Compilation
0368-3133 (Semester A, 2013/14)

Lecture 13b: Memory Management

Noam Rinetzky

Slides credit: Eran Yahav

Stages of compilation

Lexical Syntax Context Portable/
Source Analysis Analysis Analysis Retargetable Ta rget code
code : code generation
orsine (executable)
(program)

Text
AST
IR
Assembly

Token stream
AST + Sym. Tab.

Compilation = Execution

Lexical Syntax Context Portable/ :
SOUFCE Analysis Analysis Analysis Retargetable Executlng arget COde
code . code generation program
PRI sxecutable)
(program)

Text
Token stream
AST
Runtime System

Executable File
image

Symbolic Addr
Object File

Runtime Environment

Mediates between the OS and the programming language
Hides details of the machine from the programmer

— Ranges from simple support functions all the way to a full-fledged
virtual machine

Handles common tasks
— Runtime stack (activation records)

— Dynamic optimization
— Debugging

Where do we allocate data?

e Activation records
— Lifetime of allocated data limited by procedure
lifetime
— Stack frame deallocated (popped) when
procedure return

e Dynamic memory allocation on the heap

Memory Layout

stack stack grows down
(towards lower addresses)
heap grows up
heap (towards higher
addresses)
static data
code

Alignment

e Typically, can only access memory at
aligned addresses

— Either 4-bytes or 8-bytes

e What happens if you allocate data of size 5
bytes?
— Padding — the space until the next aligned
addresses is kept empty

e (side note: x86, is more complicated, as usual, and also
allows unaligned accesses, but not recommended)

Allocating memory

In C - malloc
volid *malloc(size t size)

Why does malloc return void* ?

— It just allocates a chunk of memory, without regard to
its type

How does malloc guarantee alignment?
— After all, you don’t know what type it is allocating for

— It has to align for the largest primitive type
— In practice optimized for 8 byte alignment (glibc-2.17)

Memory Management

e Manual memory management
e Automatic memory management

Manual memory management

e malloc
e free

a = malloc(..) ;
// do something with a
free(a);

10

malloc

e where is malloc implemented?
e how does it work?

11

free

e Free too late — waste memory (memory
leak)

e Free too early — dangling pointers / crashes
* Free twice — error

12

When can we free an object?

a = malloc(..) ;
b = a;

// free (a); ?

c = malloc (..);
if (b == ¢)

printf (“unexpected equality”);

Cannot free an object if it has a reference with a future use!

13

When can free x be inserted after p?

cannot free x

some reference to | is used

x references an object |

On all execution paths after p there are no uses of references to the object
referenced by x =2 inserting free x after p is valid

14

Automatic Memory
Management

e gqutomatically free memory when it is no
longer needed

e not limited to OO languages
e prevalent in OO languages such as Java

— also in functional languages

15

Garbage collection

e approximate reasoning about object
liveness

e use reachability to approximate liveness
e assume reachable objects are live

— non-reachable objects are dead

16

Garbage Collection — Classical Techniques

e reference counting
e mark and sweep

® copying

17

GC using Reference Counting

e add a reference-count field to every object
— how many references point to it

e when (rc==0) the object is non reachable
— non reachable => dead
— can be collected (deallocated)

18

Managing Reference Counts

Each object has a reference count 0.RC

A newly allocated object o gets 0.RC=1
— why?

write-barrier for reference updates
update(x,old,new) {

old.RC--;

new.RC++;

if (old.RC == 0) collect(old);

collect(old) will decrement RC for all children and recursively collect objects whose
RC reached 0.

19

Cycles!

e cannot identify non-reachable cycles

— reference counts for nodes on the cycle will
never decrementto O
e several approaches for dealing with cycles
— Ignore
— periodically invoke a tracing algorithm to
collect cycles
— specialized algorithms for collecting cycles

20

The Mark-and-Sweep Algorithm
[McCarthy 1960]
e Marking phase

— mark roots
— trace all objects transitively reachable from roots

— mark every traversed object

e Sweep phase
— scah all objects in the heap
— collect all unmarked objects

21

The Mark-Sweep algorithm

e Traverse live objects & mark black.
e White objects can be reclaimed.

registers “
Note!
/ This is not

Roots the heap data
structure!

yoels

Heap

22

Triggering
Garbage collection is triggered by allocation

New(A)=
if free_list is empty
mark_sweep()
if free_list is empty
return (“out-of-memory”)
pointer = allocate(A)
return (pointer)

23

Basic Algorithm

mark_sweep()= mark(Obj)=
for Ptrin Roots if mark_bit(Obj) == unmarked
mark(Ptr) mark_bit(Obj)=marked
sweep() for Cin Children(Obj)
mark(C)
Sweep()=

p = Heap_bottom
while (p < Heap_top)
if (mark_b|t(p) == unmarked) then free(p)

else mark_bit(p) = unmarked;
p=p+size(p)

24

rl—>

R—>

Mark&Sweep Example

—\ 3ol
N

\

Mark&Sweep in Depth

mark(Obj)=
if mark_bit(Obj) == unmarked
mark_bit(Obj)=marked
for Cin Children(Obj)
mark(C)

e How much memory does it consume?
— Recursion depth?

— Can you traverse the heap without worst-case O(n)
stack?

e Deutch-Schorr-Waite algorithm for graph marking without
recursion or stack (works by reversing pointers)

26

Properties of Mark & Sweep

Most popular method today
Simple
Does not move objects, and so heap may fragment
Complexity
Mark phase: live objects (dominant phase)

® Sweep phase: heap size
Termination: each pointer traversed once
Engineering tricks used to improve performance

27

Mark-Compact

During the run objects are allocated and reclaimed
Gradually, the heap gets fragmented

When space is too fragmented to allocate, a compaction
algorithm is used

Move all live objects to the beginning of the heap and
update all pointers to reference the new locations

Compaction is very costly and we attempt to run it
infrequently, or only partially

Heap

28

Mark Compact

e |mportant parameters of a compaction
algorithm

— Keep order of objects?

— Use extra space for compactor data structures?
— How many heap passes?

— Canitrun in parallel on a multi-processor?

e \We do not elaborate in this intro

29

Copying GC

e partition the heap into two parts
— old space
— New Space

e Copying GC algorithm

— copy all reachable objects from old space to
new space

— swap roles of old/new space

30

Example

Example

Properties of Copying Collection

Compaction for free

Major disadvantage: half of the heap is
not used

“Touch” only the live objects
Good when most objects are dead

Usually most new objects are dead

e Some methods use a small space for young
objects and collect this space using copying
garbage collection

33

A very simplistic comparison

Reference Mark & sweep |Copying
Counting
Complexity | Pointer updates + | Size of heap Live objects
dead objects (live objects)
Space Count/object + Bit/object + stack for Half heap
overhead stack for DFS DFS wasted
Compaction | Additional work | Additional work For free
Pause time | Mostly short long long
More issues | Cycle collection

34

arallel Mark&Sweep GC

®Thread 1
OThread 2 -
()
rl ‘ ‘ ‘ ' ' '
r2 @ @ v
' N

35

Concurrent Mark&Sweep Example

-
-
rl ‘ ‘ ' ‘
S —>()
r2 ‘ ‘ ‘
-

1. GC traced B

Problem: Interference
SYSTEM = MUTATOR || GC

1. GC traced B

Problem: Interference
SYSTEM = MUTATOR || GC

2. Mutator
 links Cto B

38

Problem: Interference
SYSTEM = MUTATOR || GC

-,
~{AH]

—A

1. GC traced B 2. Mutator 3. Mutator
 links Cto B . unlinks C from A

39

Problem: Interference
SYSTEM = MUTATOR | | GC

—~(8]
—A A _..

1. GC traced B 2. Mutator : 3. Mutator 4. GC traced A
. linksCto B i unlinks C from A

40

The 3 Families of Concurrent GC Algorithms

1. Marks C when 2. Marks C when 3. Rescan B when
Cislinked to B link to C is removed Cislinked to B
(DIJKSTRA) (YUASA) (STEELE)

C

~B -8
C

41

Mode

rn Memory Management

Considers standard program properties

Handle

— Stop t
availa

narallelism

ne program and collect in parallel on all

ole processors

— Run collection concurrently with the program

run

Cache consciousness

Real-time

42

Conservative GC

How do you track pointers in languages
suchasC?

— Any value can be cast down to a pointer

How can you follow pointers in a
structure?

Easy — be conservative, consider anything
that can be a pointer to be a pointer

Practical! (e.g., Boehm collector)

43

Conservative GC

e Can you implement a conservative copying
GC?

e What is the problem?

e Cannot update pointers to the new
address... you don’t know whether the
value is a pointer, cannot update it

44

Terminology Recap

Heap, objects
Allocate, free (deallocate, delete, reclaim)
Reachable, live, dead, unreachable

Roots

Reference counting, mark and sweep, copying,
compaction, tracing algorithms

Fragmentation

45

The End

