Compilation
0368-3133 (Semester A, 2013/14)

Lecture 9: Activation Records + Register Allocation

Noam Rinetzky

Slides credit: Roman Manevich, Mooly Sagiv and Eran Yahav

Registers

e Most machines have a set of registers, dedicated
memory locations that
— can be accessed quickly,
— can have computations performed on them, and

e Usages
— Operands of instructions
— Store temporary results

— Can (should) be used as loop indexes due to frequent
arithmetic operation

— Used to manage administrative info

e e.g., runtime stack

Registers

e Number of registers is limited

e Need to allocate them in a clever way
— Using registers intelligently is a critical step in
any compiler

e A good register allocator can generate code orders
of magnitude better than a bad register allocator

simple code generation

e assume machine instructions of the form
e LD reg, mem

e ST mem, reg
e OP reg, reg,reqg (%)

e assume that we have all registers available for
our use

— lgnore registers allocated for stack management
— Treat all registers as general-purpose

simple code generation

assume machine instructions of the form

LD reg, mem
ST mem, reg
OP reqg, reqg,reqg (%)

L Registers!

Fixed number of

\

J

“Abstract” Code

. 4 N\
e |[nstructions Fixed number
_ : i of Registers
Load: Memory =» Register 7 g)
— Store: Register =» Memory

— Operation: R1 =R2 + R3 (*)

e Assume all registers are available
— Ignore registers allocated for stack management

— Treat all registers as general-purpose

Register allocation

e In TAC, there are an unlimited number of
variables

e On a physical machine there are a small
number of registers:

— x86 has four general-purpose registers and a
number of specialized registers

— MIPS has twenty-four general-purpose registers
and eight special-purpose registers

e Register allocation is the process of assigning
variables to registers and managing data
transfer in and out of registers

simple code generation

e assume machine instructions of the form
e LD reg, mem

\
e ST mem, reg /rFixed number of

e OP reqg,reqg,reqg (%) L Registers!

J

e We will assume that we have all registers
available for any usage

— lgnore registers allocated for stack management
— Treat all registers as general-purpose

Simple approach

e Straightforward solution:
e Allocate each variable in activation record

e At each instruction, bring values needed into

registers, perform operation, then store result to
memory

mov 16(%ebp), %eax
_ mov 20(%ebp), %ebx
X=Vy+2 ‘
y add %ebx, %eax
mov %eax, 24(%ebx)

e Problem: program execution very inefficient—
moving data back and forth between memory
and registers

Plan

e Goal: Reduce number of temporaries
(registers)
— Machine-agnostic optimizations
e Assume unbounded number of registers

— Machine-dependent optimization

e Use at most K registers
e K is machine dependent

Generating Compound Expressions

e Use registers to store temporaries
— Why can we do it?

e Maintain a counter for temporaries in c
e |nitially:c=0

e cgen(e,ope,)={
Let A = cgen(e,)

c=c+1 O
Let B = cgen(e,) o
c=c+1 °
Emit(_tc=AopB;)// tcisaregister
Return _tc

Improving cgen for expressions

Observation — naive translation needlessly generates
temporaries for leaf expressions
Observation — temporaries used exactly once
— Once a temporary has been read it can be reused for
another sub-expression
cgen(e, op e,) =1
Let _t1 = cgen(e,)
Let _t2 = cgen(e,)
Emit(t=tlop t2;)
Return t

}

Temporaries cgen(e,) can be reused in cgen(e,)

Sethi-Ullman translation

e Algorithm by Ravi Sethi and Jeffrey D. Ullman
to emit optimal TAC

— Minimizes number of temporaries for a single
expression

Example: b*b-4*a*c

A\

d C

Example (simple): b*b-4*a*c

9.

/\

3, 8

*
/\2 4/\7
b b 4 *

/\

2 3 6

Example (optimized): b*b-4*a*c

N\ PN

1

b 1y 4

*
2 &
14 1c

Spilling

Even an optimal register allocator can
require more registers than available

Need to generate code for every correct
program

The compiler can save temporary results
— Spill registers into temporaries
— Load when needed

Many heuristics exist

Simple Spilling Method

e Heavy tree — Needs more registers than
available

e A heavy tree containsa ‘heavy subtree
whose dependents are ‘light’

e Generate code for the light tree

e Spill the content into memory and replace
subtree by temporary

e Generate code for the resultant tree

Example (optimized): b*b-4*a*c

N\ PN

1

b 1y 4

*
2 &
14 1c

Example (spilled): x := b*b-4*a*c

2 2
14 2 4
1a 1C

t7 := b * b Xx =t/ — 4 * a * ¢

Simple Spilling Method

PROCEDURE Generate code for large trees (Node, Target register):
SET Ruxiliary register set TO
Available register set \ Target register;

WHILE Node /= No node:
Compute the weights of all nodes of the tree of Node;
SET Tree node TO Maximal non_large tree (Node);
Generate code
(Tree node, Target register, Buxiliary register set);

IF Tree node /= Node:
SET Temporary location TC Next free temporary locationi();
Emit ("Store R" Target register ",T" Temporary location);
Replace Tree node by a reference to Temporary location;
Return any temporary locations in the tree of Tree node
to the pool of free temporary locations;
ELSE Tree node = Node:
Return any temporary locations in the tree of Node
to the pool of free temporary locations;
SET Node TO No node;

FUNCTION Maximal non_large tree (Node) RETURNING a node:
IF Node .weight <= Size of Auxiliary register set: RETURN Node;
IF Node .left .weight > Size of RAuxiliary register set:
RETURN Maximal non_large tree (Node .left);
ELSE Node .right .weight >= Size of Auxiliary register set:
RETURN Maximal non_large tree (Node .right);

Generalizations

More than two arguments for operators
— Function calls

Register/memory operations
Multiple effected registers

— Multiplication

Spilling

— Need more registers than available

Register Memory Operations

I I N S - - -y

e Add Mem X, R1 {'F_Hdderj_ Registers |
e Mult Mem X, R1 -

e No need for registers to store right
operands

Example: b*b-4*a*c

2.
1 Mult Mem Mult _Mem
0 b 1 b 4 lMult _Mem

04 1c

Can We do Better?

e Yes: Increase view of code

— Simultaneously allocate registers for multiple
expressions

e But: Lose per expression optimality

— Works well in practice

Basic Blocks

e basic block is a sequence of instructions with

— single entry (to first instruction), no jumps to the middle
of the block

— single exit (last instruction)

— code execute as a sequence from first instruction to last
instruction without any jumps

e edge from one basic block B1 to another block B2
when the last statement of B1 may jump to B2

control flow graph

e Adirected graph G=(V,E)
e nodes V = basic blocks

e edges E = control flow

— (B1,B2) € E when control
from B1 flows to B2

t, =4 %
t,:=alt,]
t;i=4*i
t,:=b[t;]
t.i=t,*t,
te := prod + t.
prod :=t,
t,=i+1
=t

.

if i <= 20 goto B,

)

Another Example

(")
= t,=4%i
t,:=alt,]
\if t, <= 20 goto B,
False True
(")

B2 t;i=4 % B3 G5:=t2*t4
t,=b[t;] te ;= prod + t.
goto B4 P prod :=t,

_goto B,
B4)
t,=i+1
=1t
Goto B

Creating Basic Blocks

e Input: A sequence of three-address statements

e Output: A list of basic blocks with each three-address
statement in exactly one block

e Method
— Determine the set of leaders (first statement of a block)
e The first statement is a leader
e Any statement that is the target of a jump is a leader
e Any statement that immediately follows a jump is a leader

— For each leader, its basic block consists of the leader

and all statements up to but not including the next
leader or the end of the program

example . re

(" source YO 'ih'"“l?__}%l <1 \
2) j=1 , —
3) tl=10* e B, 1=t
14) t2=tl+] :
t1 = 10*|
'5) B8 : B3/ £2 = t1 +] A
. ! 6) t4 = t3-88 I t3 = 8*t2
forifrom 1to 10 :) altd] = | t4 = t3-88
df R 1 | alt4] =
orjfrom1to) .fJ< 10 goto (3), j=j+1
do]| s
ali, j] = 0.0; 11) ifi<= 10 goto m i e
5 _—————————
forifrom1to 10 12) i=1 ’ B, | ifi<=10goto B2
do 13) t5=i-1 i fl
ali, i] = 1.0; 14)_ 1688715 _ _ _ _ B .
[15) a[t6]=1.0 ‘
116) =i+l : B, g t5=i-1 h
— t6=88*t5
I 17) if 1<=10 goto (13) | a[t6]=1.0

N . PO Lnctitess)

Example: Code Block

int n;

n := a + 1;

X 1= b + n *n + c;
n n + 1;

v := d * ny;

Example: Basic Block
|
|
|

AST of the Example

/ | |
Ve \ / \ Ve \ VN
/ \ / \ / \, d/ AN
/ .

n/ \n

int n;

< B8 X B

O B85 O W

Optimized Code (gcc)

+ n *n + c;

Load_ Mem
Add Const
Load Reg

Mult Reg
Add_ Mem
Add_ Mem
Store Reg
Add Const
Mult Mem
Store_ Reg

a,R1
1,R1
R1,R2

R1,R2
b,R2
c,R2
R2,x

1,R1
d,R1
Rl,v

Register Allocation for B.B.

e Dependency graphs for basic blocks
e Transformations on dependency graphs
e From dependency graphs into code

— Instruction selection
e linearizations of dependency graphs

— Register allocation
e At the basic block level

Dependency graphs

e TAC imposes an order of execution

— But the compiler can reorder assignments as
long as the program results are not changed

e Define a partial order on assignments
— a < b < a must be executed before b
— Represented as a directed graph

e Nodes are assignments
e Edges represent dependency

— Acyclic for basic blocks

Running Example

] |
/\ /\ /-'\n VAN
AN AN VAR AN
N\)
n/ \n {
-

Sources of dependency

e Data flow inside expressions
— Operator depends on operands
— Assignment depends on assigned expressions

e Data flow between statements

— From assignments to their use

— Pointers complicate dependencies

Sources of dependency

e Order of subexpresion evaluation is
immaterial

— As long as inside dependencies are respected
e The order of uses of a variable X are
immaterial as long as:

— X is used between dependent assignments
— Before next assighment to X

Creating Dependency Graph
from AST

Nodes AST becomes nodes of the graph

Replaces arcs of AST by dependency arrows
— Operator — Operand
— Create arcs from assignments to uses

— Create arcs between assignments of the same
variable

Select output variables (roots)
Remove ; nodes and their arrows

Running Example

]
/N
/N

/

_

/\

/\L
N
/\

]

1
/\ VAN
/\ ‘“/\ L

J

Dependency Graph
Simplifications
e Short-circuit assighnments

— Connect variables to assighed expressions
— Connect expression to uses

e Eliminate nodes not reachable from roots

Running Example

]
/N
/N

/

_

/\

/\L
N
/\

]

1
/\ VAN
/\ ‘“/\ L

J

Cleaned-Up Data Dependency Graph

b
ANEVAN

N\, \.,
)

a/+\l

Common Subexpressions

e Repeated subexpressions

e Examples
Xx=a¥*a+ 2*a*b+b*b;
v=a*a—- 2*a*b+b*b;
n[i] := n[i] +mli]

e Can be eliminated by the compiler
— In the case of basic blocks rewrite the DAG

From Dependency Graph into Code

e Linearize the dependency graph
— Instructions must follow dependency

e Many solutions exist
e Select the one with small runtime cost

e Assume infinite number of registers
— Symbolic registers

— Assign registers later
e May need additional spill

— Possible Heuristics

e Late evaluation
e Ladders

Pseudo Register Target Code

Load Mem
Add Const
Load Reqg

Load Reqg
Mult Reg
Add Mem
Add Mem
Store Reg

Load Reqg
Add Const
Mult Mem
Store_Reg

a,R1l
1,R1
R1,X1

X1,R1
X1,R1
b,R1
c,R1
R1,x

X1,R1
1,R1
d,R1
R1l,vy

Non optimized vs Optimized Code

Load Mem
Add_Const
Load_Reg

Load_ Reg
Mult Reg
Add_Mem
Add_Mem
Store_Reg

Load_ Reg
Add_Const
Mult_Mem
Store_Reg

int n;

a,R1
1,R1
R1,X1

X1,R1
X1,R1
b,R1
c,R1
R1l,x

X1,R1
1,R1
d,R1
Rl,y

n

X
n
Y

b
= n
d

= 4a

|

+ n*n+ c;

1;

1;

Load_Mem
Add Const
Load Reg

Load Reg
Mult Req
Add Mem
Add Mem
Store_Reg

Load Reg
Add Const
Mult_ Mem
Store Req

a,Rl
1,R1
R1,R2

R2,R1
R2,R1
b,R1
c,R1
Rl,x

R2,R1
1,R1
d, Rl
R1l,v

Load Mem
Add_Const
Load_ Reg

Mult Reg
Add_ Mem
Add_ Mem
Store Reg

Add_Const
Mult Mem
Store Reg

a,R1l
l1,R1
R1,R2

R1,R2
b,R2
c,R2
R2,x

1,R1
d,R1
R1l,y

Register Allocation

e Maps symbolic registers into physical
registers

— Reuse registers as much as possible

— Graph coloring (next)
e Undirected graph
e Nodes = Registers (Symbolic and real)
e Edges = Interference
e May require spilling

Register Allocation for Basic Blocks

e Heuristics for code generation of basic
blocks

e Works well in practice
e Fits modern machine architecture
e Can be extended to perform other tasks

— Common subexpression elimination
e But basic blocks are small
e Can be generalized to a procedure

Problem

Expression trees. using
register-register or
memory-register instruc-
tions

with sufficient registers:

with insufficient registers:

Dependency graphs, using
register-register or
memory-register instruc-
tions

Expression trees, using any
instructions with cost func-
tion

with sufficient registers:

with insufficient registers:

Register allocation when all
interferences are known

Technique

Weighted trees:
Figure 4.30

Ladder sequences:
Section 4.2.5.2

Bottom-up tree rewrit-
ing:
Section 4.2.6

Graph coloring:
Section 4.2.7

Quality

Optimal
Optimal

Heuristic

Optimal
Heuristic

Heuristic

Global Register Allocation

Variable Liveness

e Astatementx=y+z
— defines x
— uses y and z

e Avariable x is live at a program point if its
value (at this point) is used at a later point

/y =42 \ x undef, y live, z undef

z=173 x undef, y live, z live

X=y+z X is live, y dead, z dead

print(x); x is dead, y dead, z dead
_ J

(showing state after the statement)

Computing Liveness Information

e between basic blocks — dataflow analysis
(next lecture)

e within a single basic block?
e idea

— use symbol table to record next-use
information

— scan basic block backwards

— update next-use for each variable

Computing Liveness Information

e [NPUT: A basic block B of three-address statements.
symbol table initially shows all non-temporary variables in
B as being live on exit.

e OUTPUT: At each statementi: x=y + z in B, liveness and
next-use information of x, y, and z at i.

e Start at the last statement in B and scan backwards
— At each statementi:x =y +zin B, we do the following:

1. Attach toithe information currently found in the symbol table
regarding the next use and liveness of x, y, and z.

2. Inthe symbol table, set x to "not live" and "no next use.”

3. Inthe symbol table, set y and z to "live" and the next uses of y
and ztoi

Computing Liveness Information

e Start at the last statement in B and scan backwards
— At each statementi: x =y + z in B, we do the following:

1. Attach toithe information currently found in the symbol
table regarding the next use and liveness of x, y, and z.
2. Inthe symbol table, set x to "not live" and "no next use.”
3. Inthe symbol table, set y and z to "live" and the next uses
ofyandztoi
2)
x=1
y=X+3
z=x%*3
\ X=X * 7z)

can we change the order between 2 and 3?

simple code generation

translate each TAC instruction separately

For each register, a register descriptor records the variable names
whose current value is in that register

— we use only those registers that are available for local use within a basic
block, we assume that initially, all register descriptors are empty

— As code generation progresses, each register will hold the value of zero
or more names

For each program variable, an address descriptor records the
location(s) where the current value of the variable can be found

— The location may be a register, a memory address, a stack location, or
some set of more than one of these

— Information can be stored in the symbol-table entry for that variable

simple code generation

For each three-address statement x := v op z,

1. Invoke getreg (x := y op z)to select registers R,, R,, and R,
2. If Ry does not containy, issue: LD R, vy’ foralocationy’ ofy
3. If Rz does not contain z, issue: LD R,, z’ for a location z’ of z
4. Issue the instruction OP R,, R, R,

5. Update the address descriptors of x, y, z, if necessary

— R, is the only location of x now, and
R, contains only x (remove R, from other address descriptors)

Find a register allocation

—————————————————

- p)
eax

b ?

c ? ebx

b=a+2

c=b*b

b=c+1

return b * a

Is this a valid allocation?

Overwrites previous

a eax
eax

b ebx

C eax ebx

b=a+2 e%

c=b*b eax = ebx * ebx

b=c+1 ebx =eax +1

return b * a

value of ‘@’ also
_—1 stored in eax

return ebx * eax

Is this a valid allocation?

a eax
eax

b ebx

C eax o ebx

b=a+2 ebx = eax + 2

c=b*b eax = ebx * ebx

b=c+1 ebx =eax +1

return b * a

return ebx * eax

Value of ‘c’ stored in
eax is not needed
anymore so reuse it

| for ‘b’

Main idea

For every node n in CFG, we have out[n]
— Set of temporaries live out of n

Two variables interfere if they appear in the same
out[n] of any node n

— Cannot be allocated to the same register

Conversely, if two variables do not interfere with
each other, they can be assigned the same register

— We say they have disjoint live ranges
How to assign registers to variables?

Interference graph

Nodes of the graph = variables

Edges connect variables that interfere with
one another

Nodes will be assigned a color
corresponding to the register assigned to

the variable

Two colors can’t be next to one another in
the graph

Interference graph construction

b=a+2
c=b*b
b=c+1

return b * a

Interference graph construction

b=a+2
c=b*b
b=c+1

{b, a}
return b * a

Interference graph construction

b=a+2
c=b*b

{a, c}
b=c+1

{b, a}

return b * a

Interference graph construction

b=a+2

{b, a}
c=b*b

{a, c}
b=c+1

{b, a}

return b * a

Interference graph construction

{a}

b=a+2

{b, a}
c=b*b

{a, c}
b=c+1

{b, a}

return b * a

ﬂ
> + * +
(on (o (ox N
*

Interference graph

1 regist
{a} eax
{b, a} ebx
3, c}

b, a} @

b=a+2

c=b*b

b=c+1

return b * a

Colored graph

b, a}

{a, c}

b, a}

' color register |

cax

Graph coloring

e This problem is equivalent to graph-
coloring, which is NP-hard if there are at
least three registers

e No good polynomial-time algorithms (or
even good approximations!) are known for
this problem

— We have to be content with a heuristic that is
good enough for RIGs that arise in practice

Coloring by simplification [Kempe 1879]

e How to find a k-coloring of a graph

e |[ntuition:
— Suppose we are trying to k-color a graph and
find a node with fewer than k edges

— If we delete this node from the graph and color
what remains, we can find a color for this node
if we add it back in

— Reason: fewer than k neighbors — some color
must be left over

Coloring by simplification [Kempe 1879]

e How to find a k-coloring of a graph
e Phase 1: Simplification

— Repeatedly simplify graph . /_>
— When a variable (i.e., graph node) is simplify

removed, push it on a stack

e Phase 2: Coloring !
— Unwind stack and reconstruct the graph as color
follows: \)

— Pop variable from the stack
— Add it back to the graph

— Color the node for that variable with a
color that it doesn’t interfere with

AN sack
AE

.............. stack:

.............. stack:

______________ stack:

______________ stack:

© © ~

Failure of heuristic

e If the graph cannot be colored, it will
eventually be simplified to graph in which
every node has at least K neighbors

e Sometimes, the graph is still K-colorable!

* Finding a K-coloring in all situations is an
NP-complete problem

— We will have to approximate to make register
allocators fast enough

AN ok
S

e — - Coloring k=2

. color register

eax
Some graphs can’t be colored

ebx | inKcolors:

@\

() ()

O 9 ® T O

e — - Coloring k=2

. color register

€ax

. Some graphs can’t be colored
ebx | inKcolors:

@\

() ()

o O M

e — - Coloring k=2

. color register

€ax

. Some graphs can’t be colored
ebx | inKcolors:

@\

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

@\ ek

no colors left for e!

Chaitin’s algorithm

e Choose and remove an arbitrary node,
marking it “troublesome”

— Use heuristics to choose which one

— When adding node back in, it may be possible
to find a valid color

— Otherwise, we have to spill that node

Spilling

e Phase 3: spilling
— once all nodes have K or more neighbors, pick a node
for spilling

e There are many heuristics that can be used to pick a node
e Try to pick node not used much, not in inner loop
e Storage in activation record

— Remove it from graph

e We can now repeat phases 1-2 without this node

e Better approach —rewrite code to spill variable,

recompute liveness information and try to color
again

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

@\ ek

no colors left for e!

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

(o)

stack:

(o) b

oo o

() O

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

(o)

stack:

) e
() O

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

(o)

@ :tack:
() O

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

(o)

@ Ztack:
() O

— - Coloring k=2

. color register

cax

. Some graphs can’t be colored
ebx | inKcolors:

(o)

@ stack:
() O

Handling precolored nodes

e Some variables are pre-assigned to
registers

— Eg: mul on x86/pentium
e uses eax; defines eax, edx

— Eg: call on x86/pentium
e Defines (trashes) caller-save registers eax, ecx, edx
e To properly allocate registers, treat these
register uses as special temporary variables
and enter into interference graph as
precolored nodes

Handling precolored nodes

e Simplify. Never remove a pre-colored node
— it already has a color, i.e., it is a given
register

e Coloring. Once simplified graph is all
colored nodes, add other nodes back in and
color them using precolored nodes as
starting point

Optimizing move instructions

Code generation produces a lot of extra mov
instructions
mov t5, t9

If we can assign t5 and t9 to same register, we can get
rid of the mov

— effectively, copy elimination at the register allocation level

Idea: if t5 and t9 are not connected in inference graph,
coalesce them into a single variable; the move will be
redundant

Problem: coalescing nodes can make a graph
un-colorable

— Conservative coalescing heuristic

The End

global register allocation

e jdea: compute “weight” for each variable
— for each use of v in B prior to any definition of v add 1 point

— for each occurrence of v in a following block using v add 2
points, as we save the store/load between blocks

— cost(v) = Z;use(v,B) + 2*live(v,B)

e use(v,B) is is the number of times v is used in B prior to any
definition of v

e live(v, B)is 1 if vis live on exit from B and is assigned a value in B

— after computing weights, allocate registers to the “heaviest”
values

Two Phase Solution
Dynamic Programming

Sethi & Ullman

* Bottom-up (labeling)

— Compute for every subtree
e The minimal number of registers needed (weight)

 Top-Down

— Generate the code using labeling by preferring
“heavier” subtrees (larger labeling)

“Global” Register Allocation
* Input:

— Sequence of machine code instructions
(assembly)

« Unbounded number of temporary registers
e Output

— Sequence of machine code instructions
(assembly)

— Machine registers
— Some MOVE instructions removed
— Missing prologue and epilogue

Basic Compiler Phases

| Source program (string)
lexical analysis
l Tokens
syntax analysis

l Abstract syntax tree
semantic analysis

!

Translate Frame

1 Intermediate representation

Instruction selection
| Assembly

Global Register Allocation

\ Fin. Assembly

0., t128!
use {t128, $0} def {t131}
13: beq t128| 866 10x128, $0} def {} |/| VS0 1131 t!28

Il: or t131,$0; 1178 1 (80, 1128} [use {1128} def {t132} |

addi t132, t128, -1 ¥80 1131 1132}

or $4, $0, t1
ol niae 50 der oy | Luse 180,032} defi54 3!4}
gi tt11333(3,$§f)"[1$321 (30, 1129} | use {$4}*§1§£{?]2;| o
el tlf313’tt11333() | use (50,52} def {1130} |
. tl;g) $f’09 33 ¥730. 130 (31}
b i eng i | use {30, 1131} def {133} |
b lend ’ v $0 t133 ﬂ?ﬂ}
0. R0 | use {1133, 1130} def {133} |
Vet V1301033
| use {133} def {133} |
Y (S0 1133
| use {30, 133} def {129} |
\ 4 v {30 t]
| use {3 def {3 | > use {80, 1129} def {thZ?%Ll
TS0, 1120 ¥ 501103

Luse {} def {3 |
1S0. 1031

($0, 52§ use {t103} def {$2} |+

13: beq t128, $0, 10 /* $0, t128 */
11: or t131, $0, t128 /* $0, t128, t131 */
addi t132, t128, -1 /* $0, t131,t132 */
or $4, $0, t132 /* $0, $4, t131 */
jal nfactor /* $0, $2, t131 */
or t130, $0, $2 /* $0, t130, t131 */
or t133, $0, t131 /* $0, t130, t133 */
mult t133, t130 /* $0, t133 */
mflo t133 /* $0, t133 */
or t129, $0, t133 /* $0, t129 */

12: or t103, $0,t129 /* $0, t103 */
b lend /* $0, t103 */
10: addi t129, $0, 1 /* $0, t129 */

bl2 /*§0,t129 */

13: beq t128, $0, 10
11: or t131, $0, t128
addi t132 t128, -1
or $4, $0, t132
jal nfactor
or , $0,
or t133, $0, t131
mult t133,
mflo t133
or t129, $0, t133
12: or t103, $0, t129
b lend
10: addi t129, $0, 1
b 12

Global Register Allocation
Progess
Construct the interference graph
Color graph nodes with machine registers
Adjacent nodes are not colored by the same register

Spill a temporary into memory
Until no more spill

Constructing interference graphs
(take 1)

* Compute liveness information at every
statement

e Variables ‘a’ and ‘b’ interfere when there
exists a control flow node n such that

‘a’, ‘b € Lv[n]

A Simple Example

ISR
LO: a:.=0 5
/* ac */
L1: b:=a+1 a:ZOl
/* bc */
c:=c+b ac €5
/* bc */ b:=a+1\l,
a=b*2 be
/* ac */
if ¢ <N goto L1 03:C+b‘l'
ISR be
return ¢
a:=b*?2 c<N
ac —

Constructing interference graphs
(take 2)

* Compute liveness information at every
statement

e Variables ‘a’ and ‘b’ interfere when there
exists a control flow edge (m, n) with an
assignment a :=expand ‘b € Lv[n]

Constructing interference graphs
(take 3)

* Compute liveness information at every
statement

 Variables ‘a’ and ‘b’ interfere when there
exists a control flow edge (m, n) with an
assignment a :=exp and ‘b & Lv[n] and
D’ = exp

13: beq t128, $0, 10 /* $0, t128 */
11: or t131, $0, t128 /* $0, t128, t131 */
addi t132, t128, -1 /* $0, t131,t132 */
or $4, $0, t132 /* $0, $4, t131 */
jal nfactor /* $0, $2, t131 */
or t130, $0, $2 /* $0, t130, t131 */
or t133, $0, t131 /* $0, t130, t133 */
mult t133, t130 /* $0, t133 */
mflo t133 /* $0, t133 */
or t129, $0, t133 /* $0, t129 */

12: or t103, $0,t129 /* $0, t103 */
b lend /* $0, t103 */
10: addi t129, $0, 1 /* $0, t129 */

bl2 /*§0,t129 */

Challenges

The Coloring problem 1s computationally
hard

The number of machine registers may be
small

Avoid too many MOVEs
Handle “pre-colored” nodes

Theorem
|[Kempe 1879]

* Assume:
— An undirected graph G(V, E)
— A node v €V with less than K neighbors
— G — {v} 1s K colorable

 Then, G 1s K colorable

Coloring by Simplification
|[Kempe 1879]

e K
— the number of machine registers
« G(V,E)
— the mnterference graph
* Consider a node v €V with less than K neighbors:

— Color G —v 1n K colors
— Color v 1n a color different than its (colored) neighbors

Graph Coloring by Simplification

| Build: Construct the interference graph |

!

Simplify: Recursively remove nodes with less than K
neighbors ; Push removed nodes into stack

l

\ Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

1

| Select: Assign actual registers (from simplify/spill stack) @

l

\l Actual-Spill: Spill some potential spills and repeat the process |

Artificial Example K=2

©

t6

Coalescing

MOVs can be removed if the source and the target
share the same register

The source and the target of the move can be
merged into a single node
(unifying the sets of neighbors)

May require more registers

Conservative Coalescing

— Merge nodes only 1f the resulting node has fewer than K
neighbors with degree > K (in the resulting graph)

Constrained Moves

e A instruction T < S 1s constrained
— 1f S and T interfere

 May happen after coalescing

X<Y /*X Y Z%* @

/
Y<Z /

 Constrained MOVs are not coalesced

Graph Coloring with Coalescing

| Build: Construct the interference graph |

¥
Simplify: Recursively remove non MOVE nodes P

with less than K neighbors; Push removed nodes into stack

y

Coalesce: Conservatively merge unconstrained MOV
related nodes with fewer than K “heavy” neighbors

y

\

Freeze: Give-Up Coalescing on some low-degree MOV related nodes

v

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

Select: Assign actual registers (from simplify/spill stack)

l

Actual-Spill: Spill some potential spills and repeat the process |

Spilling

* Many heuristics exist
— Maximal degree
— Live-ranges
— Number of uses in loops

* The whole process need to be repeated after
an actual spill

Pre-Colored Nodes

Some registers 1n the intermediate language are
pre-colored:

— correspond to real registers
(stack-pointer, frame-pointer, parameters,)

Cannot be Simplified, Coalesced, or Spilled
(infinite degree)

Interfered with each other

But normal temporaries can be coalesced into pre-
colored registers

Register allocation is completed when all the nodes
are pre-colored

Caller-Save and Callee-Save Registers

callee-save-registers (MIPS 16-23)

— Saved by the callee when modified
— Values are automatically preserved across calls

caller-save-registers

— Saved by the caller when needed

— Values are not automatically preserved
Usually the architecture defines caller-save and
callee-save registers

— Separate compilation

— Interoperability between code produced by different
compilers/languages

But compilers can decide when to use calller/callee
registers

Caller-Save vs. Callee-Save Registers

int foo(int a) { void bar (int y) {
int b=a+1; int x=y+1;
f1(); 2(y);
gl(b); 22(2);
return(b+2); J

j

Saving Callee-Save Registers

enter: def(r,) enter: def(r,)

b3 < 17

r; <= b3,

exit: use(r-) exit: use(r-)

A Complete Example

enter:
. ::r}grz caller save

r3 callee-save
a:=rl

=12
0
a

b:
d:
e :
loop:
d :=d+b
e:.=e-1
if e>0 goto loop
rl :==d
13 :=cC

return /*rl,r3 */

Graph Coloring with Coalescing

| Build: Construct the interference graph |

¥
Simplify: Recursively remove non MOVE nodes P

with less than K neighbors; Push removed nodes into stack

y

Coalesce: Conservatively merge unconstrained MOV
related nodes with fewer that K “heavy™ neighbors

y

\

Freeze: Give-Up Coalescing on some low-degree MOV related nodes

v

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

Select: Assign actual registers (from simplify/spill stack)

l

Actual-Spill: Spill some potential spills and repeat the process |

A Complete Example

enter:

c -Llgr2 caller save
3 callee-save

a :=rrl
=12
0
a

b:
d:
e:

loop:
d :=d+tb
e:=e-1

if e>0 goto loop

rl .=d
13:=cC

return /* rl,r3 */

| use(r3} defic} |
|
|use{r1} def{a} |
y
|use{r2} def{b} |
y
|use(defia; |
y
|use{a} def{e} |
4
use{d, b} def{d} |
¥ .C d, e}
|use{e} def{e} |
v__{c.de}
use{e} def{} |
v {c.d}
|use{d} def{rl}
¥ irl, c}

L3} fusefe) defis3) |

A Complete Example

enter:
c:=13
a:=rl
b:=12
d=0
c:=a
loop:
d:=d+b
e :=e-1
if e>0 goto loop
rl .=d
13:=cC

return /* rl,r3 */

{rl, r3}

| use(r3} defic} |

|
| use{r1} deffa} |

A
| use{r2} defib} |
| use(} defid} |

v
| useta} defie} |

v {c,d, e, b}
use{d, b} def{d} |

¥ TC, d, e}
| usefe} defie} |

v {c,d, e}

use{e} def(} |

¥ ¢, d, e, b}
| usetd} defiri} |

v {rl, c}
|use{c} def{r3} |

A Complete Example

| use(r3} defic} |

enter: |
c =13 |use{r1} def{a} |
a:=rl | { 2;(1 (b} |
uscr c
b:=12 ¥
d:=0 | use(} defid} |
. v
c—d | useta} defie} |
loop: v _ .G d e b}
d = d+b use{d, b} def{d} |
. 7 1T, d, e}
¢:=e-l | use e} defiey |
if e>0 goto loop ¥ Cd,ebj
rl :=d use{e} def |
¥ ¢, d, e, b}

r3:=c | usetd} defiri} |
return /*rl,r3 */ v {rl, c}
L3k usefe} def{r3} |

A Complete Example {12, 11,13}
| use(r3} defic} |

enter: | TS, 12,11}
c =13 |use{r1} def{a} |
a:=rl | { 2;(1 f{b}{cl, % 12}
uscr c
b:=12 ¥y {c,b,a)}
d:=0 | use(} defid} |
. v ic,d, b, a}
c—d | useta} defie} |
loop: v _ .G d e b}
d -= d+b use{d, b} def{d}J
B 7 fT.d,¢,b
¢:=e-l | use e} defiey |
if e>0 goto loop ¥ Cd,ebj
rl:=d usc{e} def(} |
¥ ¢, d, e, b}

r3:=c | usetd} defiri} |
return /*rl,r3 */ v {rl, c}
L3k usefe} def{r3} |

Live Variables Results

enter: enter: /*12,rl, 13 */
c:=r13 c:=r3 /*c, 12, rl */
a:=rl a:=rl /a, c, 2%
b:=12 b:=12 /*a,c,b*/
d:=0 d=0 /*a,c,b,d*
e:=a e:=a /*e,c,b,d*
loop: loop:
d:=d+b d:=d+b /*e,c,b,d*/

e :=e-1 e:=e-1/*e,c,b,d*

if >0 goto loop if >0 goto loop /* ¢, d */

rl .=d
3 :=c¢

return /*rl,r3 */

rl :=d /*rl,c*/
r3:=c/*rl, 3%/

return /* rl, r3 */

enter: /*12,rl, 13 */
c:=r3 /*c, 12, rl */
a:=rl /*a,c,12%*/
b: =12 /*a,c,b*/
d:=0 /*a,c,b,d*
e:=a /e, c,b,d¥*
loop:
d:=d+tb /*e,c,b,d*/
e:=e-1/*e,c,b,d*/
if e>0 goto loop /* ¢, d */
rl :=d /*rl,c*/
r3:=c/*rl, 13 */

return /* rl,r3 */

enter: /*12,rl, 13 */
c:=13 /*c,12,r]l */
a:=rl /*a,c, 2%
b:=12 /*a,c,b*/
d:=0 /*a,c,b,d*
e:=a /*e,c,b,d*
loop:
d:=d+b /*e,c,b,d*/
e:=e-1/*e,c,b,d*/
if >0 goto loop /* ¢, d */
rl ==d /*rl,c*/
r3:=c/*rl, 3%/
return /* rl,r3 */

spill priority = (uo + 10 ui)/deg

uset+ deg

use+
def def
outside within
loop loop
a 2 0
b 1 1
C 2 0
d 2 2
e 1 3

spill
priority

0.5
2.75
0.33

5.5
10.3

Coalescing a+e

]‘3 stack]‘3 stack

Coalescing b+r2

stack l«s
\
M,

Coalescing aetrl

1‘3 stack rs stack
\ \

N

-t i
i

rlae and d are constrained

Simplifying d

1-3 stack stack

rlae

r2h

d is assigned to 13

stack

actual spill!

enter: /*12,rl, 13 */ enter: /*12,rl, 13 */

c:=1r3 /*c, 12,1l */ cl =r3 /*cl,r2,rl */
a.=rl /*a,c, 2% M[c loc] :=cl /* 12 */
b:=1r2 /*a,c,b*/ a:=rl /*a, r2*
d==0 /*a,c,b,d*/ b:=1r2 /*a,b*
e:=a /*e,c,b,d* d:=0 /*a,b,d*
loop: e:=a /*e,b,d*
d:=d+b /*e,c,b,d*/ loop:
e:=e-1/*e,c,b,d*/ d:=d+b /*e, b, d*/
if e>0 goto loop /* ¢, d */ e:=e-1/*e,b,d*
rl .==d /*rl,c™*/ if e>0 goto loop /* d */
3:=c/*rl, 13 */ rl.=d /*rl*
return /* rl,13 */ c2 :=MJc loc] /*rl, c2 */

r3:=c2/*rl, 3%/

return /* rl,r3 */

enter: /*12,rl, 13 */

cl:=r3 /*cl, 12, rl */

M[c loc] :=cl /* 12 */
a:=rl /a, 2%

b: =12 /*a,b¥*
d:=0 /*a,b,d¥*
e:=a /*e,b,d*

loop:
d:=d+b /*e, b,d*/
e:=e-1/*e,b,d*
1f e>0 goto loop /* d */
rl .=d /*rl*/
c2 :=M]c loc] /*rl, c2 */
r3:=c2/*rl, 3%

return /* rl,r3 */

Coalescing at+e; b+r2

stack 130102 stack
=\]
/ \\
\ : = ‘ae\ d

Coalescing ae+rl

1‘30102 stack 130102 stack

\rzh - \ -
N 1A

e rlae

rlae and d are constrained

Simplify d

1‘30102 stack 1‘30102 stack

N A

r2h

L/

rlae rlae

Pop d

r3cle?2 stack r3cle?2 stack

N 2 I\ E
r2h 0

2h

/ [

rlae rlae

on T o T o e T o
—_ 0 W W N =

enter:

cl ;=13
M[c loc] :=cl
a:.=rl d
b
b = 1'2 cl
d:=0 c2
- d
e:=a .
loop:
d :=d+b
e:=e-1

1f €>0 goto loop

rl .=d
c2 := M]c loc]
13 :=c2

return /* rl,r3 */

2
3
3
3
rl

enter:
13 =13
M[c loc] ;=13
rl :=rl
12 =12
13:=0
rl :=rl
loop:
13 =r3+12
rl :=rl-1
if r1>0 goto loop
rl =13
3 := M][c loc]
13 =13

return /* rl,r3 */

enter:

13 =13
M[c loc] =13
rl =rl
12 =12
13:=0
rl =rl
loop:
13 :=13+12
rl =rl-1
if r1>0 goto loop
rl =13
3 ;= M][c loc]
3 =13

return /* rl,r3 */

enter:
M[c loc] ;=13
13 :=0
loop:
13 :=r3+12
rl =rl-1
1f r1>0 goto loop
rl =13
3 ;= M][c loc]

return /* rl,r3 */

addiu $sp,$sp, -K1 nfactor: addiu
sw $2,0+K2($sp)

or $25,$0,%4
or $24,$0,%$31
sw $24,-4+K2($sp)

main:
L4: sw $2,0+K1($sp) L6:

or $25,50,%31
sw $25,-4+K1($sp)
addiu $25,$sp,0+K1

or $2,$0,$25 sw $30,-8+K2($sp)
addi $25,%0,10 beq $25,%0,L0
or $4,$0,%$25 L1: or $30,$0,$25
jal nfactor lw $24,0+K2
lw $25,-4+K1 or $2,$0,$24
or $31,$0,$25 addi $25,$25,-1
b L3 or $4,80,$25

L3: addiu $sp,$sp,K1 jal nfactor

j 331

Spaspa'K2

or $25,$0,$2
mult $30,$25
mflo $30
L2: or $2,$0,$30
lw $30,-4+K2($st
or $31,$0,$30
lw $30,-8+K2(Ss

b LS5
LO: addi $30,50,1
b L2
L5: addiu $sp,$sp,K
j %31

Interprocedural Allocation

Allocate registers to multiple procedures
Potential saving

— caller/callee save registers
— Parameter passing

— Return values
But may increase compilation cost

Function inline can help

Summary

* Two Register Allocation Methods
— Local of every IR tree

e Simultaneous instruction selection and register
allocation

* Optimal (under certain conditions)

— Global of every function
» Applied after instruction selection
e Performs well for machines with many registers

* Can handle nstruction level parallelism
e Missing

— Interprocedural allocation

Challenges in register allocation

e Registers are scarce

Often substantially more IR variables than registers
Need to find a way to reuse registers whenever possible

e Registers are complicated

x86: Each register made of several smaller registers; can't use a
register and its constituent registers at the same time

x86: Certain instructions must store their results in specific
registers; can't store values there if you want to use those
instructions

MIPS: Some registers reserved for the assembler or operating
system

Most architectures: Some registers must be preserved across
function calls

The End

The End

