Compilation
0368-3133 (Semester A, 2013/14)

Lecture 9: Activation Records + Register Allocation
Noam Rinetzky

Slides credit: Roman Manevich, Mooly Sagiv and Eran Yahav

Registers

e Number of registers is limited

e Need to allocate them in a clever way
— Using registers intelligently is a critical step in
any compiler

¢ A good register allocator can generate code orders
of magnitude better than a bad register allocator

Registers

Most machines have a set of registers, dedicated
memory locations that

— can be accessed quickly,

— can have computations performed on them, and

Usages
— Operands of instructions
— Store temporary results

— Can (should) be used as loop indexes due to frequent
arithmetic operation

— Used to manage administrative info
® e.g., runtime stack

simple code generation

assume machine instructions of the form
LD reg, mem

ST mem, reg

OP reg, reqg,reqg (¥)

assume that we have all registers available for
our use

— Ignore registers allocated for stack management
— Treat all registers as general-purpose

simple code generation “Abstract” Code

assume machine instructions of the form ¢ |Instructions

Fixed number

LD reg, mem — Load: Memory =» Register of Registers
ST mem, reg i ARG AU Of] — Store: Register & Memory

Registers!
OP reg, reg,reg (¥) — Operation: R1 =R2 + R3 (¥*)

e Assume all registers are available
— Ignore registers allocated for stack management

— Treat all registers as general-purpose

Register allocation

n simple code generation
In TAC, there are an unlimited number of

variables . .

On a physical machine there are a small e assume machine instructions of the form

number of registers: * LD reg, mem

— x86 has four general-purpose registers and a * ST mem, reg e e
number of specialized registers « OP reg, reg,reg (¥ i Registers!]

— MIPS has twenty-four general-purpose registers

and eight special-purpose registers

We will assume that we have all registers
available for any usage

— Ignore registers allocated for stack management
— Treat all registers as general-purpose

Register allocation is the process of assigning
variables to registers and managing data
transfer in and out of registers

Simple approach

* Straightforward solution: Pla N
* Allocate each variable in activation record
* At each instruction, bring values needed into

registers, perform operation, then store result to * Goal: Reduce number of temporaries
memory (registers)
mov 16(%ebp), %eax — Machine-agnostic optimizations
X=y+z ‘ mOVOZO(%eobp), %ebx * Assume unbounded number of registers
add %ebx, %eax — Machine-dependent optimization
mov %eax, 24(%ebx)

e Use at most K registers

e Problem: program execution very inefficient— 2 [T il elefpeinelarit
moving data back and forth between memory
and registers

Generating Compound Expressions Improving cgen for expressions

e Use registers to store temporaries
— Why can we do it?

Observation — naive translation needlessly generates
temporaries for leaf expressions
Observation — temporaries used exactly once
— Once a temporary has been read it can be reused for
another sub-expression
cgen(e; op e,) ={
Let _t1 = cgen(e,)

e Maintain a counter for temporaries in c

e |nitially:c=0

e cgen(e,ope,)={
Let A = cgen(e,)
c=c+1

Let _t2 = cgen(e,)
Let B = cgen(e,) °°O Emit(_t=_tlop _t2;)
c=c+1)) Return t
Emit(_tc=AopB;)// tcis aregister }
Return _tc

} e Temporaries cgen(e,) can be reused in cgen(e,)

Sethi-Ullman translation Example: b*b-4*a*c

e Algorithm by Ravi Sethi and Jeffrey D. Ullman

to emit optimal TAC /\

— Minimizes number of temporaries for a single

* *
expression /\ /\
*

©

b b 4
Example (simple): b*b-4*a*c Example (optimized): b*b-4*a*c
9. 3.
3*/\8 2*/\2
1 PN N\ PN PN
b 2}, 44 Ip Ip 14

* *
7 % 24
53 6¢ 13 1c

Spilling

Even an optimal register allocator can
require more registers than available

Need to generate code for every correct

program

The compiler can save temporary results

— Spill registers into temporaries

— Load when needed

Many heuristics exist

Example (optimized): b*b-4*a*c

3.

/\

1

2

SN

4

*
2 x
13 1c

Simple Spilling Method

e Heavy tree — Needs more registers than
available

e A heavy tree containsa ‘heavy’ subtree
whose dependents are ‘light’

e Generate code for the light tree

e Spill the content into memory and replace
subtree by temporary

e Generate code for the resultant tree

Example (spilled): x := b*b-4*a*c

2
T~
Ty, 2%
17 5o
N
1a 1C
x :=t7 -4 *x a *x c

Simple Spilling Method Generalizations

PROCEDURE Generate code for large trees {Node, Target regjstér!:
SET A liar register set TO
AeaLiani regterer wet & Target zeglaters More than two arguments for operators
WHILE Node /= No node: .
Compute the weights of all nodes of the tree of Node; _F “
o e o 75 i s e e s unction calls

Generate code
(Tree node, Target register, Auxiliary register set);

17 Tree node /« Hode: Register/memory operations

SET Temporary location TO Next free temporary location();

Emit ("Store R" Target register ",T" Temporary location); . .

Replace Tree node by a reference to Temporary location; M Itl I ﬁ t d t

Return any semporary locations in the tree of Trae node ultiple etrectea registers
to the pool of free temporary locations;

ELSE Tree node = Node: 4 M 4

Return any temporary locations in the tree of Node - |V|U|'L'Ipllca1.'lon
to the pool of free temporary locations;

SET Node TO No node;

FUNCTION Maximal non_large tree (Node) RETURNING a node:
IF Node .weight <= Size of Auxiliary register set: RETURN Node;

IF Node .left .weight > Size of Auxiliary register set:
RETURN Maximal non_large tree (Node .left); . d 3 h | bl
BLSE Node .right .weight >= Size of Auxiliary register set: Nee more reglste rS t an aVaI a e

RETURN Maximal non_large tree (Node .right);

Register Memory Operations Example: b*b-4*a*c

° Add_Mem X, R1 rHldden Registers | 2.

—— ==

e Mult_ Mem X, R1 L 1 /\
e No need for registers to store right G i

operands /\ /\

0 b 1 b 4 1Mult _Mem

Z)

Can We do Better? Basic Blocks

¢ basic block is a sequence of instructions with

— single entry (to first instruction), no jumps to the middle
of the block

— single exit (last instruction)

¢ Yes: Increase view of code

— Simultaneously allocate registers for multiple
expressions

— code execute as a sequence from first instruction to last
e But: Lose per expression optimality instruction without any jumps
— Works well in practice e edge from one basic block B1 to another block B2
when the last statement of B1 may jump to B2

control flow graph Another Example
A d d h G=(V,E :—----i prod :=0 B :—_---i o L=t
. irected graph G=(V,E) prod” t=alt,]
e nodes V = basic blocks B1 B if, <= 20 goto B,
B2 B2
e edges E = control flow ! s N Fellie HIEe
A 2 B3
— (B1,B2) € E when control -z =4t B2 A B3 (, _
t,i=alt] B4 t3i=4%i tsi=t, *t,
from B1 flows to B2 4% ! t=b[t;] tg:=prod + tg
t,=b[t,] : . goto Ba prod := tg
=, Py T goto B,
tg := prod + tg
prod := tg
=i+l B4 .
i=t, .t7 =i+l
if i <= 20 goto B, =t

Goto By

Creating Basic Blocks

¢ Input: A sequence of three-address statements

e Output: A list of basic blocks with each three-address

statement in exactly one block

e Method

— Determine the set of leaders (first statement of a block)

e The first statement is a leader
¢ Any statement that is the target of a jump is a leader

¢ Any statement that immediately follows a jump is a leader

— For each leader, its basic block consists of the leader
and all statements up to but not including the next

leader or the end of the program

Example: Code Block

OB X Bk

[
0O 5 O W

e

* + 4+ +

=

n *~n + c

14

example

/ source \

forifrom 1to 10
do

for jfrom 1to 10

do

ali, j/=0.0;

forifrom1to 10
do

ali, i]1=1.0;

IR
1
2) j=1)
B) tl= 10 S,
14) t2=tl+] :
15) t3=8*2 I
: 6) t4=13-88 :
17) a[td]=0.0 :
'g) j=j+1 I
9) if j <= 10 goto (34)’]
10) =i+l |
11) ifi<=10goto (2)
12) =1 ~ }
13) t5=i-1
14)_ 16=88%5 _ _ _
[15) a[t6]=1.0

'16) =i+l

\
1
i 1
[17) if1<=10goto (13)]
. 1
1
|)

- , —— >,

(j=1 }
B2
t1=10*|
B3 t2=tl+]j
t3 = 8*t2
t4 = 13-88
a[t4] =0.0
j=j+1
if j <= 10 goto B3
i=i+1
B4 [if i <= 10 goto B2
07

Bs[i=1)

t5=i-1
t6=88*t5

a[t6]=1.0

i=i+1
if 1 <=10 goto B6 /

Example: Basic Block

n :=a + 1
X := b +

n :=n + 1
y :=d * n

e

@ b ap @l

Ne

Ne

AST of the Example

int n;

<D X
LI [[
Q B oo

* o+ o+ o+
5D e

womo4 @p

|

)

N

VA NV ANEVAN
N
n/ \n

|

»

n

Register Allocation for B.B.

e Dependency graphs for basic blocks

e Transformations on dependency graphs

* From dependency graphs into code

— Instruction selection

¢ linearizations of dependency graphs
— Register allocation

¢ At the basic block level

//_\\\y
SN

Optimized Code (gcc)

Load_Mem

int n; Add_Const
Load_Reg
=a + 1;
Mult_Reg
X = b Fn A e 2dd_Mem
Add_Mem
n :=n + 1; Store_ Reg
y = d * n; Add_Const
Mult_Mem
Store_Reg
Dependency graphs

e TAC imposes an order of execution

— But the compiler can reorder assignments as
long as the program results are not changed

e Define a partial order on assignments
— a < b < amust be executed before b

— Represented as a directed graph

* Nodes are assignments
¢ Edges represent dependency

— Acyclic for basic blocks

a,R1
1,R1
R1,R2

R1,R2
b,R2
c,R2
R2,x

1,R1
d,R1
R1,v

d

Running Example
Sources of dependency

(W e Data flow inside expressions

f/ \n /\ /\ /\ — Operator depends on operands
7/ \ / \ L/ \ 1[/ \ M — Assignment depends on assigned expressions

/ \ e Data flow between statements
/ \ — From assignments to their use

.

int n;

— Pointers complicate dependencies

OB XD
[| S
QB8 0o
* + + +
SN

5

+

Q

Creating Dependency Graph
from AST

Nodes AST becomes nodes of the graph

Sources of dependency

e Order of subexpresion evaluation is
immaterial

— As long as inside dependencies are respected

Replaces arcs of AST by dependency arrows
— Operator — Operand

e The order of uses of a variable X are — Create arcs from assignments to uses
immaterial as long as: — Create arcs between assighments of the same
— X is used between dependent assighments variable

— Before next assignment to X

Select output variables (roots)

Remove ; nodes and their arrows

a

a

Running Example

1

/\ VAN

/\ ‘[/\ i

Running Example

{
/‘\n /\
/N /\ U
/\
n/\n
-
|
/.\ /\
/N /\ U
/\
/\n

L

J“

|
/\ VAN

/\ ‘[/\ i

Dependency Graph
Simplifications
e Short-circuit assignments

— Connect variables to assigned expressions
— Connect expression to uses

¢ Eliminate nodes not reachable from roots

Cleaned-Up Data Dependency Graph

X

¢ |
VASNVAN
2N\ \,
Q,/
a/ \1

Common Subexpressions

e Repeated subexpressions

e Examples
X=a*a+ 2*a*b+b*b;
y=a*a-—- 2*a*b+b*b;
n[i] := n[i] +m[i]

e Can be eliminated by the compiler
— In the case of basic blocks rewrite the DAG

Pseudo Register Target Code

3 Load_Mem
b Add_Const
» Load_Reg

PN PR Load_Reg

Mult_Reg

/ \ \ Add_Mem
Add_Mem
* 1 Store_Reg

‘(>’ Load_Reg

+ Add_Const

/ \ Mult_Mem

Store_Reg

a,R1
1,R1
R1,X1

X1,R1
X1,R1
b,R1
c,R1
R1,x

X1,R1
1,R1
d,R1
Rl,v

From Dependency Graph into Code

e Linearize the dependency graph
— Instructions must follow dependency

e Many solutions exist
e Select the one with small runtime cost
e Assume infinite number of registers

— Symbolic registers

— Assign registers later

e May need additional spill
— Possible Heuristics

¢ Late evaluation

¢ Ladders

Non optimized vs Optimized Code

Load_Mem a,R1 Load Mem a,Rl Load_Mem a,R1
Add_Const 1,R1 Add_Const 1,R1 Add_Const 1,R1
Load_Reg R1,X1 Load_Reg R1,R2 Load_Reg R1,R2

Load_Reg X1,R1

Load Reg RZ,R1 Mult_Reg R1,R2
Mult_Reg X1,R1 - 2dd [—.1 b R2
Add_Mem b,R1 Mult_Reg R2,R1 Add_Mem '
add Mem c,R1 Add_Mem b,R1 Add_Mem c,R2
Store_Reg RI1,x Add_Mem c,R1 Store_Reg R2,x

Load_Reg X1,R1 Store Reg R1,x Add_Const 1,R1

Add_Const 1,R1 Load Reg R2,R1 Mult_Mem d,R1
puittiem R Add Comst 1,R1 Store_Reg R1,y
ore_Reg Rl,y =
Mult_Mem d,R1

Store Req R1,y

int n;

n :=a+ 1;

x :=b+n*n+ c;
m = n

y :=d * n;

Register Allocation Register Allocation for Basic Blocks

e Maps symbolic registers into physical Heuristics for code generation of basic
registers blocks

— Reuse registers as much as possible e Works well in practice
— Graph coloring (next) e Fits modern machine architecture
e Undirected graph
[]
« Nodes = Registers (Symbolic and real) Can be extended to perform other tasks
« Edges = Interference — Common subexpression elimination
e May require spilling e But basic blocks are small
e Can be generalized to a procedure

Problem Technique Quality G IO b a I Registe r Al IO Cati O n

Expression trees, using Weighted trees:
register-register or Figure 4.30
memory-register instruc-
tions
with sufficient registers: Optimal
with insufficient registers: Optimal
Dependency graphs, using Ladder sequences: Heuristic
register-register or Section 4.2.5.2

memory-register instruc-

tions
Expression trees, using any Bottom-up tree rewrit-
instructions with cost func- ing:
tion Section 4.2.6
with sufficient registers: Optimal
with insufficient registers: Heuristic
Register allocation when all Graph coloring: Heuristic

interferences are known Section 4.2.7

Variable Liveness

Computing Liveness Information
e Astatementx=y+z

— defines x

between basic blocks — dataflow analysis

— usesy and z (next lecture)

e Avariable x is live at a program point if its

value (at this point) is used at a later point o) .
(point) s e within a single basic block?

_ e idea
y=42 x undef, y live, z undef
7=73 x undef, y live, z live — use symbol table to record next-use
X=y+z xis live, y dead, z dead information

print(x); xis dead, y dead, z dead — scan basic block backwards

(showing state after the statement) — update next-use for each variable

Computing Liveness Information

Computing Liveness Information
¢ INPUT: A basic block B of three-address statements.
symbol table initially shows all non-temporary variables in e Start at the last statement in B and scan backwards
B as being live on exit. — At each statement i: x =y + z in B, we do the following:

1. Attach toithe information currently found in the symbol
table regarding the next use and liveness of x, y, and z.

In the symbol table, set x to "not live" and "no next use.”

In the symbol table, set y and z to "live" and the next uses
ofyandztoi

e OUTPUT: At each statement i: x =y + z in B, liveness and 2.
next-use information of x, y, and z at i. 3.

e Start at the last statement in B and scan backwards
— At each statementi: x=y + z in B, we do the following:

1. Attach toithe information currently found in the symbol table
regarding the next use and liveness of x, y, and z.

2. Inthe symbol table, set x to "not live" and "no next use.”

3. Inthe symbol table, set y and z to "live" and the next uses of y
andztoi

can we change the order between 2 and 3?

simple code generation

e translate each TAC instruction separately

e For each register, a register descriptor records the variable names
whose current value is in that register

— we use only those registers that are available for local use within a basic
block, we assume that initially, all register descriptors are empty

— As code generation progresses, each register will hold the value of zero
or more names

e For each program variable, an address descriptor records the
location(s) where the current value of the variable can be found

— The location may be a register, a memory address, a stack location, or
some set of more than one of these
— Information can be stored in the symbol-table entry for that variable

Find a register allocation

[Nariable " Jregister] register
2 : 5
eax
b ?
c ? Lebx
b=a+2
c=b*b
b=c+1

returnb * a

simple code generation

For each three-address statement x := y op z,

1. Invoke getreg (x := y op z)to select registers R,, R, and R,
If Ry does not contain y, issue: LD Ry, v’ for a location y’ of y
If Rz does not contain z, issue: LD R,, z’ for a location z’ of z
Issue the instruction OP R,, Ry/ R,

voR W

. Update the address descriptors of x, y, z, if necessary

— R, is the only location of x now, and
R, contains only x (remove R, from other address descriptors)

getreg

Is this a valid allocation?

a eax
1 eax
b ebx :
¢ Sax Lebx Overwrites previous
value of ‘@’ also
h=god S CER | —1 stored in eax
c=b*b eax = ebx * ebx
b=c+1 ebx =eax+1
return b * a return ebx * eax

Is this a valid allocation?

,,,,,,,,,,,,,,,,,

variable | register register
a eax

eax
b ebx
c eax i ebx
b=a+2 ebx =eax + 2
c=b*b eax = ebx * ebx
b=c+1 ebx=eax +1
return b * a return ebx * eax

Value of ‘¢’ stored in
eax is not needed
anymore so reuse it

|_—for ‘b’

Interference graph

e Nodes of the graph = variables

e Edges connect variables that interfere with
one another

* Nodes will be assigned a color
corresponding to the register assigned to
the variable

e Two colors can’t be next to one another in

the graph

Main idea

¢ For every node n in CFG, we have out[n]
— Set of temporaries live out of n

e Two variables interfere if they appear in the same
out[n] of any node n
— Cannot be allocated to the same register

e Conversely, if two variables do not interfere with
each other, they can be assigned the same register

— We say they have disjoint live ranges
e How to assign registers to variables?

Interference graph construction

b=a+2
c=b*b
b=c+1

returnb * a

Interference graph construction Interference graph construction

b=a+2 b=a+2
c=b*b c=b*b
{a, c}
b=c+1 b=c+1
{b, a} {b, a}
return b * a returnb * a
Interference graph construction Interference graph construction
{a}
b=a+2 b=a+2
{b, a} {b, a}
c=b*b c=b*b
{a, c} {a, c}
b=c+1 b=c+1
{b, a} {b, a}

returnb * a returnb * a

Interference graph

| color register |
{a} eax
b=a+2 |:|
b, a} L] e |
c=b*b e '

{a, c}

b=c+1
{b, a}
return b * a / \

Graph coloring

e This problem is equivalent to graph-
coloring, which is NP-hard if there are at
least three registers

* No good polynomial-time algorithms (or
even good approximations!) are known for
this problem

— We have to be content with a heuristic that is
good enough for RIGs that arise in practice

Colored graph
color register |
{a} eax
b=a+2 |:|
b, a}] x|
c=b*b e :

{a, c}

b=c+1
{b, a}
returnb * a / \

Coloring by simplification [Kempe 1879]

e How to find a k-coloring of a graph
e Intuition:

— Suppose we are trying to k-color a graph and
find a node with fewer than k edges

— If we delete this node from the graph and color
what remains, we can find a color for this node
if we add it back in

— Reason: fewer than k neighbors — some color
must be left over

Coloring by simplification [Kempe 1879]

e How to find a k-coloring of a graph
e Phase 1: Simplification

— Repeatedly simplify graph
simmﬂgl>

— When a variable (i.e., graph node) is

removed, push it on a stack
e Phase 2: Coloring

follows:
— Pop variable from the stack
— Add it back to the graph

— Color the node for that variable with a
color that it doesn’t interfere with

— Unwind stack and reconstruct the graph as coIo\r)

“eolor regisier | Coloring k=2
|:| ebx

stack:

i color register |

A

Ceolor regisier | Coloring k=2
|:| ebx

stack:

— e Coloring k=2 Ceolor resister Coloring k=2

stack:

' N stack: ' P
Ol o =

o o ®

colorreglst ””” CO I O ri n g k= 2 colorreglster CO I O ri n g k= 2
|:| ceax |:| cax
[e O ex

stack:

N stack: b
® ORI

)
)
)
)

o

e —— Coloring k=2 oolorregieter Coloring k=2

@ - c stack: @ - C stack:
(@ © (@ ©
eolorrediver Coloring k=2 Gl e | Coloring k=2
D cax D eax |
e e
(2 (2
stack:

® o 0™ ® ©

Failure of heuristic

e |f the graph cannot be colored, it will
eventually be simplified to graph in which
every node has at least K neighbors

e Sometimes, the graph is still K-colorable!

e Finding a K-coloring in all situations is an
NP-complete problem

— We will have to approximate to make register
allocators fast enough

i color register |

P — - Coloring k=2

|:| 1 some graphs can’t be colored

|:| ebx | inKcolors:

ffffffffffffffffffffffffffffff B

\ stack:

@/ P

()

o O ® T O

N ok
s

P —— - Coloring k=2

i color register |

|:| 1 some graphs can’t be colored

|:| ebx | inKcolors:

@\

NP

() ()

o © ™

PUS—— - Coloring k=2

i color register

O e ,

§ i Some graphs can’t be colored
‘ |:| ebx | inKcolors:

O

\ stack:

() (e

Chaitin’s algorithm

e Choose and remove an arbitrary node,
marking it “troublesome”

— Use heuristics to choose which one

— When adding node back in, it may be possible
to find a valid color

— Otherwise, we have to spill that node

PUS———— -~ Coloring k=2

i color register |

|:| “T 1 some graphs can’t be colored

|:| ebx | inKcolors:

@\ o

() ()

no colors left for e!

Spilling

e Phase 3: spilling
— once all nodes have K or more neighbors, pick a node
for spilling
e There are many heuristics that can be used to pick a node
e Try to pick node not used much, not in inner loop
¢ Storage in activation record
— Remove it from graph

e We can now repeat phases 1-2 without this node

e Better approach — rewrite code to spill variable,
recompute liveness information and try to color
again

PURS—— - Coloring k=2

i color register |

|:| e Some graphs can’t be colored

[] ex | inKcolors:

ffffffffffffffffffffffffffffff -

\ stack:

O ()

no colors left for e!

e ~ Coloring k=2

color register
§ i Some graphs can’t be colored
‘ |:| ebx | inKcolors:

(o)

& @ 3

stack:

PUS———— -~ Coloring k=2

i color register !
O o ,
i i Some graphs can’t be colored

‘[] ex | inKcolors:

stack:

=)
AN
)
=)

P — - Coloring k=2

i color register !
§ i Some graphs can’t be colored
‘ |:| ebx | inKcolors:

stack:

@/ ()

PURS—— - Coloring k=2

i color register |

|:| e Some graphs can’t be colored

|:| ebx | inKcolors:

(o)

stack:

() ()

Handling precolored nodes

e Some variables are pre-assigned to
registers

— Eg: mul on x86/pentium
¢ uses eax; defines eax, edx

— Eg: call on x86/pentium
e Defines (trashes) caller-save registers eax, ecx, edx
e To properly allocate registers, treat these
register uses as special temporary variables
and enter into interference graph as
precolored nodes

PUS———— -~ Coloring k=2

i color register |

|:| e Some graphs can’t be colored

|:| ebx | inKcolors:

(o)

stack:

() ()

Handling precolored nodes

e Simplify. Never remove a pre-colored node
— it already has a color, i.e., it is a given
register

e Coloring. Once simplified graph is all
colored nodes, add other nodes back in and
color them using precolored nodes as
starting point

Optimizing move instructions The End

Code generation produces a lot of extra mov
instructions

mov t5, t9
If we can assign t5 and t9 to same register, we can get
rid of the mov
— effectively, copy elimination at the register allocation level
Idea: if t5 and t9 are not connected in inference graph,
coalesce them into a single variable; the move will be
redundant
Problem: coalescing nodes can make a graph
un-colorable
— Conservative coalescing heuristic

Two Phase Solution

global register allocation Dynamic Programming
Sethi & Ullman
¢ idea: compute “weight” for each variable
— for each use of v in B prior to any definition of v add 1 point . N 3
O T e e vy e

— cost(v) = Zzuse(v,B) + 2*live(v,B)

o use(v,B) is is the number of times v is used in B prior to any
definition of v

e live(v, B) is 1 if v is live on exit from B and is assigned a value in B * TOp-DOWl’l
— after computing weights, allocate registers to the “heaviest” — Generate the code using labeling by preferring
values .)
“heavier” subtrees (larger labeling)

* The minimal number of registers needed (weight)

“Global” Register Allocation

* Input:

— Sequence of machine code instructions
(assembly)

» Unbounded number of temporary registers

* Output

— Sequence of machine code instructions
(assembly)

— Machine registers
— Some MOVE instructions removed
— Missing prologue and epilogue

130, 1128} /Iuse {1128, S0} def {t131} |

13: beq t128[8% 10112, 50} def (3] ETORTETIEE

11: or t131, 80, TI7% 150, 1128} [use (128} def (1132) |
addi t132, t128, -1 VS0 1131 1132}
or $4, $0, t132

[use {50, 1132} def (34}

jal nfadtose {80} def {t129} | M
1 2)
o tt13330’$3021$31 {30, t129} use {$4} def {$2}
i i(m 3L S0}

mult t133, t130

[use (50,82 def {1130}

}

ﬂz‘gﬂg()ﬁ; Y030 1131
or t129, $0,
2 or 1103, 50,129 Luse 50,03 gt 133y]
b lend /
10: addi t129, $0, 1 Luse (133, “3*0} f;(f) {:113333}}
12
E [use (133} def {1133 |
Y (80 £133}

[use (50, 1133} def {129} |

y Yy (80 120}

use {} def {} use {$0, t129} def {t103}

{%0, t129} S0 1103}
(50, $2{ use {1103} def {52} use {} def {}

{$0.t103}

Basic Compiler Phases
] Source program (string)
lexical analysis
l Tokens
syntax analysis

1 Abstract syntax tree
semantic analysis

|

Translate Frame

1 Intermediate representation

Instruction selection
| Assembly

Global Register Allocation

| Fin. Assembly

13: beq t128, $0, 10 /* $0, t128 */
11: or t131, $0, t128 /* $0, t128, t131 */
addi t132, t128, -1 /* $0, t131, t132 */
or $4, $0, t132 /* $0, $4, t131 */
jal nfactor /* $0, $2, t131 */
or t130, $0, $2 /* $0, t130, t131 */
or t133, $0, t131 /* $0, t130, t133 */
mult t133, t130 /* $0, t133 */
mflo t133 /* $0, t133 */
or t129, $0, t133 /* $0, t129 */

12: or t103, $0, t129 /* $0, t103 */
b lend /* $0, t103 */
10: addi t129, $0, 1 /* $0, t129 */

b12 /*$0,t129 */

13 beq 1128,50,10 Global Register Allocation

11: or t131, $0, t128
addi t132 t128,-1
or $4, 0, 1132 Prqgg:egts
ifl nfac“;ro Construct the interference graph
or t133, 0, t131 Color graph nodes with machine registers
mult t133, Adjacent nodes are not colored by the same register
mflo t133 Spill a temporary into memory
or 129, 30, t133 Until no more spill
12: or t103, $0, t129
b lend
10: addi t129, $0, 1
b12
. . A Simple Example
Constructing interference graphs
@ =
(take 1) LO:/* >ka =0
ac */
c 0 0 L1: b:=a+1
» Compute liveness information at every /% be %/
c:=c+b
statement R b
. [3 ’ . S
 Variables 'a’ and 'b" interfere when there aohe
. ac
exists a control flow node n such that ifc<NgotoLl ¢ ’
(Y g RCIRY
a, b €Lv[n] return ¢
a=b*2] c<N
[F
c=Ny

Constructing interference graphs
(take 2)

» Compute liveness information at every

statement

e Variables ‘a’ and ‘b’ interfere when there
exists a control flow edge (m, n) with an
assignment a := exp and ‘b’ € Lv[n]

13: beq t128, $0, 10 /* $0, t128 */
11: or t131, $0, t128 /* $0, t128, t131 */
addi t132, t128, -1 /* $0, t131, t132 */
or $4, $0, t132 /* $0, $4, t131 */
jal nfactor /* $0, $2, t131 */
or t130, $0, $2 /* $0, t130, t131 */
or t133, $0, t131 /* $0, t130, t133 */
mult t133, t130 /* $0, t133 */
mflo t133 /* $0, t133 */
or t129, $0, t133 /* $0, t129 */

12: or t103, $0,t129 /* $0, t103 */
b lend /* $0, t103 */
10: addi t129, $0, 1 /* $0, t129 */

b12 /*$0,t129 */

Constructing interference graphs
(take 3)

» Compute liveness information at every
statement

e Variables ‘a’ and ‘b’ interfere when there
exists a control flow edge (m, n) with an
assignment a := exp and ‘b’ € Lv[n] and
‘b’ = exp

Challenges

The Coloring problem is computationally
hard

The number of machine registers may be
small

Avoid too many MOVEs
Handle “pre-colored” nodes

Theorem
[Kempe 1879]

e Assume:

— An undirected graph G(V, E)

— A node v €V with less th
— G - {v} 1s K colorable
* Then, G is K colorable

an K neighbors

Graph Coloring by Simplification

I Build: Construct the interference graph I

!

Simplify: Recursively remove nodes with less than K
neighbors ; Push removed nodes into stack

A

y

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

A

y

Select: Assign actual registers (from simplify/spill stack)

y

Actual-Spill: Spill some potential spills and repeat the process

Coloring by Simplification

[Kempe 1879]

« K

— the number of machine registers

* G(V,E)

— the interference graph

* Consider a node v €V with less than K neighbors:
— Color G —v in K colors

— Color v in a color different than its (colored) neighbors

Artificial Example K=2

Coalescing

MOVs can be removed if the source and the target
share the same register

The source and the target of the move can be
merged into a single node
(unifying the sets of neighbors)

May require more registers
Conservative Coalescing

— Merge nodes only if the resulting node has fewer than K

neighbors with degree > K (in the resulting graph)

Graph Coloring with Coalescing

I Build: Construct the interference graph I
v

Simplify: Recursively remove non MOVE nodes
with less than K neighbors; Push removed nodes into stack

D

y
Coalesce: Conservatively merge unconstrained MOV

related nodes with fewer than K “heavy” neighbors

!

Freeze: Give-Up Coalescing on some low-degree MOV related nodes

]

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

v

Select: Assign actual registers (from simplify/spill stack) @

!

o

Actual-Spill: Spill some potential spills and repeat the process

Constrained Moves

* A instruction T <= S is constrained
— if S and T interfere
» May happen after coalescing

X<Y /FAXY,Z* @

/
Y<Z /

» Constrained MOVs are not coalesced

Spilling

* Many heuristics exist
— Maximal degree
— Live-ranges
— Number of uses in loops

» The whole process need to be repeated after
an actual spill

Pre-Colored Nodes

Some registers in the intermediate language are
pre-colored:

— correspond to real registers
(stack-pointer, frame-pointer, parameters,)

Cannot be Simplified, Coalesced, or Spilled
(infinite degree)

Interfered with each other

But normal temporaries can be coalesced into pre-
colored registers

Register allocation is completed when all the nodes
are pre-colored

Caller-Save vs. Callee-Save Registers

int foo(int a) { void bar (inty) {
int b=a+1; int x=y+1;
f10); £2(y);
gl(b); g2(2);
return(b+2); }

}

Caller-Save and Callee-Save Registers

callee-save-registers (MIPS 16-23)

— Saved by the callee when modified

— Values are automatically preserved across calls

caller-save-registers

— Saved by the caller when needed

— Values are not automatically preserved

Usually the architecture defines caller-save and

callee-save registers

— Separate compilation

— Interoperability between code produced by different
compilers/languages

But compilers can decide when to use calller/callee

registers

Saving Callee-Save Registers

enter: def(r,) enter: def(r,)
by <17
I7 <= by

exit: use(r,) exit: use(r,)

A Complete Example Graph Coloring with Coalescing

enter: I Build: Construct the interference graph I
c - Llgr2 caller save v
a '=1i‘31 callee-save Simplify: Recursively remove non MOVE nodes
) with less than K neighbors; Push removed nodes into stack
b:=r12
y
d:=0 Coalesce: Conservatively merge unconstrained MOV
e'=a related nodes with fewer that K “heavy” neighbors
loop:]
Freeze: Give-Up Coalescing on some low-degree MOV related nodes
d:=d+b T
e:=e-1 Potential-Spill: Spill some nodes and remove nodes
if e>0 goto loop Push removed nodes into stack
rl :==d ¥
3 =c Select: Assign actual registers (from simplify/spill stack) @
return /* rl,r3 */
Actual-Spill: Spill some potential spills and repeat the process I
A Complete Example A Complete Example
use{r3} def{c} use{r3} def{c}
enter: enter:
C 2:r¥3r2 caller save use{rl} def{a} c:=13 use{rl} def{a}
13 callee-save
a:=rl 7 ih a:=rl (12} def{b}
USCqT. () USCqT. ()
b:=12 b:=r2
d=0 use{} def{d} d=0 use{} def{d}
— =a
¢ a use{a} def{e} ¢
loop:

use{a} def{e}

c.d, e b}

loop:
d:=d+b use{d, b} def{d}

d:=d+b use{d, b} def{d} b o)
G, 4, €
e :=e-1 e:=e-1 wele] deffe]
if >0 goto loop if e>0 goto loop c,d, e}
rl :=d rl .=d ¢, d, e, b}
r3:=c r3:=c
return /* rl,r3 */

return /* rl.3 */
(rl, 13} L3} Luseqe) def(r3)

A Complete Example

e:=a
loop:
d:=d+b
e:=e-1
if e>0 goto loop

rl :==d
3:=c

return /* rl,13 */

use{r3} def{c}

use{rl} def{a}

use{r2} def{b}

use{} def{d}

use{a} def{e}

C.d, e, b}

Live Variables Results

loop:
d:=d+b
e =e-1
if >0 goto loop
rl :=d
r3:=c
return /* rl,r3 */

enter: /[*12,rl, 13 */
c:=13 /*c,12,rl */
a=rl /*a,c, 2%
b:=12 /*a,c,b*
d=0 /*a,c,b,d*
e:=a /*e,c,b,d*/
loop:
d:=d+b /*e,c,b,d*/
e:=e-1/*e,c,b,d*/
if e>0 goto loop /* ¢, d */
rl .=d /*rl,c*/
r3:=c/*rl, 3 */
return /*rl, r3 */

A Complete Example {12,11,13}
use{r3} def{c}

enter:
c:=13
a:=rl
b: =12
d:=0
e=a
loop:
d:=d+b
e =e-1
if e>0 goto loop
rl :=d
13:=c

return /* rl.,3 */
{r1, 13}

enter: /*12,rl, 13 */
c:=13 /*c,12,rl */
a:=rl /*a,c,12*/
b:=12 /*a,c,b*
d:=0 /*a,c,b,d*
e==a /*e,c,b,d*
loop:
d:=d+tb /*e,c,b,d*/
e:=e-1/*e,c,b,d*/
if e>0 goto loop /* ¢, d */
rl.=d /*rl, c*/
r3:=c/*rl, 3 */
return /* rl,r3 */

C,d, e,

b}
b

> €,

}

use{c} def{r3}

spill priority = (uo + 10 ui)/deg Spill C

. * 1 - * .
enter: 5 // 2, ;1’ 13*// uset+ uset deg spill)
c:=13 /*c, 12,1 .. stack stac
amrl /*a 2% def def priority 1‘3
b=12 ffacb¥ outside within |:|
di=0 /*a,c,bd* loop loop
e:=a /*e,c,b,d* a 2 0 4 0.5 .-h
-
loop: . Me
d:=d+b /*e,c,b,d* b 1 1 4 275 \ /'
e=e-1/*e,c,b,d*
U C 2 0 6 0.33
if e>0 goto loop /* ¢, d */ f,a’f
rl .=d /*rl, c*/ ———-q
—d et d 2 2 4 55 i i
r3:=c/*rl, 3 */ M
return /* r1.13 */ e 1 3 3 10.3
Coalescing ate Coalescing b+r2
1.3 stack rs stack 13 stack 1‘3 stack

PN \

B gD 9= A

s
/\/'/ /\ /\ _/'\\
5=y I S M=ty ﬂ\“‘:-ae‘:?d

- — . - - =
- hTp— H'-\.—

- —
-

12h

rlae

Coalescing aetrl

— rs stack
\
/1‘2]3

g
— ._, ——

rlae and d are constrained

gy
— l_, ——

d is assigned to r3

Simplifying d

1'3 stack stack

\ \ [

/ﬂb\ /r2b

rl@_———__jd rlae

Pop ¢

tack
]'3 stack]'3 T

Y

A’

Mgy gy

actual spill!

/*12,rl, 13 */
c:=r13 /*c, 12,1l */

enter:

a=rl /*a,c, 2%
b:=12 /*a,c,b*/
d:=0 /*a,c,b,d*
e=a /*e,c,b,d*

loop:
d:=d+b /*e,c,b,d*/
e=e-1/*e,c,b,d*/
if e>0 goto loop /* ¢, d */
rl .=d /*rl, c*/
r3:=c/*rl, 13 */

return /* rl,r3 */

/*r2,rl, 13 */
cl =13 /*cl, 12,1l */
Mc_loc] :=cl /* 12 */

a:=rl /*a, 2%
b:=12 /*a,b*
d:=0 /*a b, d*
e:=a /*e,b,d*

loop:

d:=d+b /*e,b,d*
e:=e-1/*e b, d*

if e>0 goto loop /* d */
rl :=d /*rl */
c2 :=Mjc_loc] /*rl, c2 */
r3:=c2/*rl, 13 */

enter:

return /* rl,r3 */

Coalescing c1+13; c2+c1r3

//1,3 stack
{ \]
.f-f"'-Fb
2 +0
v %
VA
1_-" a"'\..d

1‘30102 stack
\
- -.h "'h-.-* ;
/ / "
y -
;- i

/*¥12,rl, 13 */
cl =13 /*cl, 12,11 */
Mc _loc] :=cl /* 12 */

a:=rl /*a, 2%
b:=r2 /*a,b*/
d:=0 /*a,b,d*
e=a /*e b, d*

loop:

d:=d+tb /*e,b,d*
e:=e-1/*e,b,d*/

if >0 goto loop /* d */
rl :=d /*rl */
c2 :=Mjc_loc] /* rl, c2 */
r3:=c2/*rl, 13 */

return /* rl,r3 */

enter:

Coalescing ate; b+r2

1(30102 stack

r@clc2

__

o —

/\\

=

f

stack

[]

Coalescing ae+rl

1‘30102 stack

13ele2 stack

\ O
12

AN

rl;“—-ae-:.:d

halse

\I:I

1r2h

/.

rlae and d are constrained

Pop d

r3cle2 stack
\ 7]
//}2b

rlae

r3cle2 oy

rl

12b
//d ¢
ae

\ O

b 2
cl r3
c2 r3
d r3

r3cle2

N\

r2h

/O

rlae
enter:
cl =13
Mjc loc] :=cl
a:=rl
b:==12
d:=0
e:=a
loop:
d:=d+b
e =e-1

if >0 goto loop
rl :==d

c2 :=MJc_loc]
13 :=c2

return /* rl,r3 */

Simplify d

stack

[]

b 2
cl r3
€2 r3
d r3
e rl

1‘30102 stack
\ (<]
/r2b

rlae
enter:
r3 =13
Mc_loc] :=13
rl =rl
2 =12
r3:=0
rl =rl
loop:
r3 =r3+r2
rl :=rl-1
if r1>0 goto loop
rl =13
r3 := M][c_loc]
13 :=13

return /* rl,r3 */

enter:

enter: main: addiu $sp,$sp, -K 1 nfactor: addiu $sp,$sp,-K2 or $25,80,52
= = L4: sw $2,0+K1($sp) L6: sw $2,0+K2($sp) mult $30,$25
r3 =13 M[c loc] :=13 O or $25.50.84 milo $30
Mc_loc] :=13 3:=0 sw $25,-4+K1(Ssp) or $24,30.$31 L2: or $2,%0,$30
il =17l loop: addiu $25,$sp,0+K1 SUO KO (Sp) Iw $30,-4+K2($st
or $2,$0,825 sw $30,-8+K2(8sp) or $31,$0,$30
2 = 2 r3 = r3+r2 addi $25’$0’10 beq $25,$0,LO 1w $30,-8+K2($SI
13:=0 rl ==rl-1 or $4,80,$25 Hlor a2 b LS
: jal nfact w L0+ LO: addi $30,$0,1
rl ==rl if r1>0 goto loop I“J/a $2nsiflflr(l or $2.80,$24 b L2
loop: rl =13 or $31,80,825 addi $25,825,-1 L5: addiu $sp,$sp.K
$4,%0,825 j 831
= 13+12 =Mlc_l b I3 % !
3 :=r13+r 3 [c_loc] 13 addiu $sp.$spK1 jal nfactor
rl =rl-1 return /* rl,r3 */ i 831
if r1>0 goto loop
rl :=13
r3 := M]c_loc]
13 :=13
return /* rl,r3 */
Interprocedural Allocation Summary
Allocate registers to multiple procedures * Two Register Allocation Methods
Potential saving — Local of every IR tree
— caller/callee save registers + Simultaneous instruction selection and register
. allocation
— Parameter passing

* Optimal (under certain conditions)
— Return values

— Global of every function
But may increase compilation cost « Applied after instruction selection
Function inline can help * Performs well for machines with many registers
+ Can handle instruction level parallelism

* Missing

— Interprocedural allocation

Challenges in register allocation

e Registers are scarce
— Often substantially more IR variables than registers
— Need to find a way to reuse registers whenever possible
e Registers are complicated
— x86: Each register made of several smaller registers; can't use a
register and its constituent registers at the same time
— x86: Certain instructions must store their results in specific
registers; can't store values there if you want to use those
instructions
— MIPS: Some registers reserved for the assembler or operating
system

— Most architectures: Some registers must be preserved across
function calls

The End The End

