Compilation
0368-3133 (Semester A,
2013/14)

Lecture 5: Syntax Analysis
(Bottom-Up Parsing)

Modern Compiler Design: Chapter
2.2

Slides credit: Roman Manevich, Mooly Sagiv, Jeff Ullman, Eran Yahav

Admin

o Next weeks: Trubowicz 101 (Law school)

* Mobiles ...

What is a Compiler?

e “A compiler is a computer program that
transforms source code written in a
programming language (source language)
into another language (target language).

L]

The most common reason for wanting to
transform source code is to create an
executable program.”

--Wikipedia

Conceptual Structure of a Compiler

Compiler
Frontend Semantic Backend
-> . —>
Representation
Lexical Syntax Semantic Intermediate Code
Analysis || Analysis Analysis || Representation P
Parsing (IR)

From scanning to parsing
((23 +7) * x)

Lexical
Analyzer

program text

Context Free Grammars

G=(V,T,p,)

¢ VV —non terminals (syntactic variables)

4 .
roken stream LT = T+ 7 15 [~] e T—terminals (tokens)
[v T tp [num [op [num [rRe [op [1 re_| o P derfiveian mlEs

Grammalri ; — Each rule of the form V — (T U V)*

E—.. |1

Id—‘a | .| 2 e S —start symbol

%) Abstract Syhtax Tree
Op(+) Id(b)
@(23) Num(7)
Derivations & Parse Trees Leftmost/rightmost Derivation

ﬁ

e wﬁa”orm] * Leftmost derivation

id := E; S

id = dd s S — always expand leftmost non-terminal
id i=idiid := E e Rightmost derivation

T E e — Always expand rightmost non-terminal
id := id;id := E + id

id := id;id := id + id| E E

B oY ED o6 l 1

id = id H id + id

Derivation Parse tree

Broad kinds of parsers

Parsers for arbitrary grammars
— Earley’s method, CYK method
— Usually, not used in practice (though might change)
* Top-Down parsers
— Construct parse tree in a top-down matter
— Find the leftmost derivation
e Bottom-Up parsers
— Construct parse tree in a bottom-up manner
— Find the rightmost derivation in a reverse order

Intuition: Top-Down Parsing

e Begin with start symbol
e “Guess” the productions

e Check if parse tree yields user's program

Recursive Descent

e Blind exhaustive search
— Goes over all possible production rules
— Read & parse prefixes of input
— Backtracks if guesses wrong

¢ Implementation

— A (recursive) function for every production rule
— Backtracks

Predictive parsing

e Predicts which rule to use based on
— Non terminal

— Next k input symbols (look ahead)
* Restricted grammars (LL(k))

¢ Implementation:
— Predication stack: Expected future derivation
— Transition table: Non terminal x terminal = Rule

* FIRST(a) = The terminals that can appear first in some derivation for a|

* FOLLOW(X) = The tokens that can immediately follow X in some
sentential form

Stack-based Predictive Parser

Predictive Parser

Output (AST/Error)

A reminder: Predictive parsing

¢ Predication stack: Expected future derivation

e Transition table: Non terminal x terminal = Rule

* Moves:
— Predict
Parsing Table — match
13 (13} 14

Running parser example

[aacbbs] [A — akb | ¢
I:> @rcbbs €3 predict(A,a) = A— aAb
aacbb$ aAb$ ¢ I J
I:> (@bbs (s ‘ predict(A,a) = A— aAb
acbb$ aAbb$ ¢ ‘]
I:> (@pbs Abb$ ‘ predict(Ac)=A—= ¢
cbb$ cbb$ & ! Jj
bb$ bb$ match(b,b)
bS$ bS match(b,b)
$ $ match($,$) — success
A A — aAb, A—c

Top-Down Predictive Parsing

Earley Parsing

e Parse arbitrary grammars in O(|input|3)

¢ Dynamic programming implementation of a
recursive descent parser
— S[N+1] Sequence of sets of “Earley states”
e N=|[INPUT|
* Earley states is a sentential form + aux info
— S[i] All parse tree that can be produced (by an RDP)
after reading the first i tokens
o S[i+1] built using S[0] ... S[i]

Earley States

e s =< constituent, back >
— constituent (dotted rule) for A>ap
e A>eaB predicated constituents
e A>0aeB in-progress constituents
e A>oBe completed constituents

— back previous Early state in derivation

Earley Parser

Input = x[1...N]
S[0] = <E’-> eE, 0>; S[1] = ... S[N] = {}
for i=0...Ndo
until S[i] does not change do
foreach s € SJi]

if s=<A->..ea.., b> and a=x[i+1] then // scan
S[i+1] = S[i+1] U {<A>..ae.., b> }
if s=<A-> ... ®X.., b>and X>a then // predict

s[i] = S[i] U {<x>ea,i> }

if s=<A> ..e,b> and <X>..eA.., k> € S[b] then //complete
S[i] = S[i] U{<X>..Ae..., k> }

Bottom-Up Parsing

Top-Down vs Bottom-Up
bb$
¢ Top-down (predict match/scan-complete)

A
/I\
aAb
/IN\
b

aA
|
c

Top-Down vs Bottom-Up
bbS
e Top-down (predict match/scan-complete)

A
I\

/
aAb
b

~N

I\

A
I
c

©

= Bottom-up (shift reduce)

S

o
U
>—1
-~

60—

Bottom-Up parsing:
LR(k) Grammars

e A grammar is in the class LR(K) when it can be
derived via:
— Bottom-up derivation
— Scanning the input from left to right (L)
— Producing the rightmost derivation (R)
— With lookahead of k tokens (k)

¢ A language is said to be LR(k) if it has an LR(k)
grammar

¢ The simplest case is LR(0), which we will discuss

Terminology: Reductions & Handles

¢ The opposite of derivation is called
reduction
— Let A—a be a production rule
— Derivation: BAu = Bap
— Reduction: Bap = BAu

e A handle is the reduced substring
— ais the handles for Bap

Goal: Reduce the Input to the Start Symbol

. E

E>E*B|E+B|B ffj‘:’p'e' ~

B>0]|1 ®0+1 1
®+0*1 ﬂ\
E+B* 1
©1
E*®
®

- «— T

O «—w

O «— @ <«—m

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke”
the rule and replace the right-hand side with the left-hand side (reduce)

Use Shift & Reduce

In each stage, we

shift a symbol from the input to the stack, or

reduce according to one of the rules.

Use Shift & Reduce

. 404 0%1”
In each stage, we Example: “0+0*1

shift a symbol from the input to the stack, or E->E*B | E+B | B

reduce according to one of the rules. B->0]|1
Stack Input action
0+0*1S$ shift
E 0 +0*1$ reduce
PN B +0*1$ reduce
H BB E +0*1$ shift
ﬂ\ l E+ 0*1$ shift
E+0 *1$ reduce
E + B 1 E+B *1$ reduce
l l E *1$ shift
B 1$ shift
B 0 E*1 S reduce
l E*B S reduce
o E S accept

How does the

parser know what to do?

N 2 I N S

token stream|———T=

v v [

[I T T T |

Input

= @ =

Stack

Parser

Output ()
/N

Op(+) Id(b)

Num(23) Num(7)

Action Table

Goto table

How does the parser know what to do?

¢ A state will keep the info gathered on handle(s)
— A state in the “control” of the PDA
— Also (part of) the stack alpha beit
Set of LR(0) items

o Atable will tell it “what to do” based on current
state and next token

— The transition function of the PDA

o A stack will records the “nesting level”
— Prefixes of handles

LR item

Already matched

To be matched
Input

~ /

N —>\0('B

Hypothesis about af being a possible handle, so far we’ve matched
a, expecting to see B

Example: LR(0) Items

¢ All items can be obtained by placing a dot at
every position for every production:

Grammar [(1)S—ES$
2)E—-T
3)E—=E+T
4)T —id
(5)T—=(E)

LR(0) items ; g=caks

:S—=Ee*§

3:S—>ES*
4B—eT
SSE—>Ts
6:E—>*E+T
T.-E—>Ee*+T
8E—E+eT
9:E—E+Te*
10:T— *i
:T—ie
12:T— * (E)
13:T— (+E)
14:T— (E *)

15:T— (E)*

LR(0) items
N — o®B shiftitem
N — of® Reduceltem

ES>E*B|E+B|B
States and LR(0) Items ERgp

e The state will “remember” the potential derivation rules
given the part that was already identified

e For example, if we have already identified E then the state
will remember the two alternatives:

(1)ES>E*B, (2QJE>E+B

¢ Actually, we will also remember where we are in each of
them:

(1)E->Ee*B, (2JE->Ee+B

e A derivation rule with a location marker is called LR(0)
item.

e The state is actually a set of LR(0) items. E.g.,
q13:{E9E.*B,E—)E.+B} 3

Intuition

e Gather input token by token until we find a
right-hand side of a rule and then replace it
with the non-terminal on the left hand side
— Going over a token and remembering it in the

stack is a shift
® Each shift moves to a state that remembers what
we’ve seen so far
— A reduce replaces a string in the stack with the
non-terminal that derives it

Model of an LR parser

Input [id [+ [ia [« [[s]

Stack LR
Parsing Output
rogram

Terminals and
Non-terminals

action goto

E-E-E-E

LR parser stack

¢ Sequence made of state, symbol pairs

e For instance a possible stack for the
grammar
S—ES
E—T
E—E+T
T—id
T—(E)
couldbe:0T2 +7/id

Stack grows this way

Form of LR parsing table

LR parser table example

STATE action goto (1)S—ES
state! terminals non-terminals id o () 3 E T (2Q)E—>T
(3)E—=E+T
0 Shift/Reduce actions Goto part 0 s5 s7 gl 86 4)T—id
1 1 s3 acc (5)T—(E)
. acc 2
3 s5 s7 g4
4 r3 r3 r3 r3 r3
.m 5 r4 rd rd rd r4
-error
6 r2 r2 r2 r2 r2
7 s5 s7 g8 g6
‘ shift state n H reduce by rule k ‘ ‘ goto state m g & &
9 s r5 r5 r5 5
accept n »
Shift move Result of shift
lnput‘ ‘a‘ ‘ s\ Input‘ ‘S‘
Stack Stack

Output

e If action[g, a] =sn

* |Ifaction[g, a] =sn

Output

10

Reduce move

lnput‘ ‘a‘ ‘S‘

Stack

‘ | Output

If action[gn, a] = rk

Production: (k) A —f

If B=01... on

Top of stack looks like q1 o1... gn on
goto[qg, A] =gm

Result of reduce move

Input‘ ‘n‘ ‘S‘

~ Stack R

Parsing Output
program

If action[qgn, a] = rk

Production: (k) A —f

If B=01... on

Top of stack looks like g1 o1... gn on
goto[g, Al =gm

Accept move
nput [Jals]

Stack

LR

Parsing Output

If action[g, a] = accept
parsing completed

Error move
Input‘ ‘ n‘ ‘ $ ‘
Stack
LR
[a Jo— Parsing Output

If action[g, a] = error (usually empty)
parsing discovered a syntactic error

11

Example Example: parsing with LR items
s (L[L LLT:
E—-T | E+ T
T —-1i | (E) 7 — SE § Why do we need these additional LR items?
E — oT Where do they come from?
What do they mean?
E — °E + T
T — °i
T > o(E)
Example: parsing with LR items
e-closure

¢ Given a set S of LR(0) items

e IfP— a*NBisinS
e then for each rule N —y in the grammar
S must also contain N — ey

—{Z —> °E S,
E — °T,

e-closure ({Z — °E S$})

T — °i ,
T — ¢(E

E — *E + T,

)

}

4

Z—ES

E-T|E+T
T—il(E)

b L] [i] 3]

Remember position from
which we’re trying to
reduce

Items denote possible
future handles

12

Example: parsing with LR items

m|||||s|
i|(E)

e l oKen
‘ Reduce item!

Example: parsing with LR items

p|||||||s|
—i|(E)

Reduce item!

=

Example: parsing with LR items

J,|||||||s|
| (E)

Reduce item!

Example: parsing with LR items

AGARRDNG
| (E)

13

Example: parsing with LR items

p|||||||s|
i|(E)

T

Example: parsing with LR items

ABABNGER
—i|(E)

T

Example: parsing with LR items

Z—ES
ESTIE+T

Example: parsing with LR items

LT
| (E)

E+T

T i

14

Example: parsing with LR items

Z—ES
ESTIE+T

i|(E)

b e[s[] |

e

Reduce item!

Example: parsing with LR items

S
|z| LT |e=riee
T—i|(E)

+T

T I

Reduce item!

GOTO/ACTION tables
empty —
error move ACTION
GOTO Tabl / Tahl
| A e Il |
90 a5 a7 q1 q6 | shift
ql | @ | | | @ [T] shift
q2 Z—ES
B | @ | [a7 | \ \ [a4 [shie
q4 E—E+T
a5 [[[[T | i
q6 E—T
a7 as a7 a8 g6 | shift
a8 a3 q9 shift
q9 T—E

LR(0) parser tables

e Two types of rows:
— Shift row — tells which state to GOTO for
current token
— Reduce row — tells which rule to reduce
(independent of current token)
* GOTO entries are blank

15

LR parser data structures

¢ Input — remainder of text to be processed

e Stack —sequence of pairs N, qi
— N —symbol (terminal or non-terminal)
— Qi — state at which decisions are made

input

stack

e |nitial stack contains q0

LR(0) pushdown automaton

¢ Two moves: shift and reduce
¢ Shift move
— Remove first token from input
— Push it on the stack
— Compute next state based on GOTO table
— Push new state on the stack
— If new state is error — report error

s

-

!

input input

stack stack

q ' q7 a1 | g6 | shift

LR(0) pushdown automaton

¢ Reduce move
— Usingarule N —a
— Symbols in a and their following states are removed from stack
— New state computed based on GOTO table (using top of stack,
before pushing N)
— Nis pushed on the stack
— New state pushed on top of N

Reduce
oot [| 7 (oo (I
q0 as q7 ql\ g6 / shift

GOTO/ACTION table

q0 s5 s7 sl s6
ql s3 52
q2 rl rl rl rl rl rl rl
q3 s5 s7 s4
q4 r3 r3 r3 r3 r3 r3 r3
q5 r4 r4 rd rd rd r4 r4
q6 r2 r2 r2 r2 r2 r2 r2
q7 s5 s7 s8 s6
s9
r5 r5 r5 5 5

Warning: numbers mean different things!
rn = reduce using rule number n
sm = shift to state m

16

(1)S—ES (1)S—ES$
QJE—T (2QE—=T
Parsing id+idS g Parsing id+idS Wi |
(5)T—(E) (5)T—(E)
Stack Input Action S action goto Stack Input Action S action goto
'8 id+id $|s5 d |+ | (])|S|EJT 0 id+id $|s5 d]+ | (|)[S]|E|T
0 | s5 s7 gl | g6 0 | s5 s7 gl | g6
1 s3 acc 1 s3 acc
2 2
3 | s5 s7 g4 3 | s5 s7 g4
Initialize with state 0 AlB BB 81 Initialize with state 0 4 BlBlBBls
5 rd | rd [rd|rd|rd 5 rd | rd (rd | rd | rd
6 |r2|r2|r2|r2|nr2 6 |r2|r2|r2|r2|r2
7 | s5 s7 g8 | g6 7 | s5 s7 g8 | g6
8 s3 s9 8 s3 s9
9 | r5|r5|r5|r5 |5 9 | r5|r5|r5 |55
6 6
(1)s—E$ (1)s—E$
QJE—T (2QE—-T
Parsing id+idS Wi Parsing id+idS R
(5)T—(E) (5)T—=(E)
Stack Input Action S action goto Stack Input Action S action goto
0 id+id $|s5 id e) s ET 0 id+id $|s5 id |+ | (|)[$|E|T
0id5 +id$|ra 0 15 £ 8l | g6 0id5 +id$|ra Ol S £ 8l | g6
1 s3 acc 1 s3 acc
2 2
3 | s5 s7 g4 3 | s5 s7 g4
4 [r3|r3|r3|r3|n3 popid5 g 4 |r3|r3|r3|r3|n3
5 4| rd|rd|rd|rd r 5 T rd (rd|rd|rd
6 |r2|r2|r2|r2|nr2 6 | r2|r2|r2|r2|r2
7 | s5 s7 g8 | g6 7 | s5 s7 g8 | g6
8 s3 s9 8 s3 s9
9 | r5|r5|r5 |5 |r5 9 | r5 |5 |5 |55

17

(1)S—ES (1)S—ES
QJE—T (2QE—=T
. . . (B)E—E+T . . . (B)E—E+T
Parsing id+idS @7~ Parsing id+id @7~
(5)T—(E) (5)T—(E)
Stack Input Action S action goto Stack Input Action S action goto
0 id+id $|s5 Wle | QDS ILE]T 0 id+id $|s5 id |+ | (|)|s|E|T
0id5 +id$|r4 015 s7 i 0id5 +id$|ra 0|55 s7 gl | g6
L=
1 s3 | _—~ acc 0T6 +ids|r2 1 s3 acc
| o—— 2
3 | s5 s7 g4 3 | s5 s7 g4
4 |r3|r3|r3|r3]|r3 4| r3|r3|r3|r3|13
push T 6
5 4 | rd | rd|rd|rd 5 rd | rd (rd | rd | rd
6 |r2|r2|r2|r2|nr2 6 |r2|r2|r2|r2|r2
7 | s5 s7 g8 | g6 7 | s5 s7 g8 | g6
8 s3 s9 8 s3 s9
9 | r5|r5|r5|r5 |5 9 | r5|r5|r5 |55
® 0
(1)S—ES (1)S—ES
QJE—T (2QE—-T
. . . (B)E—E+T . . . (B)E—E+T
Parsing id+idS @7~ Parsing id+id @7~
(5)T—(E) (5)T—=(E)
Stack Input Action S action goto Stack Input Action S action goto
0 id+id $|s5 id e) s ET 0 id+id $|s5 id |+ | (|)[$|E|T
0id5 +id$|rd 0 I3 / 8l | g6 0id5 +id$|ra 0 |s5 s7 gl | g6
0T6 +ids|r2 ! 3 acc 0T6 +ids|r2 ! 3 ace
2 2
OE1 +id S| s3 OE1 +id$|s3
3 | s5 s7 g4 3 | s5 s7 g4
0E1+3 idS|s5
4 | r3|r3|r3|r3]|r3 4 (r3|r3|r3|r3]|r3
5 4| rd|rd|rd|rd 5 4| rd (rd | rd|rd
6 |r2|r2|r2|r2|nr2 6 | r2|r2|r2|r2|r2
7 | s5 s7 g8 | g6 7 | s5 s7 g8 | g6
8 s3 s9 8 s3 s9
9 | r5|r5|r5 |5 |r5 9 | r5 |5 |5 |55

18

(1)s—E$ (1)s—ES$
(2)E—=T (2QE—=T
. . . (B)E—E+T . . . (B)E—E+T
Parsing id+idS @7~ Parsing id+idS @7~
(5)T—(E) (5)T—(E)
Stack Input Action S action goto Stack Input Action S action goto
0 id+id $|s5 d|+ | ()]s |E|T 0 id+id $|s5 id |+ [(|)[$|E|T
0id5 +id$|ra 0 JES / gl | g6 0id5 +ids|ra 0|s5 s7 gl | g6
076 +id$|r2 1 s3 dcC 0T6 +id$|r2 E s3 acg
2 2
0E1 +id$|s3 0E1 +id$|s3
3|5 s7 g4 3 |s5 7 g4
0E1+3 id$|s5 0E1+3 id$|s5
- 4 |r3|r3|r3|r3]|r3 - 4 (r3|r3|r3|r3|r3
OE1+3id5 S| S|(rd|rd|rd|rd4|rd 0E1+3idS S|4 5 |(rd|rd|rd|r4|rd
6|l |n YEAFIUL 5|3 R
7 | s5 s7 g8 | g6 7 | s5 s7 g8 | g6
8 s3 s9 8 s3 s9
9 | r5|r5|r5]|r5]|r5 9 [r5|r5|r5|r5]|r5
74
(1)S—ES
(2E—=T
. . . (B)E—E+T . .
Parsing id+idS @7~ id Constructing an LR parsing table
(5)T—=(E)
Stack 1 Acti S action goto . . o
Otac nzm s ;mn a0 [s|elT e Construct a (determinized) transition
a+i S. . .
T e o [ss 57 g1] g6 diagram from LR items
- 1 3 .
0T6 +id$|r2 : e e If there are conflicts — stop
- 2
0E1 +id$|s3 e . . o Fill tabl o f di
S. S
D503 s |s5 g Il table entries Trom dalagram
- 4 3|3 |B|[B3|3
DELBIES 3l|ird s ra|ra|ra|ra|nma
0E1+3T4 $|r3 6 [r2|r2|r2|r2|r2
0E1 $|s2 7 | s5 7 8 | g6
8 s3 s9
9 | r5|r5|r5]|r5]|r5

19

Types of LR(0) items

T— (°E)
E— T

E—°E+T
T i
T o(E)

(

LR item
Already matched To be matched N — o°3 Shiftltem
Input
j N — o[3® ReduceItem
!/’
/
!/’/
N — a*f
Hypothesis about af being a possible handle, so far we’ve matched
a, expecting to see B o %
LR(0) automaton example
:llreduce state Com pUﬁng item SetS
. T
e Initial set

— Zis in the start symbol
— g-closure({ Z—*a | Z—a is in the grammar })

¢ Next set from a set S and the next symbol X
— step(S,X) = { N—aXe*B | N—a*Xp in the item set S}

— nextSet(S,X) = e-closure(step(S,X))

20

Operations for transition .
. : Initial example
dlagram construction Grammar

(1)s—ES
e Initial = {S"—*SS} e |nitial = {S — *E S} QE—>T

e For anitem set |
Closure(l) = Closure(l) U
{X—episin grammar| N—a*Xp in I}

e Goto(l, X) = { N—aX*B | N—a*XB in I}

Closure example Goto example
Grammar Grammar
(1)s—ES (1)S—E$
e |nitial = {S — *E S} @E->T e |nitial = {S — *E S} @E->T
(3)E—E+T (3)E—E+T
e Closure({S — *E $}) = { @)T—id e Closure({S — *E $}) ={ @)T—id
S=rlsES (5)T—(E) S—»sES (5T (E)
E—oT E— T
E—>eE+T E—>eE+T
T— e°id T — eid
T—<(E) } T—<(E)}

* Goto({S—*ES,E—°*E+T,T — *id}, E) =
{S—E*S,E—E*+T}

Constructing the transition diagram

e Start with state 0 containing item
Closure({S — *E S})
¢ Repeat until no new states are discovered

— For every state p containing item set Ip, and
symbol N, compute state q containing item set
Iq = Closure(goto(lp, N))

LR(0) automaton example

:|| reduce state

Automaton construction 5=

QE—-T
G)E—E+T
example o

() T—(E)

e

Automaton construction example

(1)S—ES$
(QE—T
(3)E—E+T
% @T—id

() T—(E)

apply
Closure

22

G)T—=(E)
T— (°E)
E— T

Automaton construction example Automaton construction example
(1)S—ES (1)S—ES$
QE—-T qe QE—-T
B)E—E+T / (B)E—E+T
4T —id HT—id
(5)T—(E)
non-terminal transition

corresponds to goto
action in parse table

qs
W

terminal transition
corresponds to shift
action in parse table

Are we done?

¢ Can make a transition diagram for any

grammar
¢ Can make a GOTO table for every grammar

e Cannot make a deterministic ACTION table
for every grammar

LR(O) conflicts

Shift/reduce conflict

23

LR(0) conflicts

reduce/reduce conflict

LR(0) conflicts

e Any grammar with an &-rule cannot be
LR(0)
¢ |nherent shift/reduce conflict
— A— g* —reduce item
— P —a*AB — shift item
— A— ¢° can always be predicted from P —a*AB

Conflicts

e Can construct a diagram for every grammar
but some may introduce conflicts

¢ shift-reduce conflict: an item set contains at
least one shift item and one reduce item

¢ reduce-reduce conflict: an item set
contains two reduce items

LR variants

LR(0) — what we’ve seen so far
SLR(0)

— Removes infeasible reduce actions via FOLLOW
set reasoning

LR(1)
— LR(0) with one lookahead token in items
LALR(0)

— LR(1) with merging of states with same LR(0)
component

24

LR (0) GOTO/ACTIONS tables

ACTION

GOTO Table
X \;ahle_\

a1 | & | | | @ | | shift
q2 Z—ES
@ | s | [a7 | \ \ [a4 [shit
a4 EoET
@ [[[[[[[
96 E—T
a7 | s a7 a8 | a6 [shift
a8 a3 a9 shift

SLR parsing

¢ A handle should not be reduced to a non-terminal N if the
lookahead is a token that cannot follow N
e Areduce item N — a* is applicable only when the
lookahead is in FOLLOW(N)
— If bis not in FOLLOW(N) we just proved there is no derivation S
> * BNb.
— Thus, it is safe to remove the reduce item from the conflicted
state
* Differs from LR(0) only on the ACTION table

— Now a row in the parsing table may contain both shift actions and
reduce actions and we need to consult the current token to
decide which one to take

SLR action table
fswel i [+ [(]) [opl s [[state Jaction |
0 shift shift q0 shift
1 shift accept ql shift
2 q2
3 shift shift q3 shift
4 E—E+T E—E+T E—E+T q4 E—E+T
5 T—i T—i ||shift T—i vs. a5 | T—i
6 E—-T E-T E—-T q6 E—T
7 shift shift q7 shift
8 shift shift q8 shift
9 T—(E) T—(E) T—(E) q9 |T—E
SLR — use 1 token look-ahead LR(0) — no look-ahead
. as before..

LR(1) grammars

¢ In SLR: a reduce item N — ae is applicable

only when the lookahead is in FOLLOW(N)

e But FOLLOW(N) merges lookahead for all

alternatives for N
— Insensitive to the context of a given production

® LR(1) keeps lookahead with each LR item
¢ |dea: a more refined notion of follows

computed per item

25

LR(1) items

e LR(1)itemis a pair
— LR(0) item
— Lookahead token
* Meaning
— We matched the part left of the dot, looking to match the part on
the right of the dot, followed by the lookahead token
e Example
— The production L — id yields the following LR(1) items
LR(1) items
[L> eid, *]
[L>eid, =]
[L-> eid,id]
[L>eid,S]
[L>ide, *]
[L->ide,=]
[L->id e,id]
$

(0)s'>s LR(0) items
(1)S>L=R
@2)s>R

L>eid]
[L>ide]

(5)R=>L

LALR(1)

e LR(1) tables have huge number of entries

¢ Often don’t need such refined observation (and
cost)

¢ |dea: find states with the same LR(0) component
and merge their lookaheads component as long
as there are no conflicts

e LALR(1) not as powerful as LR(1) in theory but
works quite well in practice

— Merging may not introduce new shift-reduce conflicts,
only reduce-reduce, which is unlikely in practice

Summary

103

LR is More Powerful than LL

e Any LL(k) language is also in LR(k), i.e., LL(k) C LR(k).

— LR is more popular in automatic tools
* But less intuitive

e Also, the lookahead is counted differently in the two cases
— Inan LL(k) derivation the algorithm sees the left-hand side of the
rule + k input tokens and then must select the derivation rule
— In LR(k), the algorithm “sees” all right-hand side of the derivation
rule + k input tokens and then reduces
* LR(0) sees the entire right-side, but no input token

26

Broad kinds of parsers

Parsers for arbitrary grammars
— Earley’s method, CYK method
— Usually, not used in practice (though might change)
* Top-Down parsers
— Construct parse tree in a top-down matter
— Find the leftmost derivation
e Bottom-Up parsers
— Construct parse tree in a bottom-up manner
— Find the rightmost derivation in a reverse order

105

Question

e Why do we need the stack?

e Why can we use FSM to make parsing
decisions?

Why do we need a stack?

* Suppose so far we have discovered E - B - 0 and

= gather information on “E +”.
PN * In the given grammar this can only mean
i 1B E>E+eB
l * Suppose state qg represents this possibility.
0

* Now, the next token is 0, and we need to ignore dg for
a minute, and work on B = 0 to obtain E+B.

O €«—®<«—m

e Therefore, we push gg to the stack, and after
identifying B, we pop it to continue.

e ol o rp

See you next time

e Here!

27

GOTO/ACTION table

op is on the right

qo0 | s5 s7 sl |s6 qO i+i$ S5
:; rl i rl|rl i rl|rl WicE +i$ i
7 q0Tqg6 +iS [r2
3|3 q0Eql +i$ |s3
r4 | ra qOEql+q3 is s5
r2f|ir2 q0Eql+q3ig5 |$ r4
s8l1se q0EQl+q3Tqg4|S r3
= qOEql S s2
qO0Eql$q2 rl
q0z

109

Example
S 5
S — oE .0 E — ne .0
E—eE+E ,0 n S’ — Ee .0
E—en .0 E—> Ee+E 0

S
E—> E+eE ,0
E—>eE+E ,2

E — en ,2
83
E — ne .2
n E—-E+Ee .0
E—Ee+E ,2
S’ — Ee .0

FIGURE 1. Earley sets for the grammar E — E + E | n and
the input n + n. Ttems in bold are ones which correspond to the
input’s derivation.

Earley with Pictures

Grammar: A = BC Input: bc
B>b
C>c
b

Earley Parsing in Pictures

Grammar: S > E Input: id +id + id
E>T+id]|id
T>E
4<T>+E,0>
3 <E>+id,0>
2 <E>+T+id,0>
1<S>eE,0> 8 <E->T+eid,0>

5 <E->ide,0>
6 <T>E-,0>
7 <E>Te+id,0>

28

