Compilation
0368-3133 (Semester A, 2013/14)

Lecture 13: Assembler, Linker & Loader

Noam Rinetzky

Slides credit: Eli Bendersky, Mooly Sagiv & Sanjeev Setia

What is a compiler?

“A compiler is a computer program that
transforms source code written in a
programming language (source language)
into another language (target language).

The most common reason for wanting to

transform source code is to create an
executable program.”
--Wikipedia

Stages of compilation

Lexical Syntax Context Portable/
Source Analysis Analysis Analysis Retargetable Ta rget code
code : code generation
orsine (executable)
(program)

Text
AST
IR
Assembly

Token stream
AST + Sym. Tab.

Compilation = Execution

Lexical Syntax Context Portable/ :
SOUFCE Analysis Analysis Analysis Retargetable Executlng arget COde
code . code generation program
PRI sxecutable)
(program)

Text
Token stream
AST
Runtime System

Executable File
image

Symbolic Addr
Object File

Program Runtime State

Registers 0x11000 | coge

0x22000 Static
Data

Stack

0x33000

0x88000

0x99000

Heap

Challenges

goto L2 = JMP

G:=3 = MOV ,0..011
foo() = CALL

extern_G :=1 = MOV
extern_foo() = CALL

printf() = CALL

x:=2 = MOV FP+32, 0...010
goto L2 =2 JMP [PC +]

,0..01

0x11000

0x22000

0x33000

0x88000
0x99000

Code

Static
Data

Stack

Heap

Assembly =2 Image

Source program

‘ Compiler ‘

Assembly lang. program (.s)

‘ Assembler ‘

Machine lang. Module (.0): program (+library) modules

‘ Linker ‘

“compilation” time gxecutable (“.exe”):

‘ Loader ‘

Libraries (.0)
Image (in memory):

Outline

e Assembly
e Linker / Link editor
e |Loader

e Static linking

Assembly =2 Image

Source file (e.qg., utils) Source file (e.g., main)

‘ Compiler ‘

Assembly (.s)

‘ Assembler ‘

Object (.0)

‘ Compiler ‘

Assembly (.s)

‘ Assembler ‘

Object (.0)

‘ Linker ‘

Executable (“.elf”)

‘ Loader ‘

Image (in memory):

library

‘ Compiler ‘

Assembly (.s)

‘ Assembler ‘

Object (.0)

Assembler

e Converts (symbolic) assembler to binary (object)
code

e Object files contain a combination of machine instructions,
data, and information needed to place instructions properly
in memory

— Yet another(simple) compiler

e One-to one translation

e Converts constants to machine repr. (3=20...011)
e Resolve internal references
e Records info for code & data relocation

Object File Format

Header

Text
Segment

Data
Segment

Relocation
Information

Symbol
Table

Debugging
Information

e Header: Admin info + “file map”

e Text seg.: machine instruction

e Data seg.: (Initialized) data in machine format

e Relocation info: instructions and data that

depend on absolute addresses

e Symbol table: “exported” references + unresolved
references

Handling Internal Addresses

.data

align 8
varl:

long 666
.code

addl wvarl, zeax
jmp labell

labell:

Resolving Internal Addresses

e Two scans of the code
— Construct a table label — address
— Replace labels with values

e One scan of the code (Backpatching)

— Simultaneously construct the table and resolve
symbolic addresses
e Maintains list of unresolved labels

— Useful beyond assemblers

Backpatching

Assembly Assembled Backpatch list
code binary for labell

jmp labell EA 0 -._—-\

jmp labell EA 0 “'r"'/

jmp labell EA 0 e ——

|
g{JtJU

labell:

Handling External Addresses

e Record symbol table in “external” table

— Exported (defined) symbols
e G, foo()

— Imported (required) symbols
e Extern_G, extern_bar(), printf()

e Relocation bits

— Mark instructions that depend on absolute
(fixed) addresses

e Instructions using globals,

Example

reference to

_printf
1000
b.o 0
|1600
250
400
3000
printf.o 0
100
/ s00
entry point
_printf original code

segments

relocation
bit maps

External references
resolved by the
Linker using the

J

\[;ocation info.

Example of External Symbol Table

External symbol Type Address
_options entry point 50 data
__main entry point 100 code
_printf reference 500 code
_atoi reference 600 code
_printf reference 650 code
_exit reference 700 code
_msg_list entry point 200 data
_Out Of Memory entry point 800 code
_fprintf reference 900 code
_exit reference 950 code

_file 1list reference 4 data

Assembler Summary

Converts symbolic machine code to binary
— addl %edx, %ecx = 000 0001 11 010 001 = 01 D1 (Hex)

Format conversions
— 3 =» 0x0..011 or 0x000000110...0

Resolves internal addresses

Some assemblers support overloading
— Different opcodes based on types

Linker

e Merges object files to an executable
— Enables separate compilation

e Combine memory layouts of object modules

— Links program calls to library routines
e printf(), malloc()

— Relocates instructions by adjusting absolute
references

— Resolves references among files

100

200

300

450

Code
Segment 1

Data

Segment 1

Code

Segment 2 |
Data

Segment 2

foo

ext_bar
Z00

Linker

100
400

500

650

Code
Segment 1

Code

Segment 2
]

Data

Segment 1
Data

Segment 2

foo

ext_bar
Z00

Relocation information

e |[nformation needed to change addresses

e Positions in the code which contains addresses
— Data
— Code

e Two implementations
— Bitmap
— Linked-lists

External References

e The code may include references to
external names (identifiers)

— Library calls
— External data

e Stored in external symbol table

Example of External Symbol Table

External symbol Type Address
_options entry point 50 data
__main entry point 100 code
_printf reference 500 code
_atoi reference 600 code
_printf reference 650 code
_exit reference 700 code
_msg_list entry point 200 data
_Out Of Memory entry point 800 code
_fprintf reference 900 code
_exit reference 950 code

_file 1list reference 4 data

Example

reference to

printf —— |I @

1000 — 1000 f-—-———--
b.o 0 —
|2600
| 1600 C
— 1250
250 C
| 1400
400 C 2660 Lo]
3000 —
rintf.o 0 — ‘_f"'";’
P 100 4500
500 —
entry point resulting
_printf original code relocation executable code

segments bit maps segment

Linker (Summary)

e Merge several executables
— Resolve external references
— Relocate addresses

e User mode

e Provided by the operating system

— But can be specific for the compiler

e More secure code
e Better error diagnosis

Linker Design Issues

e Merges
— Code segments
— Data segments
— Relocation bit maps
— External symbol tables

e Retain information about static length

e Real life complications
— Aggregate initializations
— Object file formats
— Large library
— Efficient search procedures

Loader

Brings an executable file from disk into memory and starts it
running

— Read executable file’s header to determine the size of text and data
segments

— Create a new address space for the program
— Copies instructions and data into memory
— Copies arguments passed to the program on the stack

Initializes the machine registers including the stack ptr

Jumps to a startup routine that copies the program’s arguments
from the stack to registers and calls the program’s main routine

Registers

Program Loading

Code
Segment

Static
Data

Stack

Heap

Loader Image

100

400

500

650

Code
Segment 1

Code

Segment 2
]

Data

Segment 1
Data

Segment 2

foo

ext_bar
Z00

Program Executable

Loader (Summary)

e |nitializes the runtime state

e Part of the operating system

— Privileged mode

e Does not depend on the programming
language

e “Invisible activation record”

Static Linking (Recap)

e Assembler generates binary code
— Unresolved addresses
— Relocatable addresses

e Linker generates executable code
e Loader generates runtime states (images)

Dynamic Linking

e Why dynamic linking?
— Shared libraries

e Save space
e Consistency

— Dynamic loading

e Load on demand

What's the challenge?

Source program

‘ Compiler ‘

Assembly lang. program (.s)

‘ Assembler ‘

Machine lang. Module (.0): program (+library) modules

‘ Linker ‘

“compilation” time gxecutable (“.exe”):

‘ Loader ‘

Libraries (.0)
Image (in memory):

Position-Independent Code (PIC)

e Code which does not need to be changed regardless of the
address in which it is loaded

— Enable loading the same object file at different addresses

e Thus, shared libraries and dynamic loading

e “Good” instructions for PIC: use relative addresses
— relative jumps
— reference to activation records

e “Bad” instructions for : use fixed addresses
— Accessing global and static data

— Procedure calls
e Where are the library procedures located?

How?

“All problems in computer science can be
solved by another level of indirection”

Butler Lampson

PIC: The Main ldea

e Keep the global data in a table

e Refer to all data relative to the desighated
register

Per-Routine Pointer Table

e Record for every routine in a table

foo
&foo I

&D.S. 1

&D.S. 2

PT ext_bar |

v
&ext_bar
&D.S. 2

&zoo

&D.S. 2]

PT ext_bar =

S

|

Segment 1

Code
egment 1

—

N s

Code
egment 2

Data

Data

Segment 2

foo
ext g

ext_bar
Z00

Per-Routine Pointer Table

e Record for every routine in a table

&foo I
&D.S. 1

&D.S. 2

PT ext_bar |

v
&ext_bar
&D.S. 2

&zoo

&D.S. 2]

PT ext_bar =

S

|

Segment 1

Code
egment 1

—

N s

Code
egment 2

Data

Data

Segment 2

foo
ext g

ext_bar
Z00

Per-Routine Pointer Table

e Record for every routine in a table
e Record used as a address to procedure

Caller: Callee:
1. Load Pointer table address 1. RP points to pointer table

into RP 2. Table has addresses of pointer table
2. Load Code address from for subprocedures

O(RP) into RC
3. CallviaRC

RP >
.func

Other data

PIC: The Main ldea

e Keep the global data in a table

e Refer to all data relative to the desighated
register

e Efficiency: use a register to point to the
beginning of the table
— Troublesome in CISC machines

ELF-Position Independent Code

e Executable and Linkable code Format
— Introduced in Unix System V

e QObservation

— Executable consists of code followed by data

— The offset of the data from the beginning of the code is known at
compile-time

Code
Segment call L2
L2:
GOT P popl %ebx

Data (Global Offset Table) addl S_GOT][.-..L2], %ebx
Segment

ELF: Accessing global data

Code Relative
Section Offset

Var #1 address ——
Var #2 address
Var #3 address

GOT

Var #N address

Data
Section

ELF: Calling Procedures (before 15t call)

Code:

call func@PLT

GOT:

LT GOT [n)

—| PLT[0] : — <addr>

call resolver

PLT[n] : -
Jmp *GOT[n]
prepare resolver <4
jmp PLT[0]

ELF: Calling Procedures (after 15t call)

Code:

call func@PLT

GOT:

PLT: GOT (n) :

PLT[0]: <addr>
call resalver

PLT[n]: -4
jmp *GOT[n] Code:
prepare resolver
jmp PLT([0] func: -

PIC and

e Enable loading w/o e Data segment may
relocation need to be reloaded

e Share memory e GOT can be large
locations among e More runtme
Processes overhead

e More space overhead

Shared Libraries

Heavily used libraries

Significant code space
— 5-10 Mega for print
— Significant disk space
— Significant memory space

Can be saved by sharing the same code
Enforce consistency
But introduces some overhead

Can be implemented either with static or dynamic loading

Text

Data

Content of ELF file

Program

Libraries

Call

Routine

PLT

PLT

GOT

GOT

Text

Data

ELF Structure

Linkable Executable
sections segments
ELF header
(optional, ignored) | Program header | Describes segments
table

Sections < L Segments

Section header
Describes sections table (optional, ignored)

FIGURE 3.10 e Two views of an ELF file.

Consistency

e How to guarantee that the code/library
used the “right” library version

Loading Dynamically Linked Programs

e Start the dynamic linker
e Find the libraries
e |nitialization

— Resolve symbols

— GOT
e Typically small

— Library specific initialization

e Lazy procedure linkage

Microsoft Dynamic Libraries (DLL)

e Similar to ELF
e Somewhat simpler

e Require compiler support to address dynamic
ibraries

* Programs and DLL are Portable Executable (PE)
e Each application has it own address
e Supports lazy bindings

Dynamic Linking Approaches

Unix/ELF uses a single name space space
and MS/PE uses several name spaces

ELF executable lists the names of symbols
and libraries it needs

PE file lists the libraries to import from
other libraries

ELF is more flexible
PE is more efficient

Costs of dynamic loading

Load time relocation of libraries

Load time resolution of libraries and
executable

Overhead from PIC prolog

Overhead from indirect addressing

Reserved registers

Summary

e Code generation yields code which is still
far from executable

— Delegate to existing assembler

e Assembler translates symbolic instructions
into binary and creates relocation bits

e Linker creates executable from several files
produced by the assembly

e Loader creates an image from executable

