Program Analysis and
Verification

0368-4479
http://www.cs.tau.ac.il/~maon/teaching/2013-2014/paav/paav1314b.html

Noam Rinetzky

Lecture 3: Program Semantics

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

Good manners

e Mobiles

Admin

* Grades
— First home assignment will be published on Tuesday.

e Due lesson 5

v’ Scribes (this week)
? Scribes (next week)

Today

* Operational semantics
— Advanced features

* Traces semantics

e Denotational Semantics

What do we mean?

ni12u

syntax semantics

What do we mean?

P

syntax semantics

P: x>/

Why formal semantics?

* Implementation-independent definition of a
programming language

* Automatically generating interpreters (and
some day maybe full fledged compilers)

e Verification and debugging

— if you don’t know what it does, how do you know
its incorrect?

Programming Languages

* Syntax
* “how do | write a program?”

— BNF

— “Parsing”

e Semantics

* “What does my program mean?”

Program semantics

State-transformer
— Set-of-states transformer
— Trace transformer

Predicate-transformer
Functions

What semantics do we want?

e Captures the aspects of computations we care
about

— “adequate”

e Hides irrelevant details
— “fully abstract”

 Compositional

10

A simple imperative language: While

Abstract syntax:
az=n|x|a +a,|axa,| a—a,
b::= true | false
‘ a, = dy | a, < a, | _'b| bl/\bQ
S:=x:=a | skip | §; S,
if 6 then §, else §,
while bdo §

11

Syntactic categories

n € Num numerals

x € Var program variables

a € Aexp arithmetic expressions
b € Bexp boolean expressions

S e Stm statements

12

Semantic categories

Z
T
State

Example state:
Lookup:
Update:

Integers {0, 1, -1, 2, -2, ...}
Truth values {ff, tt}
Var — Z

s=[x+~5, y»7, z—0]
sx=5
S[x—6] = [x~6, y—7, z—0]

13

Semantics of expressions

* Arithmetic expressions are side-effect free

— Semantic function 4 [Aexp || : State — Z

— Defined by induction on the syntax tree
Aln]s=n
Al x]s=sx
Alay+a, |s=A[a,]s + Al a, s
Ala,-a,s=Ala,]s- Al a, |s
Ala,*a,|s=Ala,llsx Al a, | s
Al(a,) s=Ala,]s --notneeded
Al-a]s=0-Afa,]s

— Compositional

— Properties can be proved by structural induction

* Similarly for Boolean expressions

14

Operational Semantics

Operational Semantics

The meaning of a program in the
language is explained in terms of a
hypothetical computer which performs
the set of actions which constitute the

elaboration of that program.
[Algol68, Section 2]

Operational Semantics

It is all very well to aim for a more ‘abstract’
and a ‘cleaner’ approach to semantics, but if
the plan is to be any good, the operational

aspects cannot be completely ignored.
[Scott70]

Operational semantics

* Concerned with how to execute programs
— How statements modify state
— Define transition relation between configurations

e Two flavors

— Structural operational semantics: describes how
the individual steps of a computations take place

* So-called “small-step” semantics

— Natural semantics: describes how the overall
results of executions are obtained

* So-called “big-step” semantics

18

Structural operating semantics (SOS)

e aka “Small-step semantics”

(S, s)=(S’, s’)

(

first step

19

Structural operational semantics

* Developed by Gordon Plotkin [TR 1981]

* Configurations: y has one of two forms:
(S, s) Statement S is about to execute on state s
S Terminal (final) state

/ first step

* Transitions (S, s) =y
y =(§’, s’y Execution of S from s is not completed and

remaining computation proceeds from intermediate
configuration y

y =¢ Execution of S from s has terminated and the final
state is s’

* (S, s)is stuck if there is no y such that (S, s) =y

20

Structural semantics for While

[ass...] {(x:=a, s) => s[x~> A[a]s]

SOS

[skip..]] (skip,s)=>s

1 <51' 5> — <51', 5’>
[CoMPeoel 55, SV =05, 5, 57
(S, s)=¢
comp? v
[ComPsosl =155 =15, 57}

[if%] (if bthenS,elseS,, s)=(S,s)

(i) (1f bthenS,elseS,, s)=(S,,s)

if Z[b]s=tt

if Z[b] s =ff

21

Derivation sequences

A derivation sequence of a statement S starting in
state s is either

A finite sequence y,, Y4, ¥, -+ Y, Such that
1. v,=4(S,s)

2. Vi=Yin
3. ¥.is either stuck configuration or a final state

An infinite sequence vy, ¥,, Y5, ... Such that

1. v,=4(S,5)

2. V=Y
Notations:

— Yo =KV, Yo derives y, in k steps

— Yo=Y Yo derives yin a finite number of steps

22

Natural operating semantics (NS)

e aka “Large-step semantics”

(S,s) — ¢’

<

all steps

23

Natural operating semantics

* Developed by Gilles Kahn [STACS 1987]

* Configurations
(S, s) Statement S is about to execute on state s

S Terminal (final) state

e Transitions

(S, sy — s’ Execution of S from s will terminate
with the result state s’

— Ignores non-terminating computations

24

Natural operating semantics

« — defined by rules of the form

side condition

premise \ /
4 V4
<51' 51> — S1 7 0t) <5n' 5n> — Sn if
S,s)—¢
conclusion

* The meaning of compound statements is
defined using the meaning immediate
constituent statements

25

Natural semantics for While

[ass,] (x:=a,s)— s[x~A[a]s]
i) (sxind—s

(S,,s)—5,(S,, sy —s"
(Si; Sy 5) = 5"

[comp,]

i, SR

(if bthenS,elseS, s)—s

[ifﬁns] <521 5> — S’

(if bthenS,elseS,s)—s

if Z[b]s=tt

if Z[b] s =ff

26

Derivation trees

* Using axioms and rules to derive a transition
(S, s) — s’ gives a derivation tree
— Root: (S, s) — s’
— Leaves: axioms
— Internal nodes: conclusions of rules

* Immediate children: matching rule premises

27

Evaluation via derivation sequences

* For any While statement S and state s it is
always possible to find at least one derivation

sequence from (S, s)
— Apply axioms and rules forever or until a terminal
or stuck configuration is reached
* Proposition: there are no stuck configurations
in While

28

The semantic function S,

* The meaning of a statement S is defined as a
partial function from State to State
S.,s: Stm — (State — State)

Seos [S] s = { g if (S, 5) =%
" undefined otherwise

[S]: What a statement S means to the
context: P[S]

* 5, = Xi=x+2

e 5, = xi=x+1 ; x:=x+1

e P[S]=z:=x; S; y:=X; J

~
* Examples:

S, S kip]] S=S
S. . [x:=1]s=s[x~1]

SOS L
S..s [while true do skip]s=undefined

29

The semantic function S,

* The meaning of a statement S is defined as a
partial function from State to State
S..: Stm — (State — State)

Sps S]] s = { s if (S, 5) — s
undefined otherwise

* Examples:
Sps [skip]s=s
S, [x:=1]s=s[x~1]

S . [while true do skip]s=undefined

ns u

30

An equivalence result

* S, and S, are semantically equivalent if
forall sand s’
(S,,s) — s’ ifand only if (S,, s) — s’

— Same semantics

* SOS and NS
— For every statement in While S__[[S]| =S, . [S]
— Proof in pages 40-43

31

While in WHILE

32

Semantic equivalence

* S, and S, are semantically equivalent if
forall sand s’

(S,,s) — s’ ifand only if (S,, s) — s’
* Simple example
whilebdo S
is semantically equivalent to:
if bthen (S, whilebdoS)else skip
— Read proof in pages 26-27

33

Structural semantics for while

(while bdo§,s)=
(1f b then
[while_] S;while bdoS)
else
skip, s)

34

Natural semantics for While

[whilef]

[whilet_]

(while bdoS,s)—s

if Z[b]s=*f

Non-compositional

(§,s) =5, {(while bdoS,s’)—s"
(while bdoS,s)y—s”

if Z[b]s=tt

35

Comparing semantics

Natural Structural
semantics semantics

abort

abort; S

skip; S

if x = 0 then abort else y =y / x

* The natural semantics cannot describe looping executions

— Every execution is represented by a finite derivation tree
* The structural operational semantics can describe both

* Looping executions have infinite derivation sequences

* Every step in the derivation sequence is justified by a finite
derivation tree

 Terminating executions have a finite one

What is a semantics good for?

* Allows to “evaluate” a program

* Properties of programming language
semantics holds for all programs ...

37

What is a semantics good for?

Allows to “evaluate” a program

Properties of programming language
semantics holds for all programs ...

NS: more abstract
— Fewer rules, top-down interpreter, simpler proofs

SOS: more “accurate”
— Order of evaluation, non-termination

38

Operational Semantics

Operational Semantics

Language Extensions

abort statement (like C's exit w/o return value)
Non-determinism
Parallelism

41

While + abort

Abstract syntax
Su:=x:=a| skip | S; S,
if 6 then §, else §,

while bdo §
abort

Abort terminates the execution

— In “skip; S”the statement S executes
— |In Yabort; S”the statement S should never execute

Natural semantics rules: ...?
Structural semantics rules: ...?

42

Comparing semantics

Natural Structural
semantics semantics

abort

abort; S

skip; S

while true do skip

if x = 0 then abort elsey =y / x

* The natural semantics cannot distinguish between looping and
abnormal termination

— Unless we add a special error state
* The structural operational semantics can distinguish

* looping is reflected by infinite derivations and abnormal
termination is reflected by stuck configuration

While + non-determinism

* Abstract syntax
Sz=zx:=a| skip | S; S,
if b then §, else §,

while bdo §
S, or s,

* Either S, is executed or S, is executed
e Example: x:=1 or (x:=2; x:=x+2)

— Possible outcomes for x: 1 and 4

44

While + non-determinism:

natural semantics

1 (Sy, 5) =
[or%,] (S,orS,,s)—=s
2 (Spys)—=s
[0, (S,orS,,s)—=¢s

45

While + non-determinism:
structural semantics

[orl,_] ?

SOS

[or?,] ?

SOS

46

While + non-determinism

e What about the definitions of the semantic
functions?

—S [S,0rS8,]s
_Ssos[[Sl or SQ]]S

47

Comparing semantics

Natural Structural
semantics semantics

X:=1 or (x:=2; X:=x+2)

(while true do skip) or (x:=2; x:=x+2)

* |n the natural semantics non-determinism will suppress
non-termination (looping) if possible

* |In the structural operational semantics non-determinism
does not suppress non-terminating statements

While + parallelism

Abstract syntax
S:=x:=a | skip | §; S,
if b then §, else §,

while bdo S
Sy IS,

* All the interleaving of S, and S, are executed

e Example: x:=1 || (x:=2; x:=x+2)

— Possible outcomes for x: 1, 3,4

49

While + parallelism:
structural semantics

S, 85)=(S5/,s)
ar1 < 1 11’ 4
[p sos] <Sl||52’ 5> = <Sl ||52;) >

, (S, s)=¢
[par sos] <Sl||52’ S> — <521 SI>

S, 5)=(S,,s")
ar3 < 27 2] ’
[p SOS] <Sl||52’ S> == <Sl||52) S >

4 5,55
[par sos] <Sl||52’ S> — <511 SI>

50

While + parallelism:
natural semantics

Q

Challenge problem:
Give a formal proof that
this is in fact impossible.

Idea: try to prove on a
restricted version of While
without loops/conditions

51

Example: derivation sequences
of a parallel statement

(x:=1 || (x:=2; x:=x+2),5)=

52

While + Local Variables

o S:::...|Let r:=ain &

53

Conclusion

* |In the structural operational semantics we
concentrate on small steps so interleaving of
computations can be easily expressed

* |n the natural semantics immediate
constituent is an atomic entity so we cannot
express interleaving of computations

54

While + memory

Abstract syntax

S:=x:=a | skip | §; S,

if b then §, else §,
while bdo §

State : Stack X Heap
Stack : Var = Z

Heap:Z—/

Integers as memory
addresses

-

55

From states to traces

56

Trace semantics

Low-level (conceptual) semantics
Add program counter (pc) with states
— Y = State + pc

The meaning of a program is a relation
TC Y x Stm x),

Execution is a finite/infinite sequence of states

A useful concept in defining static analysis as
we will see later

57

Example

58

Traces

: T = * X e e
3: Y Y Set of traces is infinite therefore trace
semantics is incomputable in general

({x~2,y~3},1) [y : =1] ({x~>2,y~1},2) [- (x=1)] ({x~>2,y~1},3) [y:=y*x]
({x—2,y~2},4) [x:=x-1] ({x~1,y~2},2) [~ (x=1)] ({x~1,y~2},5)

({x~3,y~3},1) [y : =1] {{x~3,y~1},2) [- (x=1)] {{x~3,y~1},3) [y:=y*x]
({x~3,y~3},4) [x:=x-1] ({x~2,y~3},2) [- (x=1)] ({x~2,y~3},3)
[g{::y*x] ({x—2,y~6},4) [x:=x-1] ({x~>1,y~6},2) [~ (x=1)] ({x~1,y~6},
5

59

Operational semantics summary

SOS is powerful enough to describe imperative
programs

— Can define the set of traces
— Can represent program counter implicitly

— Handle goto statements and other non-trivial control
constructs (e.g., exceptions)

Natural operational semantics is an abstraction

Different semantics may be used to justify
different behaviors

Thinking in concrete semantics is essential for a
analysis writer

60

Denotational Semantics

Denotational Semantics

e A “mathematical” semantics
— [[S] is a mathematical object
— A fair amount of mathematics is involved

 Compositional

* More abstract and canonical than Op. Sem.

— No notion of “execution”
* Merely definitions

— No small step vs. big step

62

Denotational Semantics

Denotational semantics is also called
— Fixed point semantics

— Mathematical semantics

— Scott-Strachey semantics

63

Plan

* Denotational semantics of While (1st attempt)
 Math

— Complete partial orders
— Montonicity
— Continuity
* Denotational semantics of While

64

Denotational semantics
A: Aexp — (2—N)
B: Bexp —=(=—T)
S: Stm —(2—2)
Defined by structural induction

65

Denotational semantics

A: Aexp — (2—N)

B: Bexp —(2—T)

S: Stm —(2—2)

Defined by structural induction

wb]]ﬁm[[s]]ﬁsos[[s]] J

66

> > > P> > P

Denotational semantics of Aexp

: Aexp — (2—N)

[n]={(o, n) | 0 EZ}

[X] = {(c, o X) | 0 EZ}

[ag+a,]| ={(o, ng+n,) | (0, ng)EA[a,], (o,n,)EA]a,]}
[ag-a,] = {(0, ngn,) | (0, ng)EA[a,]], (o,n,)EA[a,]}
[agxa,] = {(o, ngx n,) | (0, ng)EA[a,], (o,n,)EA[a,]}

Functions Lemma: A [[a] is a function
represented as
sets of pairs

67

Denotational semantics of
Aexp with A

* A: Aexp — (2—N)

° A

> > > P

[n] = AoEZ.n

[X] = AoEZ.0(X)

[ag+a,] = AoEZ.(A [a,]o+A[a,] o)
[ag-a,] = No€EZ.(A [a,] o-Aa,] o)
[agxa,]| = AoEZ.(A [a,]lo x Ala,]o)

68

* B
B
e B |

Denotational semantics of Bexp

 B: Bexp — (2—T)
[true] = {(o, true) | o €2}

[false] = {(o, false)

[a,=a,] = {(o, true)
{(o, false)

o &2}

0 EX & Ala,]o=A[a,] o}U
0 EX & Al a,lJlo=Aa,] o}

* B[ay=<a,]| ={(o, true) | c €EXZ & A[a,]Jlo < Ala,] o}U
{(0, false) | 0 EX & Alay]lotA[a,] o}

° B
° B
B

| — |

| e— |

[1b] ={(0, 1) | 0 EZ, (0, t) EB[b]}
boab,] ={(0, t, Ast,) | 0 EZ, (0, t,) EB[b,], (o, t;) EB[b,] }
b,vb,] ={(0, t, v;t,) | 0 EZ, (0, t,) EB[b,], (0, t;) EB[b,] }

Lemma: B[[b] is a function

69

Denotational semantics of statements?

* Intuition:

—Running a statement s starting from a
state o yields another state o’

« Can we define S [[s]| as a function that
mapsotoo’ ?

—S [.]: Stm —=(Z —= X)

70

Denotational semantics of commands?

Problem: running a statement might not yield
anything if the statement does not terminate

We introduce the special element L to denote a
special outcome that stands for non-termination

For any set X, we write X, for X U {1}

Convention:

—wheneverfEX — X , weextend fto X, = X,
“strictly” so that f(L) =L

71

Denotational semantics of statements?

* We try:

— S
e s
N
N

-|f
if B

[.] :stm—(E, —-3,)

_sqp]]o o

: S0 731 :I]O‘S ”:51]] (S [[50]]0)

0 then s, else sl]] o=

Ib]] O then S [[so]] O else S [[51]] O

72

Examples

S [X:= 2; X:=1] o= o[X~1]
S -|f true then X:=2; X:=1 else ..]] 0= O[X—1]

The semantics does not care about
intermediate states

So far, we did not explicitly need L

73

Denotational semantics of loops?

+ S|lwhilebdos [|o=2

74

Denotational semantics of statements?
Abbreviation W=S |[while b do s

ldea: we rely on the equivalence
while b do s ~ if b then (s; while b do s) else skip

We may try using unwinding equation
W(o) = if BIb]]O then W(S[[s]] O) else o
Unacceptable solution

— Defines W in terms of itself

— It not evident that a suitable W exists

— It may not describe W uniquely
(e.g., for while true do skip)

/5

Introduction to Domain Theory

 We will solve the unwinding equation through a

general theory of recursive equations

* Think of programs as processors of streams of bits
(streams of 0’ s and 1’ s, possibly terminated by S)

What properties can we expect?

input —

— OUutput

76

Motivation

Let “isone” be a function that must return “1S”
when the input string has at least a 1 and “0S”
otherwise

— isone(00...0S) =0S
— isone(xx...1...S) =1S
— isone(0...0) =7

Monotonicity : Output is never retracted

— More information about the input is reflected in
more information about the output

How do we express monotonicity precisely?

77

Montonicity

* Define a partial order
XEY
— A partial order is reflexive, transitive, and anti-symmetric
— y is a refinement of x

* “more precise”
* For streams of bits x =y when x is a prefix of y

* For programs, a typical order is:
— No output (yet) = some output

/78

Montonicity

* Aset equipped with a partial order is a poset
* Definition:
— D and E are postes

— A function f: D —E is monotonic if
Vx,y €D: x =, y = f(x) = f(y)

— The semantics of the program ought to be a
monotonic function

* More information about the input leads to more
information about the output

79

Montonicity Example

* Consider our “isone” function with the prefix
ordering
* Notation:
— OXis the stream with k consecutive 0" s
— 0%is the infinite stream with only 0’ s
e Question (revisited): what is isone(0k)?
— By definition, isone(0%S) = 0S and isone(0¥1S) = 1S
— But 0= 0kS and Ok = 0 k1S
— “isone” must be monotone, so:
* isone(0%) = isone(0kS) = 0S
 isone(0) = isone(0k1S) = 1S
— Therefore, monotonicity requires that isone(0*) is a
common prefix of 0S and 1S, namely ¢

80

Motivation

Are there other constraints on “isone’ ?

Define “isone” to satisfy the equations

— isone(g)=¢

— isone(1s)=1S

— isone(0s)=isone(s)

— isone(S)=0S

What about 0*?

Continuity: finite output depends only on finite input
(no infinite lookahead)

81

Chains

* A chain is a countable increasing sequence
<X>={x. EX | X, EX E ... }

* An upper bound of a set if an element “bigger” than
all elements in the set

* The least upper bound is the “smallest” among
upper bounds:

— x; E LU<x,>foralliEeN

— Lxx> Ey for all upper bounds y of <x.>
and it is unique if it exists

82

Complete Partial Orders

* Not every poset has an upper bound
— with L= n and n=n for all n EN

— {1, 2} does not have an upper bound

* Sometimes chains have no upper bound

The chain
1 0<l<s2=...

does not have an upper bound

1

1

83

Complete Partial Orders

It is convenient to work with posets where every
chain (not necessarily every set) has a least upper
bound

A partial order P is complete if every chain in P has a
least upper bound also in P

We say that P is a complete partial order (cpo)

A cpo with a least (“bottom”) element L is a pointed
cpo (pcpo)

84

Examples of cpo’ s

Any set P with the order
xCyifand onlyif x=yis acpo
It is discrete or flat

If we add L so that L= x for all x € P, we get a flat pointed cpo

The set N with < is a poset with a bottom, but not a complete
one

The set N U { o0 } with n = is a pointed cpo
The set N with= is a cpo without bottom

Let S be a set and P(S) denotes the set of all subsets of S
ordered by set inclusion
— P(S) is a pointed cpo

85

The End

86

