Program Analysis and
Verification

0368-4479

Noam Rinetzky

Lecture 1: Introduction & Overview

Slides credit: Tom Ball, Dawson Engler, Roman Manevich, Erik Poll,
Mooly Sagiv, Jean Souyris, Eran Tromer, Avishai Wool, Eran Yahav

Admin

Lecturer: Noam Rinetzky
— maon@cs.tau.ac.il
— http://www.cs.tau.ac.il/~maon

14 Lessons
— Monday, 13:00-16:00, Shenkar-Physics 222

4 Assignments (30%)

— 1 involves programming
1 Lesson summary (10%)

Final exam (60%)
— Must pass

Today

* Motivation
* Introduction

e Not technical

Software is Everywhere

SofeddebikeEverywhere

A fatal exception BE has occurred at 8828:CHB11E36 in UXD UMM(B1) +
B8818E36. The current application will be terminated.

s Press any key to terminate the current application.
Press CTRL+ALT+DEL again to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

30GB Zunes all over the world fail en masse

December 31, 2008

=

= O W 0 J o U b W DN K-

whi
if

}

Zune bug

le (days > 365) {
(IsLeapYear (year)) {

if (days > 366) {
days —-= 366;
vear += 1;

}

else {

days —-= 365;

vear += 1;

December 31, 2008

=

= O W 0 J o U b W DN K-

whi
if

}

Zune bug

le (366 > 365) {
(IsLeapYear (2008)) {
if (366 > 366) {
days —-= 366;
vear += 1;
}
else {
days —-= 365;
vear += 1;

December 31, 2008

Suggested solution: wait for tomorrow

Patriot missile failure

On the night of the 25t of
February, 1991, a Patriot
missile system operating in
Dhahran, Saudi Arabia,
failed to track and intercept
an incoming Scud. The Iraqi
missile impacted into an
army barracks, killing 28
U.S. soldiers and injuring
another 98.

February 25, 1991

10

Patriot bug — rounding error

Time measured in 1/10 seconds

Binary expansion of 1/10:
0.0001100110011001100110011001100....

24-bit register
0.00011001100110011001100

error of

— 0.0000000000000000000000011001100... binary, or
~0.000000095 decimal

After 100 hours of operation error is
0.000000095x100x3600%x10=0.34

A Scud travels at about 1,676 meters per second, and
so travels more than half a kilometer in this time

Suggested solution: reboot every 10 hours

11

Toyota recalls 160,000 Prius hybrid vehicles

Programming error can activate all warning lights, causing the car to think its engine has failed

October 2005

Therac-25 leads to 3 deaths and 3 injuries

Software error exposes patients to radiation overdose (100X of intended dose)

1985 to 1987

Northeast Blackout

14 August, 2003

Unreliable Software is Exploitable

—-i.Nn SO“Y - n'\;\o o

Stuxnet Worm Stij| Out of Control at Iran's

Nuclear Sites, Experts Say -

The Stuxnet WOrm, named after injtia|s cader 3"
din its code, is the Most sophistica+- = 1 pe R“O\N an
cyberweapon o-- - playe’ atially @

aﬂd 9-m.“her . <A

foun

\a
ks V
a“ac . —~aN

RSA tokens may be behind Mmajor
network security problems at Lockheed

Martin
etwork,
as been

shut down
(May 2011)

Lockheed Martin remote access n
protected by SecurIp tokens, h

Billy Gates why do you make this possible ? Stop making money
and fix your software!!
(W32.Blaster.Worm)

August 13, 2003

16

void foo

Windows exploit(s)
Buffer Overflow

(char *x) {

char buf[2];
strcpy (buf, x);

}

int main

(int argc, char *argv([]) {

foo(argv[1l]);

./a.out abracadabra

Segmentation fault

Stack grows
this way

Memory
addresses

17

Buffer overrun exploits

int check_authentication(char *password) {
int auth_flag = 0;
char password_buffer[16];

strcpy(password_buffer, password);
if(strcmp(password_buffer, "brillig") == 0) auth_flag = 1;
if(strcmp(password_buffer, "outgrabe") == 0) auth_flag = 1;
return auth_flag;
}
int main(int argc, char *argv[]) {
if(check _authentication(argv[1])) {

printf("\n-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");

printf(" Access Granted.\n");

printf("-=-=-=-=-=-=-=-=-=-=-=-=-=-\n"); }
else

printf("\nAccess Denied.\n");

Input Validation

evil input

Application

1234567890123456 N N N R R E T Es

Boeing's 787 Vulnerable to Hacker Attack

security vulnerability in onboard computer networks could allow
passengers to access the plane's control systems

January 2008

What can we do about it?

What can we do about it?

| just want to say LOVE YOU SAN!Isoo much

Billy Gates why do you make this possible ? Stop making money
and fix your software!!

(W32.Blaster.Worm / Lovesan worm)

August 13, 2003

22

What can we do about it?

Monitoring
Testing

Static Analysis
Formal Verification
Specification

Run time

N

Design Time

Monitoring (e.g., for security)

_ user space
‘ open(“/etc/passwd”, “r") :

OS Kernel

StackGuard
ProPolice

PointGuard
Security monitors (ptrace)

Testing

build it; try it on a some inputs

T p———————— " o

 Brooklyn Bridge, New York

printf (“x == 0 => should not get that!”)

Testing

memory errors, race conditions, taint
analysis
— Simulated CPU

— Shadow memory

Invalid read of size 4
at 0x40F6BBCC: (within /usr/lib/libpng.s0.2.1.0.9)
by 0x40F6B804: (within /usr/lib/libpng.so0.2.1.0.9)
by Ox40BO7FF4: read_png_image(QlmagelO *) (kernel/gpngio.cpp:326)
by 0x40AC751B: QlmagelO::read() (kernel/gimage.cpp:3621)
Address OxBFFFFOEO is not stack'd, malloc'd or free'd

Testing

memory errors, race conditions

Parasoft Jtest/Insure++ memory errors +
visualizer, race conditions, exceptions ...

IBM Rational Purify memory errors
IBM PureCoverage detect untested paths

Daikon dynamic invariant detection

Testing

e Useful and challenging
— Random inputs
— Guided testing (coverage)
— Bug reproducing

* But..
— Observe program behaviors
— What can you say about behaviors?

Testing is not enough

Observe program behaviors
What can you say about behaviors?

Concurrency makes things worse

Smart testing is useful

— requires the techniques that we will see in the
course

29

What can we do about it?

Monitoring
Testing

Static Analysis
Formal Verification
Specification

Run time

N

Design Time

Program Analysis & Verification

X="7

if (x>0) {
y =42;

} else {
y =73
foo();

}
assert (y == 42); ?

= |s assertion true?

31

Program Analysis & Verification

y=?,x=y*2
if (x% 2 ==0){
y =42;
} else {
y =73;
foo();

}
assert (y == 42); ?

= |s assertion true? Can we prove this? Automatically?
= Bad news: problem is generally undecidable

32

Formal verification

e Mathematical model of software
— p:Var 2z
— p=[x20, y>1]

* Logical specification
—{0O<x}={peState | 0<p (x)}

* Machine checked formal proofs

{O<xary=x} > {0<y}
{0<x} yi=x{0<xary=x} {0<y}y=y+l {I<y}

{ 72 }y=x;y=y+l {1<y}

Formal verification

e Mathematical model of software
— State = Var & Integer
— S =[x20, y>1]

* Logical specification
—{0<x}={ SeState | 0<S(x) }

* Machine checked formal proofs
{Q} > {P}
{P} stmtl1{Q’ } { PP }stmt2{Q}
{P}stmtl; stmt2{Q}

Program Verification

{x=2%y}
if (x% 2==0){
{x=2%y}
y=42;
{3z x=2*zN\y=42}
} else {

{ false }

y =73;

foo();

{ false }
}

{32.x=2*zAy=42}
assert (y == 42);
= |s assertion true? Can we prove this? Automatically?

= Can we prove this manually?

35

Central idea: use approximation

Exact set of
configurations/
behaviors

Under
Approximation

kuniverse

36

Program Verification

{x=2%y}
if (x% 2==0){
{x=2%y}
y=42;
{3z x=2*zN\y=42}
} else {

{ false }

y =73;

foo();

{ false }
}

{32 x=2*zAy=42}{x="Ny=42}{x=4Ny=42}
assert (y == 42);
= |s assertion true? Can we prove this? Automatically?

= Can we prove this manually?

37

L4 .verified [Klein*’09]

* Microkernel
— IPC, Threads, Scheduling, Memory management

* Functional correctness (using Isabelle/HOL)
+ No null pointer de-references.
+ No memory leaks.
+ No buffer overflows.

+ No unchecked user arguments
+ ...

» Kernel/proof co-design
— Implementation - 2.5 py (8,700 LOC)
— Proof - 20 py (200,000 LOP)

Static Analysis

Lightweight formal verification

Formalize software behavior in a
mathematical model (semantics)

Prove (selected) properties of the
mathematical model

— Automatically, typically with approximation of
the formal semantics

Why static analysis?

* Some errors are hard to find by testing

— arise in unusual circumstances/uncommon
execution paths

* buffer overruns, unvalidated input, exceptions, ...

— involve non-determinism

* race conditions

* Full-blown formal verification too expensive

Is it at all doable?

X="7

if (x>0){
y =42;

} else {
y =73;
foo();

}
assert (y == 42);

Bad news: problem is generally undecidable

41

Central idea: use approximation

Exact set of
configurations/
behaviors

Under
Approximation

kuniverse

42

Goal: exploring program states

bad

states

reachable

/ states
~ initial
states

43

Technique: explore abstract states

bad

states

initial
states

44

Technique: explore abstract states

bad

states

initial
states

45

Technique: explore abstract states

bad

states

initial
states

46

Technique: explore abstract states

bad

states

initial
states

47

Sound: cover all reachable states

bad

states

initial
states

48

Unsound: miss some reachable states

initial
states

49

initial
states

Imprecise abstraction

False alarms

50

50

A sound message

X="7

if (x>0) {
y =42;

} else {
y =73
foo();

}

assert (y ==42); Assertion

be violated

51

Precision

 Avoid useless result

UselessAnalysis (Program p) {

printf (Y“assertion may be violated\n”);

}

* Low false alarm rate
* Understand where precision is lost

52

A sound message

y=?,x=y*2
if (x% 2==0){
y=42;
} else {
y =73;
foo();

}
assert (y == 42);

Assertion

53

How to find “the right” abstraction?

e Pick an abstract domain suited for your
property
— Numerical domains

— Domains for reasoning about the heap

e Combination of abstract domains

54

Intervals Abstraction

0 123 4

55

Interval Lattice

‘ [- O0,00]

['2100]

(infinite lattice, infinite height) 1

56

Example

int x = 0;
1if (?) x++;

1if (?) x++;
x — [0,0]

x +— [0,1]

t[o,a

x+—[1,1]

X +—[1,2]

[al,a2] Ll [b1,b2] = [min(al,bl), max(a2,b2)]

57

Polyhedral Abstraction

e abstract state is an intersection of linear
inequalities of the form a,x,+a,x,+...a x, < ¢

* represent a set of points by their convex hull

(image from http://www.cs.sunysb.edu/~algorith/files/convex-hull.shtml) 58

McCarthy 91 function

M(n)
110 |

105 f
100 7
95 4

90

85

MMmn+11) forn=100

M)= {n— 10 for n > 100.

59

McCarthy 91 function

proc MC (n : int) returns (r : int) var tl : int, tZ2 : 1int;
begin

if n > 100 then

r = n - 10;
else

tl = n + 11;
t2 = MC(tl);

r MC (t2) ;

endif;
end

var a : 1int, b : int;
begin /* top */

b = MC(a);
end

if (n>=101) then n-10 else 91 60

McCarthy 91 function

proc MC

begin if (n>=101) then n-10 else 91 2

if n > 100 then

r =n - 10;

else

tl = n + 11;
t2 = MC(tl);

r MC (t2) ;

endif;
end

var a : 1int, Db
begin /* top */

b = MC(a);
end

/* top */

/* [In-101>=01]] */
/* [|-n+r+10=0; n-101>=01]] */

[|-n+100>=01]]1 */
[|-n+t1-11=0; -n+100>=0]|] */
/* [|-n+tl1-11=0; -n+100>=0;
n+t2-1>=0; t2-91>=0|] */
[|-n+tl1-11=0;, -n+100>=0;
-n+t2-1>=0; t2-91>=0; r-t2+10>=0;
r-91>=01]]1 */
/* [|-n+r+10>=0; r-91>=0]] */

int;
/* [l-a+b+10>=0; b-91>=0]] */

if (n>=101) then n-10 else 91

int;

61

McCarthy 91 function

roc MC|(n : int)} getur . int) v tl ;: 1 t2 : ingt;
| if (FSE101) thén n“i0"else H1
/* (Lo C5) top */
if n > 100 then
/* (L7 C17) [|n-101>=0|] */
r =n - 10; /* (L8 Cl4) [|-n+r+10=0; n-101>=01]] */
else
/* (L9 C6) [|-n+100>=0|] */
tl = n + 11; /* (L10 C17) [|-n+tl-11=0; -n+100>=0]|] */
t2 = MC(tl); /* (L11 C17) [|-n+tl1l-11=0; -n+100>=0;
-n+t2-1>=0; t2-91>=0|] */

r = MC(t2); /* (L12 Cl16) [|-n+tl-11=0; -n+100>=0;
-n+t2-1>=0; t2-91>=0; r-t2+10>=0;
r-91>=0|] */

endif; /* (L13 C8) [|-n+r+10>=0; r-91>=0|] */
end
var a int, b int;
begin
/* (L18 C5) top */
b = MC(a); /* (L19 C12) [|-a+b+10>=0; b-91>=0|] */
end

62

What is Static analysis

= Develop theory and tools for program correctness and
robustness

= Reason statically (at compile time) about the possible
runtime behaviors of a program

“The algorithmic discovery of properties of a

program by inspection of its source text!”
-- Manna, Pnueli

1 Does not have to literally be the source text, just means w/o running it

63

Static analysis definition

4)
Reason statically (at compile time) about the
possible runtime behaviors of a program

N _/

4)
“The algorithmic discovery of properties of a
program by inspection of its source text!”

-- Manna, Pnueli
N _/

1 Does not have to literally be the source text, just means w/o running it

64

Some automatic tools

65

Challenges

class SocketHolder { Socket s; }
Socket makeSocket () { return new Socket(); // A }

open (Socket 1) { l.connect(); }
talk (Socket s) { s.getOutputStream()) .write(“hello”);

main() {
Set<SocketHolder> set = new HashSet<SocketHolder> () ;

while (..) {
SocketHolder h = new SocketHolder () ;
h.s = makeSocket() ;
set.add (h) ;

}
for (Iterator<SocketHolder> it = set.iterator(); ..)

Socket g = it.next().s;

open(g) ;
talk(qg);

}

{

66

(In)correct usage of APIs

= Application trend: Increasing number of libraries and APIs

— Non-trivial restrictions on permitted sequences of operations

= Typestate: Temporal safety properties
— What sequence of operations are permitted on an object?
— Encoded as DFA
e.g. “Don’t use a Socket unless it is connected”

close

getInputStream()
getOutputStream()

getinputStream()

getlnputStream() getOutputStream()

getOutputStream()

[L Ip— Microsoft

Static Driver T
Verifier

Static Driver Verifier

Precise
API Usage Rules
(SLIC)

§LAM:H

Environment
model

100% path
coverage

Driver’s Source Code in C

SLAM

Locking rule in SLIC

State machine for locking state {
enum {Locked,Unlocked}
Rel s = Unlocked;

KeAcquireSpinLock.entry {
if (s==Locked) abort;

else s = Locked;

KeReleaseSpinLock.entry {
1f (s==Unlocked) abort;

else s = Unlocked;

SLAM (now SDV) [Ball*,/11]

100 drivers and 80 SLIC rules.
— The largest driver ~ 30,000 LOC
— Total size ~450,000 LOC

The total runtime for the 8,000 runs (driver x rule)
— 30 hours on an 8-core machine
— 20 mins. Timeout

Useful results (bug / pass) on over 97% of the runs

Caveats: pointers (imprecise) & concurrency
(ignores)

The Astrée Static Analyzer

Patrick Cousot
Radhia Cousot

Jérome Feret
Laurent Mauborgne

Antoine Miné
Xavier Rival

ENS France

Objectives of Astrée

* Prove absence of errors in safety critical C
code

« ASTREE was able to prove completely
automatically the absence of any RTE in the
primary flight control software of the Airbus
A340 fly-by-wire system
— a program of 132,000 lines of C analyzed

e, > Lufthﬂ‘:‘.?. ; aw
X : : issanlneccaie G

nnnnnnnnnnnnnnnnnnnnn

By Lasse Fuss (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Illiiiiil’
states

Sound

Scaling

bad
states

bad
states

IHHHHHI'
states

Complete

73

initial
states

Unsound static analysis

74

Unsound static analysis

e Static analysis
— No code execution

* Trade soundness for scalability
— Do not cover all execution paths

— But cover “many”

FindBugs [pugh* 04]

* Analyze Java programs (bytecode)
* Looks for “bug patterns”

* Bug patterns
— Method() vs method()
— Override equal(...) but not hashCode()
— Unchecked return values
— Null pointer dereference

Appl7 KLOC NP bugs Other Bugs Dodgy
597 68 180 594 654

Sun JDK 1.7
Eclipse 3.3 1447 146 259 1079 653
Netbeans 6 1022 189 305 3010 1112
glassfish 2176 146 154 964 1222

jboss 178 30 57 263 214

PRETiX [pincus*,00]
* Developed by Pinucs, purchased by Microsoft

* Automatic analysis of C/C++ code
— Memory errors, divide by zero
— Inter-procedural bottom-up analysis
— Heuristic - choose “100” paths

— Minimize effect of false positive

KLOC
Mozilla browser 540 11h 5.5 warnings per KLOC

Apache 49 15m

PREfast

Analyze Microsoft kernel code + device drivers
— Memory errors, races,

Part of Microsoft visual studio
Intra-procedural analysis

U&@ﬁc@th_&t.lﬁtn>h) dest, __in_bcount(length) src, length);

Cove rity [Englert, ‘04]

* Looks for bug patterns

— Enable/disable interrupts, double locking, double
locking, buffer overflow, ...

e Learns patterns from common

e Robust & scalable

— 150 open source program -6,000 bugs
— Unintended acceleration in Toyota

Sound SA vs. Testing

Sound SA

Unsound SA

Testing

Can find rare errors
Can raise false alarms

Cost ~ program’s
complexity

Can handle limited
classes of programs
and still be useful

Can miss errors
Can raise false alarms

Cost ~ program’s
complexity

No need to efficiently
handle rare cases

Can miss errors
Finds real errors

Cost ~ program’s
execution

No need to efficiently
handle rare cases

80

Sound SA vs. Formal verification

Sound Static Analysis

Formal verification

Fully automatic

Applicable to a programming language

Can be very imprecise
May vyield false alarms

Requires specification and loop
invariants

Program specific

Relatively complete
Provides counter examples
Provides useful documentation

Can be mechanized using
theorem provers

81

The End

