapping for variables point-wise
 {x→1,y→1,z→1} ∐ {x→1,y→2,z→Not-a-Constant} =
 {x→1,y→Not-a-Constant,z→Not-a-Constant}
- Transfer functions:
 - $f_{x=k}(V) = V|_{x \mapsto k}$ (update V by mapping x to k)
 - $f_{\mathbf{x}=\mathbf{a}+\mathbf{b}}(V) = V|_{\mathbf{x}\mapsto?}$
- Initial value: x is Undefined
 - (When might we use some other value?)

Dataflow for constant propagation

- Direction: Forward
- Semilattice: Vars→ {Undefined, 0, 1, -1, 2, -2, ..., Not-a-Constant}
 - Join mapping for variables point-wise
 {x→1,y→1,z→1} ∐ {x→1,y→2,z→Not-a-Constant} =
 {x→1,y→Not-a-Constant,z→Not-a-Constant}
- Transfer functions:
 - $f_{x=k}(V) = V|_{x \mapsto k}$ (update V by mapping x to k)
 - $f_{\mathbf{x}=\mathbf{a}+\mathbf{b}}(V) = V|_{\mathbf{x}\mapsto?}$
- Initial value: x is Undefined
 - (When might we use some other value?)

109

Terminates?

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Given this, how do we know the analyses will eventually terminate?
 - In general, we don't

110

Liveness Analysis

• A variable is live at a point in a program if later in the program its value will be read before it is written to again

111

Join semilattice definition

- A join semilattice is a pair (V, □), where
- V is a domain of elements
- ☐ is a join operator that is
 - commutative: $x \sqcup y = y \sqcup x$
 - associative: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$
 - idempotent: x ⊔ x = x
- If x
 ∪ y = z, we say that z is the join or (Least Upper Bound) of x and y
- Every join semilattice has a bottom element denoted ⊥ such that ⊥ | | x = x for all x

113

A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:
 - $x \cup x = x$
- Commutative:
 - $x \cup y = y \cup x$
- Associative:
 - $(x \cup y) \cup z = x \cup (y \cup z)$
- Bottom element:
 - The empty set: $\emptyset \cup x = x$
- Ordering over elements = subset relation

Partial ordering induced by join

- Every join semilattice (V, □) induces an ordering relationship □ over its elements
- Define $x \sqsubseteq y$ iff $x \sqcup y = y$
- Need to prove
 - Reflexivity: $x \sqsubseteq x$
 - Antisymmetry: If $x \sqsubseteq y$ and $y \sqsubseteq x$, then x = y
 - Transitivity: If $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$

114

Join semilattice example for liveness

Dataflow framework

- A global analysis is a tuple (**D**, **V**, □, **F**, **I**), where
 - D is a direction (forward or backward)
 - The order to visit statements within a basic block,
 NOT the order in which to visit the basic blocks
 - V is a set of values (sometimes called domain)
 - \sqcup is a join operator over those values
 - **F** is a set of transfer functions f_s : **V** → **V** (for every statement s)
 - I is an initial value

117

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Problem: how do we know the analyses will eventually terminate?

Running global analyses

- Assume that (**D**, **V**, **□**, **F**, **I**) is a forward analysis
- For every statement s maintain values before IN[s] and after - OUT[s]
- Set OUT[s] = ⊥ for all statements s
- Set OUT[entry] = I
- Repeat until no values change:
 - For each statement s with predecessors PRED[s]={p₁, p₂, ..., p_n}
 - Set $IN[s] = OUT[p_1] \sqcup OUT[p_2] \sqcup ... \sqcup OUT[p_n]$
 - Set OUT[s] = $f_s(IN[s])$
- The order of this iteration does not matter
 - Chaotic iteration

118

A non-terminating analysis

- The following analysis will loop infinitely on any CFG containing a loop:
- Direction: Forward
- Domain: N
- Join operator: max
- Transfer function: f(n) = n + 1
- Initial value: 0

1:

Iteration 3

133

Iteration 3

13

Why doesn't this terminate?

- · Values can increase without bound
- Note that "increase" refers to the lattice ordering, not the ordering on the natural numbers
- The height of a semilattice is the length of the longest increasing sequence in that semilattice
- The dataflow framework is not guaranteed to terminate for semilattices of infinite height
- Note that a semilattice can be infinitely large but have finite height
 - e.g. constant propagation

Height of a lattice

- An increasing chain is a sequence of elements
 ⊥ □ a₁ □ a₂ □ ... □ a₂
 - The length of such a chain is k
- The height of a lattice is the length of the maximal increasing chain
- For liveness with *n* program variables:

$$- \ \{\} \subset \{\mathsf{v}_1\} \subset \{\mathsf{v}_1,\mathsf{v}_2\} \subset ... \subset \{\mathsf{v}_1,...,\mathsf{v}_n\}$$

- For available expressions it is the number of expressions of the form a=b op c
 - For *n* program variables and *m* operator types: $m \cdot n^3$

Another non-terminating analysis

 This analysis works on a finite-height semilattice, but will not terminate on certain CFGs:

• Direction: Forward

• Domain: Boolean values true and false

• Join operator: Logical OR

• Transfer function: Logical NOT

• Initial value: false

137

A non-terminating analysis $\underbrace{\mathsf{start}}_{\mathsf{x}=!\mathsf{x}}$

Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever
- How can we fix this?

Liveness and monotonicity

- A transfer function f is monotone iff if $x \sqsubseteq y$, then $f(x) \sqsubseteq f(y)$
- Recall our transfer function for a = b + c is
 -f_{a=b+c}(V) = (V {a}) ∪ {b, c}
- Recall that our join operator is set union and induces an ordering relationship
 X □ Y iff X □ Y
- Is this monotone?

Monotone transfer functions

- A transfer function f is monotone iff if $x \sqsubseteq y$, then $f(x) \sqsubseteq f(y)$
- Intuitively, if you know less information about a program point, you can't "gain back" more information about that program point
- Many transfer functions are monotone, including those for liveness and constant propagation
- Note: Monotonicity does **not** mean that $x \sqsubseteq f(x)$
 - (This is a different property called extensivity)

150

Is constant propagation monotone?

- A transfer function f is monotone iff if $x \sqsubseteq y$, then $f(x) \sqsubseteq f(y)$
- Recall our transfer functions
 - $f_{x=k}(V) = V|_{x \mapsto k}$ (update V by mapping x to k)
 - $f_{x=a+b}(V) = V |_{x \mapsto Not-a-Constant}$ (assign Not-a-Constant)
- Is this monotone?

The grand result

- Theorem: A dataflow analysis with a finiteheight semilattice and family of monotone transfer functions always terminates
- Proof sketch:
 - The join operator can only bring values up
 - Transfer functions can never lower values back down below where they were in the past (monotonicity)
 - Values cannot increase indefinitely (finite height)

153

An "optimality" result If(*) A else B; If(*) C else D; $f_C(f_A(\bot) \sqcup f_B(\bot)) \sqcup f_D(f_A(\bot)) \sqcup f_D(f_B(\bot)) \sqcup f_D$

An "optimality" result

- A transfer function f is distributive if $f(a \sqcup b) = f(a) \sqcup f(b)$ for every domain elements a and b
- If all transfer functions are distributive then the fixed-point solution is the solution that would be computed by joining results from all (potentially infinite) control-flow paths
 Join over all paths
- Optimal if we ignore program conditions

154

An "optimality" result

- A transfer function f is distributive if $f(a \sqcup b) = f(a) \sqcup f(b)$ for every domain elements a and b
- If all transfer functions are distributive then the fixed-point solution is equal to the solution computed by joining results from all (potentially infinite) control-flow paths
 - Join over all paths
- Optimal if we pretend all control-flow paths can be executed by the program
- Which analyses use distributive functions?

Loop optimizations

- Most of a program's computations are done inside loops
 - Focus optimizations effort on loops
- The optimizations we've seen so far are independent of the control structure
- Some optimizations are specialized to loops
 - Loop-invariant code motion
 - (Strength reduction via induction variables)
- Require another type of analysis to find out where expressions get their values from
 - Reaching definitions
 - (Also useful for improving register allocation)

Loop-invariant code motion

- d: $t = a_1 \text{ op } a_2$
 - d is a program location
- a_1 op a_2 loop-invariant (for a loop L) if computes the same value in each iteration
 - Hard to know in general
- Conservative approximation
 - Each a_i is a constant, or
 - All definitions of a_i that reach d are outside L, or
 - Only one definition of of a_i reaches d, and is loop-invariant itself
- Transformation: hoist the loop-invariant code outside of the loop

Reaching definitions analysis

A definition d: t = ... reaches a program location if there is a
path from the definition to the program location, along which
the defined variable is never redefined

163

Reaching definitions analysis

- A definition d: t = ... reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined
- Direction: Forward
- Domain: sets of program locations that are definitions `
- Join operator: union
- Transfer function:

```
f_{d: a=b \ op \ c}(\mathsf{RD}) = (\mathsf{RD} - defs(a)) \cup \{d\}

f_{d: not-a-def}(\mathsf{RD}) = \mathsf{RD}
```

- Where defs(a) is the set of locations defining a (statements of the form a=...)
- Initial value: {}

165

Reaching definitions analysis d1: y = ... d2: t = ... d3: z = ... d4: y = t * 4 d4: x < y + z end

Inferring loop-invariant expressions

- For a statement s of the form $t = a_1$ op a_2
- A variable a_i is immediately loop-invariant if all reaching definitions IN[s]={d₁,...,d_k} for a_i are outside of the loop
- LOOP-INV = immediately loop-invariant variables and constants LOOP-INV = LOOP-INV \cup {x | d: x = a_1 op a_2 , d is in the loop, and both a_1 and a_2 are in LOOP-INV} Iterate until fixed-point
- An expression is loop-invariant if all operands are loop-invariants

Summary of optimizations

Analysis	Enabled Optimizations
Available Expressions	Common-subexpression elimination Copy Propagation
Constant Propagation	Constant folding
Live Variables	Dead code elimination Register allocation
Reaching Definitions	Loop-invariant code motion

193

Ad

- Advanced course on program analysis and verification
- Workshop on compile time techniques for detecting malicious JavaScripts
 - With Trusteer
 - Now IBM