Program Analysis and Verification

0368-4479

http://www.cs.tau.ac.il/~maon/teaching/2013-2014/paav/paav1314b.html

Noam Rinetzky

Lecture 4: Denotational Semantics

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

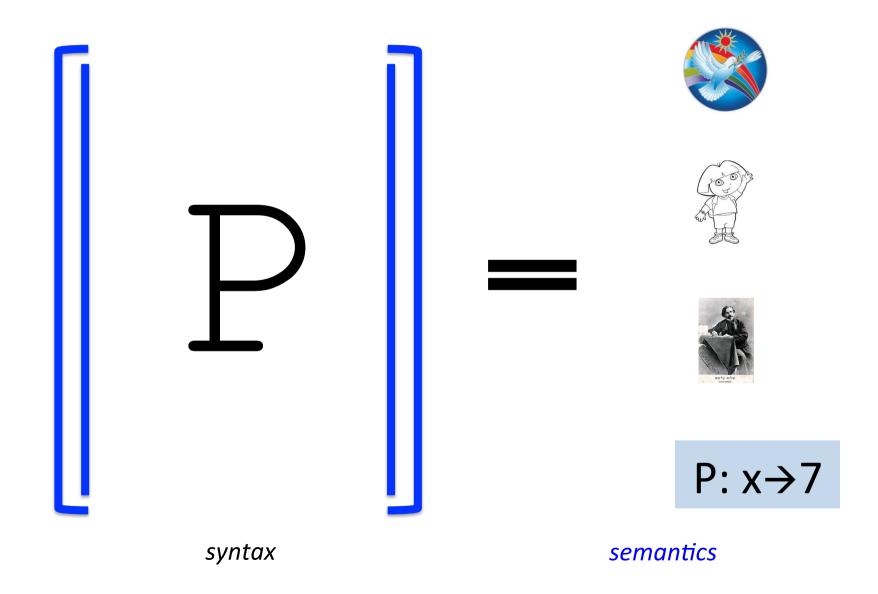
Good manners

Mobiles

Admin

- Grades
 - First home assignment will be published on Tuesday
 - (contents according to progress today)
 - Due lesson 6
- ✓ Scribes (this week)
- ? Scribes (next week)
 - From now on in singles

What do we mean?



Why formal semantics?

Implementation-independent definition of a programming language

 Automatically generating interpreters (and some day maybe full fledged compilers)

Verification and debugging

— if you don't know what it does, how do you know its incorrect?

Programming Languages

- Syntax
 - "how do I write a program?"
 - BNF
 - "Parsing"
- Semantics
 - "What does my program mean?"
 - **—** ...

Program semantics

- Operational: State-transformer
- Denotational: Mathematical objects
- Axiomatic: Predicate-transformer

Denotational semantics

- Giving mathematical models of programming languages
 - Meanings for program phrases (statements) defined abstractly as elements of some suitable mathematical structure.
- It is not necessary for the semantics to determine an implementation, but it should provide criteria for showing that an implementation is correct
 - Dana Scott 1980

Syntax: While

Abstract syntax:

$$a := n \mid x \mid a_1 + a_2 \mid a_1 \star a_2 \mid a_1 - a_2$$
 $b :=$ true \mid false
 $\mid a_1 = a_2 \mid a_1 \leq a_2 \mid \neg b \mid b_1 \wedge b_2$
 $S := x := a \mid$ skip $\mid S_1; S_2 \mid$
 \mid if b then S_1 else $S_2 \mid$

Syntactic categories

 $n \in \mathbf{Num}$ numerals

 $x \in Var$ program variables

 $a \in \mathbf{Aexp}$ arithmetic expressions

 $b \in \mathbf{Bexp}$ boolean expressions

 $S \in \mathbf{Stm}$ statements

Denotational semantics

- A: Aexp \rightarrow ($\Sigma \rightarrow N$)
- **B**: Bexp \rightarrow ($\Sigma \rightarrow T$)
- **S:** Stm \rightarrow ($\Sigma \rightarrow \Sigma$)
- Defined by structural induction

$$\mathcal{A}$$
 [a], \mathcal{B} [b], S_{ns} [S], S_{sos} [S]

Semantic categories

Z Integers {0, 1, -1, 2, -2, ...}

T Truth values {ff, tt}

State $Var \rightarrow Z$

Example state: $s=[x\mapsto 5, y\mapsto 7, z\mapsto 0]$

Lookup: $s \times = 5$

Update: $s[x\mapsto 6] = [x\mapsto 6, y\mapsto 7, z\mapsto 0]$

Denotational Semantics

- A "mathematical" semantics
 - [S] is a mathematical object
 - A fair amount of mathematics is involved
- Compositional
 - $\llbracket \mathbf{while} \ b \ \mathbf{do} \ S \rrbracket = \mathsf{F}(\llbracket b \rrbracket, \llbracket S \rrbracket)$
 - Recall:

$$\langle S, \underline{s} \rangle \to \underline{s}', \langle \underline{\text{while } b \text{ do } S, \underline{s}' \rangle \to \underline{s}''}$$
 if $\mathcal{B}[\![b]\!] \underline{s} = \mathbf{tt}$

- More abstract and canonical than Op. Sem.
 - No notion of "execution"
 - Merely definitions
 - No small step vs. big step
- Concurrency is an issue

Denotational Semantics

- Denotational semantics is also called
 - Fixed point semantics
 - Mathematical semantics
 - Scott-Strachey semantics
- The mathematical objects are called denotations
 - Denotation: meaning; especially, a direct specific meaning as distinct from an implied or associated idea
 - Though we still maintain a computational intuition

Important features

- **Syntax independence**: The denotations of programs should not involve the syntax of the source language.
- **Soundness**: All observably distinct programs have distinct denotations;
- **Full abstraction**: Two programs have the same denotations precisely when they are observationally equivalent.
- Compositionality

Plan

- Denotational semantics of While (1st attempt)
- Math
 - Complete partial orders
 - Monotonicity
 - Continuity
- Denotational semantics of while

Denotational semantics

- A: Aexp \rightarrow ($\Sigma \rightarrow N$)
- **B**: Bexp \rightarrow ($\Sigma \rightarrow$ T)
- **S**: Stm \rightarrow ($\Sigma \rightarrow \Sigma$)
- Defined by structural induction
 - Compositional definition

Denotational semantics

- A: Aexp \rightarrow ($\Sigma \rightarrow N$)
- **B**: Bexp \rightarrow ($\Sigma \rightarrow T$)
- **S:** Stm \rightarrow ($\Sigma \rightarrow \Sigma$)
- Defined by structural induction
 - Compositional definition

$$\mathcal{A}$$
 [a], \mathcal{B} [b], S_{ns} [S], S_{sos} [S]

Denotational semantics of Aexp

- **A:** Aexp \rightarrow ($\Sigma \rightarrow N$)
- A $\llbracket n \rrbracket = \{(\sigma, n) \mid \sigma \in \Sigma\}$
- $A [X] = \{(\sigma, \sigma X) \mid \sigma \in \Sigma\}$
- $\mathbf{A} [[a_0 + a_1]] = \{(\sigma, n_0 + n_1) \mid (\sigma, n_0) \in \mathbf{A} [[a_0]], (\sigma, n_1) \in \mathbf{A} [[a_1]] \}$
- $A [a_0-a_1] = \{(\sigma, n_0-n_1) \mid (\sigma, n_0) \in A[a_0], (\sigma, n_1) \in A[a_1] \}$
- $\mathbf{A} [a_0 \times a_1] = \{(\sigma, n_0 \times n_1) \mid (\sigma, n_0) \in \mathbf{A} [a_0], (\sigma, n_1) \in \mathbf{A} [a_1] \}$

Functions represented as sets of pairs

Lemma: A \[a\] is a function

Denotational semantics of Aexp with λ

- **A:** Aexp \rightarrow ($\Sigma \rightarrow N$)
- A $[n] = \lambda \sigma \in \Sigma.n$
- A $[X] = \lambda \sigma \in \Sigma . \sigma(X)$
- $\mathbf{A} [\mathbf{a}_0 + \mathbf{a}_1] = \lambda \sigma \in \Sigma. (\mathbf{A} [\mathbf{a}_0] \sigma + \mathbf{A} [\mathbf{a}_1] \sigma)$
- $\mathbf{A} [\mathbf{a}_0 \mathbf{a}_1] = \lambda \sigma \in \Sigma. (\mathbf{A} [\mathbf{a}_0] \sigma \mathbf{A} [\mathbf{a}_1] \sigma)$
- $\mathbf{A} [\mathbf{a}_0 \times \mathbf{a}_1] = \lambda \sigma \in \Sigma. (\mathbf{A} [\mathbf{a}_0] \sigma \times \mathbf{A} [\mathbf{a}_1] \sigma)$

Functions represented as lambda expressions

Denotational semantics of Bexp

- **B**: Bexp \rightarrow ($\Sigma \rightarrow T$)
- **B** [[true]] = { $(\sigma, \text{true}) \mid \sigma \in \Sigma$ }
- **B** [false] = { $(\sigma, \text{ false}) \mid \sigma \in \Sigma$ }
- $\mathbf{B} [[\mathbf{a}_0 = \mathbf{a}_1]] = \{(\sigma, \text{true}) \mid \sigma \in \Sigma \& \mathbf{A}[[\mathbf{a}_0]] \sigma = \mathbf{A}[[\mathbf{a}_1]] \sigma \} \cup \{(\sigma, \text{false}) \mid \sigma \in \Sigma \& \mathbf{A}[[\mathbf{a}_0]] \sigma \neq \mathbf{A}[[\mathbf{a}_1]] \sigma \}$
- $\mathbf{B} \ [\mathbf{a}_0 \leq \mathbf{a}_1] = \{ (\sigma, \text{true}) \mid \sigma \in \Sigma \& \mathbf{A} [\mathbf{a}_0] \sigma \leq \mathbf{A} [\mathbf{a}_1] \sigma \} \cup \{ (\sigma, \text{false}) \mid \sigma \in \Sigma \& \mathbf{A} [\mathbf{a}_0] \sigma \not\leq \mathbf{A} [\mathbf{a}_1] \sigma \}$
- $\mathbf{B} \llbracket \neg \mathbf{b} \rrbracket = \{(\sigma, \neg_\mathsf{T} t) \mid \sigma \in \Sigma, (\sigma, t) \in \mathbf{B} \llbracket \mathbf{b} \rrbracket \}$
- $\mathbf{B} \llbracket \mathbf{b}_0 \wedge \mathbf{b}_1 \rrbracket = \{ (\sigma, \mathbf{t}_0 \wedge_T \mathbf{t}_1) \mid \sigma \in \Sigma, (\sigma, \mathbf{t}_0) \in \mathbf{B} \llbracket \mathbf{b}_0 \rrbracket, (\sigma, \mathbf{t}_1) \in \mathbf{B} \llbracket \mathbf{b}_1 \rrbracket \}$
- $\mathbf{B} \llbracket \mathbf{b}_0 \vee \mathbf{b}_1 \rrbracket = \{ (\sigma, \mathbf{t}_0 \vee_{\mathsf{T}} \mathbf{t}_1) \mid \sigma \in \Sigma, (\sigma, \mathbf{t}_0) \in \mathbf{B} \llbracket \mathbf{b}_0 \rrbracket, (\sigma, \mathbf{t}_1) \in \mathbf{B} \llbracket \mathbf{b}_1 \rrbracket \}$

Lemma: B [b] is a function

Denotational semantics of statements?

- Intuition:
 - –Running a statement s starting from a state σ yields another state σ'
- Can we define **S** $\llbracket s \rrbracket$ as a function that maps σ to σ ?
 - $-\mathbf{S} \, [\![.]\!] : \mathsf{Stm} \to (\Sigma \to \Sigma)$

Denotational semantics of commands?

- Problem: running a statement might not yield anything if the statement does not terminate
- Solution: a special element ⊥ to denote a special outcome that stands for non-termination
 - − For any set X, we write X_{\perp} for $X \cup \{\bot\}$

Convention:

- whenever f ∈ X → X $_{\perp}$ we extend f to X $_{\perp}$ → X $_{\perp}$ "strictly" so that f(\perp) = \perp

Denotational semantics of statements?

• We try:

$$-S \llbracket . \rrbracket : Stm \rightarrow (\Sigma_{\perp} \rightarrow \Sigma_{\perp})$$

- S $[skip]\sigma = \sigma$
- $S \llbracket s_0; s_1 \rrbracket \sigma = S \llbracket s_1 \rrbracket (S \llbracket s_0 \rrbracket \sigma)$
- S [if b then s_0 else s_1] σ =

 if B [b] σ then S [s_0] σ else S [s_1] σ

Examples

- S $[X:=2; X:=1] \sigma = \sigma[X\mapsto 1]$
- S [if true then X:=2; X:=1 else ...] $\sigma = \sigma[X \mapsto 1]$

- The semantics does not care about intermediate states
- So far, we did not explicitly need \perp

• S [while b do s] $\sigma = ?$

 Goal: Find a function from states to states such which defines the meaning of W

- Intuition:
 - while b do s

~

- if b then (s; while b do s) else skip

 Goal: Find a function from states to states such which defines the meaning of W

• Intuition:

```
- S[while b do s]
```

=

— S[if b then (s; while b do s) else skip]

 Goal: Find a function from states to states such which defines the meaning of W

• Intuition:

```
- S[while b do s]
```

=

— S[if b then (s; while b do s) else skip]

- Abbreviation W=S [while b do s]
- Solution 1:
 - $W(\sigma) = \text{if } B \llbracket b \rrbracket \sigma \text{ then } W(S \llbracket s \rrbracket \sigma) \text{ else } \sigma$

- Unacceptable solution
 - Defines W in terms of itself
 - It not evident that a suitable W exists
 - It may not describe W uniquely (e.g., for while true do skip)

 Goal: Find a function from states to states such which defines the meaning of W

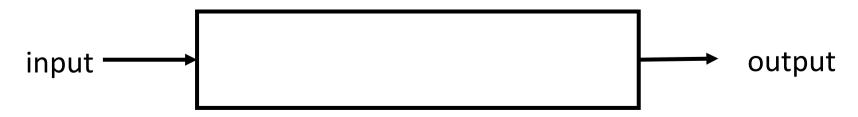
- Approach: Solve domain equation
 - S∏while b do s∏

=

- S[if b then (s; while b do s) else skip]

Introduction to Domain Theory

- We will solve the unwinding equation through a general theory of recursive equations
- Think of programs as processors of streams of bits (streams of 0's and 1's, possibly terminated by \$)
 What properties can we expect?



Motivation

- Let "isone" be a function that must return "1\$" when the input string has at least a 1 and "0\$" otherwise
 - isone(00...0\$) = 0\$
 - isone(xx...1...\$) = 1\$
 - isone(0...0) = ?
- Monotonicity: in terms of information
 - Output is never retracted
 - More information about the input is reflected in more information about the output
 - How do we express monotonicity precisely?

Montonicity

Define a partial order

```
x \sqsubseteq y
```

- A partial order is reflexive, transitive, and anti-symmetric
- y is a refinement of x
 - "more precise"
- For streams of bits $x \sqsubseteq y$ when x is a prefix of y
- For programs, a typical order is:
 - No output (yet) \sqsubseteq some output

Montonicity

- A set equipped with a partial order is a poset
- Definition:
 - D and E are postes
 - A function f: D →E is monotonic if $\forall x, y \in D: x \sqsubseteq_D y \Rightarrow f(x) \sqsubseteq_E f(y)$
 - The semantics of the program ought to be a monotonic function
 - More information about the input leads to more information about the output

Montonicity Example

- Consider our "isone" function with the prefix ordering
- Notation:
 - -0^k is the stream with k consecutive 0's
 - -0^{∞} is the infinite stream with only 0's
- Question (revisited): what is isone(0^k)?
 - By definition, isone(0^k \$) = 0\$ and isone(0^k 1\$) = 1\$
 - But $0^k \sqsubseteq 0^k$ \$ and $0^k \sqsubseteq 0^k$ 1\$
 - "isone" must be monotone, so:
 - isone(0^k) \sqsubseteq isone(0^k \$) = 0\$
 - isone(0^k) \sqsubseteq isone($0^k1\$$) = 1\$
 - Therefore, monotonicity requires that isone(0^k) is a common prefix of 0\$ and 1\$, namely ϵ

Motivation

- Are there other constraints on "isone"?
- Define "isone" to satisfy the equations
 - isone(ε)= ε
 - isone(1s)=1\$
 - isone(0s)=isone(s)
 - isone(\$) = 0\$
- What about 0[∞]?
- Continuity: finite output depends only on finite input (no infinite lookahead)
 - Intuition: A program that can produce observable results can do it in a finite time

Chains

- A chain is a countable increasing sequence $\langle x_i \rangle = \{x_i \in X \mid x_0 \sqsubseteq x_1 \sqsubseteq ... \}$
- An upper bound of a set if an element "bigger" than all elements in the set
- The least upper bound is the "smallest" among upper bounds:
 - $x_i \sqsubseteq \sqcup \langle x_i \rangle$ for all $i \in \mathbb{N}$
 - $\sqcup <x_i>$ \sqsubseteq y for all upper bounds y of $<x_i>$ and it is unique if it exists

Complete Partial Orders

- Not every poset has an upper bound
 - with $\bot \sqsubseteq$ n and n \sqsubseteq n for all n ∈N

0 1 2 ...

- {1, 2} does not have an upper bound
- Sometimes chains have no upper bound

```
\begin{array}{ccc}
\vdots & & & \\
2 & & & \\
1 & & & \\
0 & & \\
\end{array}

The chain

0 \leq 1 \leq 2 \leq \dots

does not have an upper bound
```

Complete Partial Orders

- It is convenient to work with posets where every chain (not necessarily every set) has a least upper bound
- A partial order P is complete if every chain in P has a least upper bound also in P
- We say that P is a complete partial order (cpo)
- A cpo with a least ("bottom") element ⊥ is a pointed cpo (pcpo)

Examples of cpo's

- If we add \bot so that $\bot \sqsubseteq x$ for all $x \in P$, we get a flat pointed cpo
- The set N with ≤ is a poset with a bottom, but not a complete one
- The set $N \cup \{\infty\}$ with $n \leq \infty$ is a pointed cpo
- The set N with≥ is a cpo without bottom
- Let S be a set and P(S) denotes the set of all subsets of S ordered by set inclusion
 - P(S) is a pointed cpo

Constructing cpos

• If D and E are pointed cpos, then so is $D \times E$ $(x, y) \sqsubseteq_{D \times E} (x', y') \text{ iff } x \sqsubseteq_{D} x' \text{ and } y \sqsubseteq_{E} y'$ $\bot_{D \times E} = (\bot_{D}, \bot_{E})$ $\bigsqcup (x_{i}, y_{i}) = (\bigsqcup_{D} x_{i}, \bigsqcup_{E} y_{i})$

Constructing cpos (2)

• If S is a set of E is a pcpos, then so is $S \rightarrow E$ $m \sqsubseteq m' \text{ iff } \forall s \in S: m(s) \sqsubseteq_E m'(s)$ $\bot_{S \rightarrow E} = \lambda s. \bot_E$ $\sqcup (m, m') = \lambda s.m(s) \sqcup_F m'(s)$

Continuity

 A monotonic function maps a chain of inputs into a chain of outputs:

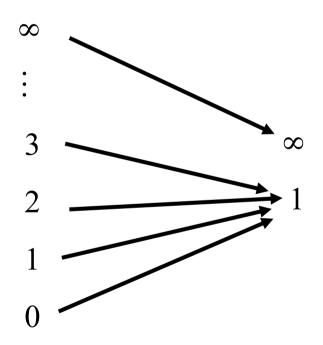
$$x_0 \sqsubseteq x_1 \sqsubseteq ... \Rightarrow f(x_0) \sqsubseteq f(x_1) \sqsubseteq ...$$

• It is always true that:

$$\bigsqcup_{i} \langle f(x_i) \rangle \sqsubseteq f(\bigsqcup_{i} \langle x_i \rangle)$$

• But $f(\bigsqcup_i < x_i >) \sqsubseteq \bigsqcup_i < f(x_i) >$ is not always true

A Discontinuity Example



$$f(\bigsqcup_{i}) \neq \bigsqcup_{i} < f(x_{i})>$$

Continuity

- Each f(x_i) uses a "finite" view of the input
- $f(| \langle x_i \rangle)$ uses an "infinite" view of the input
- A function is **continuous** when $f(| \langle xi \rangle) = | |_i \langle f(x_i) \rangle$
- The output generated using an infinite view of the input does not contain more information than all of the outputs based on finite inputs

Continuity

- Each f(x_i) uses a "finite" view of the input
- $f(| \langle x_i \rangle)$ uses an "infinite" view of the input
- A function is **continuous** when $f(\sqcup \langle xi \rangle) = \sqcup_i \langle f(x_i) \rangle$
- The output generated using an infinite view of the input does not contain more information than all of the outputs based on finite inputs
- Scott's thesis: The semantics of programs can be described by a continuous functions

Examples of Continuous Functions

- For the partial order (N $\cup \{\infty\}$, \leq)
 - The identity function is continuous $id(\sqcup n_i) = \sqcup id(n_i)$
 - The constant function "five(n)=5" is continuous five($\sqcup n_i$) = \sqcup five(n_i)
 - If isone(0[∞]) =ε then isone is continuos
- For a flat cpo A, any monotonic function $f: A_{\perp} \rightarrow A_{\perp}$ such that f is strict is continuous
- Chapter 8 of the Wynskel textbook includes many more continuous functions

Fixed Points

• Solve equation: $W(\sigma) = \begin{cases} W(S[s] \sigma) & \text{if } B[b](\sigma) = \text{true} \\ \sigma & \text{if } B[b](\sigma) = \text{false} \\ \bot & \text{if } B[b](\sigma) = \bot \end{cases}$

where
$$W: \Sigma_{\perp} \rightarrow \Sigma_{\perp}$$
; $W = S[[while be do s]]$

• Alternatively, W = F(W) where:

$$F(W) = \lambda \sigma. \begin{cases} W(S[s]\sigma) & \text{if } B[b](\sigma)=\text{true} \\ \sigma & \text{if } B[b](\sigma)=\text{false} \\ \bot & \text{if } B[b](\sigma)=\bot \end{cases}$$

Fixed Point (cont)

- Thus we are looking for a solution for W = F(W)
 - a fixed point of F
- Typically there are many fixed points
- We may argue that W ought to be continuous $W \in [\Sigma_1 \to \Sigma_1]$
- Cut the number of solutions
- We will see how to find the least fixed point for such an equation provided that F itself is continuous

Fixed Point Theorem

- Define $F^k = \lambda x$. F(F(..., F(x)...)) (F composed k times)
- If D is a pointed cpo and F : D → D is continuous, then
 - for any fixed-point x of F and k ∈ N
 F^k (⊥) \sqsubseteq x
 - The least of all fixed points is $\bigsqcup_k F^k(\bot)$
- Proof:
 - i. By induction on k.
 - Base: F^0 (\perp) = $\perp \sqsubseteq x$
 - Induction step: $F^{k+1}(\bot) = F(F^k(\bot)) \sqsubseteq F(x) = x$
 - ii. It suffices to show that $\bigsqcup_k F^k(\bot)$ is a fixed-point
 - $F(\bigsqcup_k F^k(\bot)) = \bigsqcup_k F^{k+1}(\bot) = \bigsqcup_k F^k(\bot)$

Fixed-Points (notes)

- If F is continuous on a pointed cpo, we know how to find the least fixed point
- All other fixed points can be regarded as refinements of the least one
 - They contain more information, they are more precise
 - In general, they are also more arbitrary

Fixed-Points (notes)

- If F is continuous on a pointed cpo, we know how to find the least fixed point
- All other fixed points can be regarded as refinements of the least one
 - They contain more information, they are more precise
 - In general, they are also more arbitrary
 - They also make less sense for our purposes

Denotational Semantics of While

- \sum_{\perp} is a flat pointed cpo
 - A state has more information on non-termination
 - Otherwise, the states must be equal to be comparable (information-wise)
- We want strict functions $\sum_{\perp} \rightarrow \sum_{\perp}$
 - therefore, continuous functions
- The partial order on $\Sigma_{\perp} \to \Sigma_{\perp}$ f \sqsubseteq g iff f(x) = \perp or f(x) = g(x) for all x $\in \Sigma_{\perp}$
 - g terminates with the same state whenever f terminates
 - g might terminate for more inputs

Denotational Semantics of While

• Recall that W is a fixed point of $F:[[\sum_{\perp} \rightarrow \sum_{\perp}] \rightarrow [\sum_{\perp} \rightarrow \sum_{\perp}]]$

• F is continuous
$$F(w) = \lambda \sigma$$
.
$$\begin{cases} w(S[s](\sigma)) \text{ if } B[b](\sigma) = \text{true} \\ \sigma & \text{if } B[b](\sigma) = \text{false} \\ \bot & \text{if } B[b](\sigma) = \bot \end{cases}$$

- Thus, we set $S[[while b do c]] = \bigsqcup F^k(\bot)$
 - Least fixed point
 - Terminates least often of all fixed points
- Agrees on terminating states with all fixed point

Denotational Semantics of While

- S [skip]] = $\lambda \sigma . \sigma$
- $S[X := exp] = \lambda \sigma . \sigma[X \mapsto A[exp] \sigma]$
- $S [s_0; s_1] = \lambda \sigma. S [s_1] (S [s_0] \sigma)$
- S [if b then s_0 else s_1] = $\lambda \sigma$. if B[b] σ then S [s_0] σ else S [s_1] σ
- S [while b do s] = $\sqcup F^k(\bot)$
 - k=0, 1, ...
 - − F = λ w. λ σ. if B[[b]](σ)=true w(S[[s]](σ)) else σ

Example(1)

- while true do skip
- $F:[[\sum_{\perp} \rightarrow \sum_{\perp}] \rightarrow [\sum_{\perp} \rightarrow \sum_{\perp}]]$

$$F = \lambda w.\lambda \sigma. \begin{cases} w(S[s](\sigma)) \text{ if } B[b](\sigma) = \text{true} \\ \sigma \text{ if } B[b](\sigma) = \text{false} \\ \bot \text{ if } B[b](\sigma) = \bot \end{cases}$$

```
B[[true]]=\lambda \sigma.true
S[[skip]]=\lambda \sigma.\sigma
F = \lambda w.\lambda \sigma.w(\sigma)
```

$$F^{0}(\bot) = \bot \quad \Box \quad F^{1}(\bot) = \bot \quad \Box \quad F^{2}(\bot) = \bot \quad = \bot$$

Example(2)

- while false do s
- $F:[[\sum_{\perp} \rightarrow \sum_{\perp}] \rightarrow [\sum_{\perp} \rightarrow \sum_{\perp}]]$

$$F = \lambda w. \lambda \sigma. \begin{cases} w(S[s](\sigma)) \text{ if } B[b](\sigma) = \text{true} \\ \sigma \text{ if } B[b](\sigma) = \text{false} \\ \bot \text{ if } B[b](\sigma) = \bot \end{cases}$$

B[[false]]= $\lambda \sigma$.false

$$F = \lambda w. \lambda \sigma. \sigma$$

$$F^{0}(\bot) = \bot \quad \Box \quad F^{1}(\bot) = \lambda \sigma. \sigma \quad \Box F^{2}(\bot) = \lambda \sigma. \sigma \quad = \lambda \sigma. \sigma$$

Example(3)

where

```
F = \lambda w. \lambda \sigma. \text{ if } \sigma(x) \neq 3 \text{ } w(\sigma[x \mapsto \sigma(x) - 1]) \text{ else } \sigma
F^0(\bot)
                      \perp
\mathsf{F}^1(\bot)
                      if \sigma(x) \neq 3 \perp (\sigma[x \mapsto \sigma(x) - 1]) else \sigma
                      if \sigma(x) \neq 3 then \perp else \sigma
F^2(\perp)
                      if \sigma(x) \neq 3 then F^1(\sigma[x \mapsto \sigma(x) - 1]) else \sigma
                       if \sigma(x) \neq 3 then (if \sigma[x \mapsto \sigma(x) - 1] \times x \neq 3 then \bot else \sigma[x \mapsto \sigma(x) - 1]) else \sigma
                       if \sigma(x) \neq 3 (if \sigma(x) \neq 4 then \perp else \sigma(x) + \sigma(x) - 1) else \sigma(x) \neq 3
                       if \sigma(x) \in \{3, 4\} then \sigma(x \mapsto 3) else \perp
\mathsf{F}^\mathsf{k}(\bot)
                      if \sigma(x) \in \{3, 4, ...k\} then \sigma(x \mapsto 3) else \perp
                      if \sigma(x) \ge 3 then \sigma[x \mapsto 3] else \bot
Ifp(F)
```

Example 4 Nested Loops

```
P ==
Z := 0;
while X > 0 do (
  Y := X;
   while (Y>0) do
        Z := Z + Y;
        Y := Y - 1;
  X = X - 1
```

Example 4 Nested Loops

```
s[[nner-loop]] = \begin{cases} [Y \mapsto 0][Z \mapsto \sigma(Z) + \sigma(Y) * (\sigma(Y) + 1)/2] & \text{if } \sigma(Y) \ge 0 \\ \bot & \text{if } \sigma(Y) < 0 \end{cases}
P ==
Z := 0;
                                                                                                                                                                                  if \sigma(X) \ge 0
                                             s[outer-loop] = \begin{cases} [Y \mapsto 0] \\ [X \mapsto 0] \\ [Z \mapsto \sigma(X) \times (\sigma(X) + 1) \times (1 + (2\sigma(X) + 1)/3)/4] \end{cases}
while X > 0 do (
      Y := X;
                                                                                                                                                                                      if \sigma(X) \ge 0
       while (Y>0) do
                 Z := Z + Y;
                                                             s[S] = \begin{cases} [Y \mapsto 0] \\ [X \mapsto 0] \\ [Z \mapsto \sigma(Z) + \sigma(X) \times (\sigma(X) + 1) \times (1 + (2\sigma(X) + 1)/3)/4] \end{cases}
                Y: = Y-1;)
                                                                                                                                                                                    if \sigma(X)<0
                                                                                                                                                                                    if \sigma(X)<0
     X = X - 1
```

Equivalence of Semantics

• $\forall \sigma, \sigma' \in \Sigma$: $\sigma' = S \llbracket s \rrbracket \sigma \Leftrightarrow \langle s, \sigma \rangle \to \sigma' \Leftrightarrow \langle s, \sigma \rangle \Rightarrow * \sigma'$

Complete Partial Orders

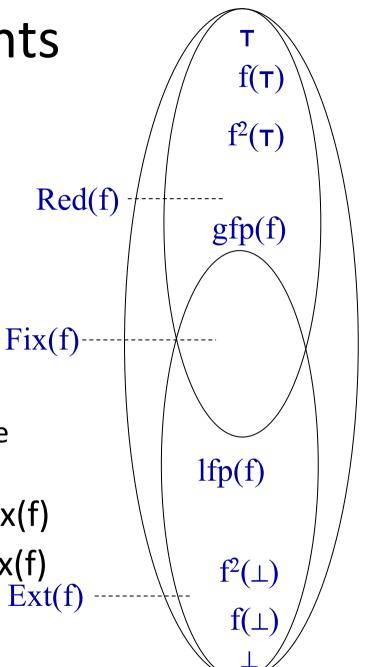
- Let (D, \sqsubseteq) be a partial order
 - D is a complete lattice if every subset has both greatest lower bounds and least upper bounds

Knaster-Tarski Theorem

- Let f: L →L be a monotonic function on a complete lattice L
- The least fixed point lfp(f) exists
 - $-\operatorname{Ifp}(f) = \bigcap \{x \in L : f(x) \sqsubseteq x\}$

Fixed Points

- A monotone function f: L \rightarrow L where (L, \sqsubseteq , \sqcup , \sqcap , \perp , \top) is a complete lattice
- $Fix(f) = \{ 1: 1 \in L, f(1) = 1 \}$
- Red(f) = $\{I: I \in L, f(I) \sqsubseteq I\}$
- Ext(f) = {I: $I \in L$, $I \sqsubseteq f(I)$ } - $I_1 \sqsubseteq I_2 \Longrightarrow f(I_1) \sqsubseteq f(I_2)$
- Tarski's Theorem 1955: if f is monotone then:
 - $Ifp(f) = \sqcap Fix(f) = \sqcap Red(f) \in Fix(f)$
 - $gfp(f) = \coprod Fix(f) = \coprod Ext(f) \in Fix(f)$



Summary

- Denotational definitions are not necessarily better than operational semantics, and they usually require more mathematical work
- The mathematics may be done once and for all
- The mathematics may pay off:
- Some of its techniques are being transferred to operational semantics.
- It is trivial to prove that
 - If $B[b_1] = B[b_2]$ and $C[c_1] = C[c_2]$
 - Then $C[while b_1 do c_1] = C[while b_2 do c_2]$
 - compare with the operational semantics

Summary

- Denotational semantics provides a way to declare the meaning of programs in an abstract way
 - side-effects
 - loops
 - Recursion
 - Gotos
 - non-determinism
 - But not low level concurrency
- Fixed point theory provides a declarative way to specify computations
 - Many usages

The End