Conceptual Structure of a Compiler

1 o Compiler
CO m p I I atl on Frontend | Semantic Backend
0368-3133 (Semester A, 2013/14) Representation
Lecture 6b: Context Analysis
(aka Semantic Analysis) :::Il\fsalls fxé'ff;s S::‘v:yn:i';: R?Sfer;"eﬁfﬁfn Ge::izo"
Parsing ®)
Noam Rinetzky
Slides credit: Mooly Sagiv and Eran Yahav
You are here... Abstract Syntax Tree

| B
process |\ crers| @ | tokens | x| ast em
text Analysis |2Z0) Analysis |22 pf Analysis

input

Annotated AST

Back End

exe
Executable

code

e AST is a simplification of the parse tree

e Can be built by traversing the parse tree
— E.g., using visitors

e Can be built directly during parsing
— Add an action to perform on each production rule
— Similarly to the way a parse tree is constructed

Building a Parse Tree

Node E() {
result = new Node();
result.name = “E”;

if (current € {TRUE, FALSE})
result.addChild (LIT()) ;

else if (current == LPAREN)
result.addChild (match (LPAREN)) ;
result.addChild(E()) ;
result.addChild (OP()) ;
result.addChild(E()) ;
result.addChild (match (RPAREN)) ;

else if (current == NOT)
result.addChild (match (NOT)) ;
result.addChild(E()) ;

else error;
return result;

Building an AST

Node E() {
if (current € {TRUE, FALSE})
result = new LitNode (current) ;

else if (current == LPAREN)
result = new BinNode() ;
match (LPAREN) ;

result.left = E();
result.op = OP() ;
result.right = E();
match (RPAREN) ;

else if (current == NOT)
result = new NotNode() ;
match (NOT)) ;
result.expr = E();

else error;

return result;

Abstract Syntax Tree

¢ The interface between the parser and the rest of
the compiler
— Separation of concerns
— Reusable, modular and extensible

e The AST is defined by a context free grammar
— The CFG of the AST can be ambiguous!

 Is this a problem?

* Keep syntactic information
— Why?

What we want

Potato potato;
Carrot carrot;
x = tomato + potato + carrot

-..<id,tomato>,<PLUS>,<id,potato>,<PLUS>,<id,carrot>,EOF

: symbol kind | type properties | |
: X var |2 |
: tomato | var |2 :
3 potato var Potato i

— s

Context Analysis

e Check properties contexts of in which
constructs occur

— Properties that cannot be formulated via CFG
* Type checking
* Declare before use
— Identifying the same word “w” re-appearing — wbw
* Initialization

— Properties that are hard to formulate via CFG

Context Analysis

e |dentification

— Gather information about each named item in
the program

— e.g., what is the declaration for each usage

e Context checking

— Type checking
* “break” only appears inside a loop
o — e.g., the condition in an if-statement is a
Boolean
® Processing of the AST .
Identification Identification

month : integer RANGE [1..12]; month : integer RANGE [1..12];
month := 1;

while (month <= 12) {
print (month_name [month]) ;
month : = month + 1;

month := 1;

while (month <= 12) {
print (month name[month]);
month : = month + 1;

® Forward references?

¢ Languages that don’t require declarations?

Symbol table

month : integer RANGE [1..12];

month := 1;

while (month <= 12) { nonth 2

RANGE[1..12]

print (month name [month]) ; month_name

month : = month + 1;

¢ A table containing information about
identifiers in the program

¢ Single entry for each named item

Not so fast...

struct one_int { _
int i;
}oi;

main (
i.i =
int t
printf (M
}

Not so fast...

struct one_int {
int i;
boi

i.i-= 7
printf (“%d”,t) ;
{
int 1= Jd3c s
printf (“%d”, 1) ;
}
}

Scopes

Typically stack structured scopes

Scope entry

— push new empty scope element

Scope exit

— pop scope element and discard its content
Identifier declaration

— identifier created inside top scope
Identifier Lookup

— Search for identifier top-down in scope stack

Scope-structured symbol table

o

SO

“lOHg”

s PO TeT -2 T F>x

“and”

{

int the=1;
int fish=2;
int thanks=3;

X
{

‘thanks” / ”

o PLTeTd-{i e {i]p[F—
int x = 42;
int all = 73;

ey

X

/“all”
PO T-ETr [T

“the”

/’“ﬁsh” /“thanks”
O o N I S o K EX S e A I S

Scope stack

Scope and symbol table

¢ Scope x Identifier -> properties
— Expensive lookup

* A better solution

— hash table over identifiers

Hash-table based Symbol Table

Id.info

name

decl

G —Glr [

—/> “thanks”

name

decl

—l2]ep[g—lofe]F—w

Id.info(“all”)
/ IdAinfo("the”)/ Idjnfo("ﬁsh”)/ Id.info(“thanks”)
“so
S] [] []
| name | 0|:'—’|‘|]] EIES; 1
S tack
ded! n= I cope stac
e (now just pointers to the corresponding record in the symbol table) *

Scope Info

Id.info(“s0”) Id.info(“long”)
2

1/
Id.info(“and”) Id.info(“thanks’}> Id.info(“x”)
o S

Id.info(“x")

Symbol table

month : integer RANGE [1..12];

month := 1;

while (month <= 12) { month 1 | RANGE[1..12]

print (month name [month]) ; month_name

month : = month + 1;

¢ A table containing information about
identifiers in the program
e Single entry for each named item

Semantic Checks

® Scope rules
— Use symbol table to check that
= |dentifiers defined before used
= No multiple definition of same identifier

= Type checking
= Check that types in the program are consistent
= How?
= Why?

Types

e What is a type?
— Simplest answer: a set of values + allowed operations
— Integers, real numbers, booleans, ...

e Why do we care?
— Code generation: $1 :=$1 +$2
— Safety
* Guarantee that certain errors cannot occur at runtime
— Abstraction
* Hide implementation details
— Documentation
— Optimization

Type System (textbook definition)

“A type system is a tractable syntactic method
for proving the absence of certain program
behaviors by classifying phrases according to the
kinds of values they compute”

-- Types and Programming Languages
/ Benjamin C. Pierce

Type System

¢ Atype system of a programming language is a way
to define how “good” program behave
— Good programs = well-typed programs
— Bad programs = not well typed

¢ Type checking
— Static typing — most checking at compile time
— Dynamic typing — most checking at runtime

¢ Type inference

— Automatically infer types for a program (or show that
there is no valid typing)

Static typing vs. dynamic typing

e Static type checking is conservative

— Any program that is determined to be well-typed is
free from certain kinds of errors

— May reject programs that cannot be statically
determined as well typed

¢ Dynamic type checking
— May accept more programs as valid (runtime info)
— Errors not caught at compile time
— Runtime cost

Type Checking

¢ Type rules specify
— which types can be combined with certain operator
— Assignment of expression to variable
— Formal and actual parameters of a method call

e Examples

string string int strin
“drive” + “drink” 42 + “the answer”

ERROR

Type Checking Rules

» Specify for each operator
— Types of operands
— Type of result

e Basic Types
— Building blocks for the type system (type rules)
— e.g., int, boolean, (sometimes) string

e Type Expressions
— Array types
— Function types
— Record types / Classes

Typing Rules

If E1 has type int and E2 has type int,
then E1 + E2 has type int

El:int E2 :int
El + E2: int

More Typing Rules (examples)

true : boolean false : boolean

int-literal : int string-literal : string

El:int E2 :int

=n 2020 = ope{+ - 1,% %}
E1 opE2 : int

El:int E2 :int

rope{<=,<,> >=}
E1 rop E2 : boolean

E1:T E2:T

rop e{ ==,!=}
E1 rop E2 : boolean

And Even More Typing Rules

E1 : boolean E2 : boolean
lop € { & }
E1 /op E2 : boolean
E1l:int E1 : boolean
-El:int 1E1 : boolean
E1: T[] E1: T[] E2 :int El:int
El.length : int E1[E2]: T

new T[E1] : T[]

Type Checking

e Traverse AST and assign types for AST
nodes

— Use typing rules to compute node types

= Alternative: type-check during parsing
— More complicated alternative
— But naturally also more efficient

Example

: boolean

: boolean

45 > 32 && !false

E1 : boolean E2 : boolean

E1 /op E2 : boolean
lop € { &&,1| ¥

E1 : boolean

'E1 : boolean

El:int E2 :int
E1 rop E2 : boolean
rop e{ <=,<, >, >=}
false : boolean

int-literal : int

Type Declarations

e So far, we ignored the fact that types can
also be declared

TYPE Int_Array = ARRAY [Integer 1..42] OF Integer; (explicitly)

Var a : ARRAY [Integer 1..42] OF Real; (anonymously)

Type Declarations

Var a : ARRAY [Integer 1..42] OF Real;

A

TYPE #type01_in_line_73 = ARRAY [Integer 1..42] OF Real;

Var a : #type01_in_line_73;

Forward References

TYPE Ptr_List_Entry = POINTER TO List_Entry;
TYPE List_Entry =
RECORD
Element : Integer;
Next : Ptr_List_Entry;
END RECORD;

¢ Forward references must be resolved

— Aforward references added to the symbol table as forward reference,
and later updated when type declaration is met

— At the end of scope, must check that all forward references have been
resolved

— Check must be added for circularity

Type Table

¢ All types in a compilation unit are collected in
a type table

* For each type, its table entry contains:
— Type constructor: basic, record, array, pointer,...
— Size and alignment requirements
e to be used later in code generation
— Types of components (if applicable)
e e.g., types of record fields

Type Equivalence: Name Equivalence

Type t1 = ARRAY[Integer] OF Integer;
Type t2 = ARRAY[Integer] OF Integer;

t1 not (name) equivalence to t2

Type t3 = ARRAY[Integer] OF Integer;
Type t4 =13

t3 equivalent to t4

Type Equivalence: Structural Equivalence

4 R

Type t5 = RECORD c: Integer; p: POINTER TO t5; END RECORD;

Type t6 = RECORD c: Integer; p: POINTER TO t6; END RECORD;
Type t7 =

RECORD
c: Integer;
p: POINTER TO
RECORD
c: Integer;
p: POINTER to t5;
END RECORD;
END RECORD;

/

5, t6, t7 are all (structurally) equivalent

In practice

e Almost all modern languages use name
equivalence

e why?

10

Coercions

e If we expect a value of type T1 at some
point in the program, and find a value of
type T2, is that acceptable?

float x = 3.141;
int y = x;

I-values and r-values

dst := src

e What is dst? What is src?

— dst is a memory location where the value should
be stored

— srcis a value

¢ “location” on the left of the assignment called
an l-value

e “value” on the right of the assignment is called
an r-value

I-values and r-values (example)

I-values and r-values

expected

Ivalue deref

found

rvalue |error |-

11

So far...
Static correctness checking
— Identification
— Type checking

Identification matches applied occurrences of identifier to
its defining occurrence

— The symbol table maintains this information

Type checking checks which type combinations are legal
Each node in the AST of an expression represents either
an |-value (location) or an r-value (value)

How does this magic happen?

e We probably need to go over the AST?

¢ how does this relate to the clean formalism
of the parser?

Syntax Directed Translation

e Semantic attributes
— Attributes attached to grammar symbols
e Semantic actions
— (already mentioned when we did recursive
descent)
— How to update the attributes

e Attribute grammars

Attribute grammars

o Attributes
— Every grammar symbol has attached attributes
e Example: Expr.type

e Semantic actions
— Every production rule can define how to assign
values to attributes

* Example:
Expr — Expr + Term
Expr.type = Exprl.type when (Exprl.type == Term.type)
Error otherwise

12

Indexed symbols

e Add indexes to distinguish repeated grammar
symbols

¢ Does not affect grammar
¢ Used in semantic actions

e Expr — Expr + Term
Becomes
Expr — Exprl + Term

Example

float x,y,z]

[
@ N
ﬂoat Aoat

\ D—TL L.in = T.type
T—int T.type = integer
T — float T.type = float
L) () - P
ﬂoat (., L—1L1,id |LlLin=Lin
addType(id.entry,L.in)
P L—id addType(id.entry,L.in)

\E/

Attribute Evaluation

e Build the AST

e Fill attributes of terminals with values derived
from their representation

¢ Execute evaluation rules of the nodes to
assign values until no new values can be
assigned
— In the right order such that
¢ No attribute value is used before its available
¢ Each attribute will get a value only once

Dependencies

¢ A semantic equation a = b1l,...,.bm
requires computation of b1l,...,bm to
determine the value of a

¢ The value of a depends on b1l,...,bm
— We write a < bi

13

Cycles

e Cycle in the dependence graph

e May not be able to compute attribute
values

ES=T.i
. Ti=Es+1

AST Dependence
graph s

Attribute Evaluation

Build the AST
Build dependency graph

Compute evaluation order using topological
ordering

Execute evaluation rules based on
topological ordering

Works as long as there are no cycles

Building Dependency Graph

¢ All semantic equations take the form

attrl = funcl(attrl.1, attrl1.2,...)
attr2 = func2(attr2.1, attr2.2,...)

¢ Actions with side effects use a dummy attribute
¢ Build a directed dependency graph G
— For every attribute a of a node n in the AST create a
node n.a
— For every node n in the AST and a semantic action of
the form b = f(c1,c2,...ck) add edges of the form (ci,b)

L—id addType(id.entry,L.in)
Convention:
Add dummy variables
for side effects.

D—TL L.in = T.type

T=int T.type = integer

T — float T.type = float

D—TL L.in = T.type
T=int T.type = integer
T — float T.type = float

L—1L1,id Llin=Lin
addType(id.entry,L.in)

L—L1,id Ll.in=Lin
L.dmy = addType(id.entry,L.in)
L=—id L.dmy = addType(id.entry,L.in)

14

Example

float x,y,z]

D—TL

L.in = T.type

T—int

T.type = integer

T— float

T.type = float

L—L1,id

L1in=Lin
addType(id.entry,L.in)

L—id

addType(id.entry,L.in)

Example

)

RN

D—TL Lin = T.type

T—int T.type = integer

T— float | T.type = float

L—1L1,id | LLin=L.in

N addType(id.entry,L.in)

addType(id.entry,L.in)

Topological Order

e For a graph G=(V,E), |V|=k

¢ Ordering of the nodes v1,v2,...vk such that

for every edge (vi,vj) €EE, i< j

Example topological orderings: 14325,41352

Example

float x,y,z

o

float
1

8
o'l e’

® oo
float
@

)
~

float float

entl
o
3
- ent2
4
- ent3

9 float

15

But what about cycles?

¢ For a given attribute grammar hard to
detect if it has cyclic dependencies
— Exponential cost

e Special classes of attribute grammars
— Our “usual trick”

— sacrifice generality for predictable
performance

Inherited vs. Synthesized Attributes

e Synthesized attributes
— Computed from children of a node
¢ Inherited attributes
— Computed from parents and siblings of a node

o Attributes of tokens are technically considered as
synthesized attributes

example

[float x,y,z]

()
D—TL Lin = T.type
float float T —int T.type = integer
TN Y
“ T) _L v T — float T.type = float
T L—L1,id L1.in=Lin
P 2y ﬂﬁa—tf—\ N addType(id.entry,L.in)
(float) L) G N " -
>y o U L—id addType(id.entry,L.in)
float \
inherited
N —_—> synthesized

S-attributed Grammars

e Special class of attribute grammars
* Only uses synthesized attributes (S-attributed)
¢ No use of inherited attributes

e Can be computed by any bottom-up parser
during parsing

e Attributes can be stored on the parsing stack

¢ Reduce operation computes the (synthesized)
attribute from attributes of children

16

S-attributed Grammar: example

S=1= print(E.val)
E—E1+T E.val = El.val + T.val
E—-T E.val = T.val
T—T1*F T.val = Tl.val * F.val
T—F T.val = F.val

F— (E) F.val = E.val

F — digit F.val = digit.lexval

example

S e

N Gy o Colma»)

L-attributed grammars

e L-attributed attribute grammar when every
attribute in a production A — X1..Xn is
— A synthesized attribute, or
— An inherited attribute of Xj, 1 <= j <=n that only
depends on

o Attributes of X1...Xj-1 to the left of Xj, or
e Inherited attributes of A

Example: typesetting

A _ X
yheieht height
depth™ Y LI depih
i i

Each box is built from smaller boxes from which it gets the height and
depth, and to which it sets the point size.

pointsize (ps) — size of letters in a box. Subscript text has smaller point
size of 0.7p.

height (ht) — distance from top of the box to the baseline
depth (dp) — distance from baseline to the bottom of the box.

.

.

17

Example: typesetting

S—B B.ps =10
B — B1B2 Bl.ps =B.ps
B2.ps = B.ps

B.ht = max(B1.ht,B2.ht)
B.dp = max(B1.dp,B2.dp)

B — BlsubB2 [Bl.ps=B.ps

B2.ps = 0.7*B.ps

B.ht = max(B1.ht,B2.ht — 0.25*B.ps)
B.dp = max(B1.dp,B2.dp— 0.25*B.ps)

B — text B.ht = getHt(B.ps,text.lexval)
B.dp = getDp(B.ps,text.lexval)

Computing the attributes from left to right during a DFS
traversal

procedure dfvisit (n: node);
begin
for each child m of n, from left to right
begin
evaluate inherited attributes of m;
dfvisit (m)
end;
evaluate synthesized attributes of n
end

Summary

e Contextual analysis can move information
between nodes in the AST

— Even when they are not “loca
e Attribute grammars

— Attach attributes and semantic actions to grammar
o Attribute evaluation

— Build dependency graph, topological sort, evaluate
¢ Special classes with pre-determined

evaluation order: S-attributed, L-attributed

I”

The End

18

