Program Analysis and
Verification

0368-4479
http://www.cs.tau.ac.il/~maon/teaching/2013-2014/paav/paav1314b.html

Noam Rinetzky

Lecture 4: Denotational Semantics

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

Good manners

e Mobiles

Admin

* Grades
— First home assignment will be published on Tuesday

— (contents according to progress today)

e Due lesson 6

v’ Scribes (this week)

? Scribes (next week)
* From now on —in singles

What do we mean?

P

syntax semantics

P: x>/

Why formal semantics?

* Implementation-independent definition of a
programming language

* Automatically generating interpreters (and
some day maybe full fledged compilers)

e Verification and debugging

— if you don’t know what it does, how do you know
its incorrect?

Programming Languages

* Syntax
* “how do | write a program?”

— BNF

— “Parsing”

e Semantics

* “What does my program mean?”

Program semantics

* Operational: State-transformer
* Denotational: Mathematical objects
* Axiomatic: Predicate-transformer

Denotational semantics

* Giving mathematical models of programming
languages
— Meanings for program phrases (statements) defined

abstractly as elements of some suitable mathematical
structure.

* [tis not necessary for the semantics to determine
an implementation, but it should provide criteria
for showing that an implementation is correct

— Dana Scott 1980

Syntax: While

Abstract syntax:
az=n|x|a +a,|axa,| a—a,
b::= true | false
‘ a, = dy | a, < a, | _'b| bl/\bQ
S:=x:=a | skip | §; S,
if 6 then §, else §,
while bdo §

Syntactic categories

n € Num numerals

x € Var program variables

a € Aexp arithmetic expressions
b € Bexp boolean expressions

S e Stm statements

10

Denotational semantics

A: Aexp — (2—N)

B: Bexp —(2—T)

S: Stm —(2—2)

Defined by structural induction

wb]]ﬁm[[s]]ﬁsos[[s]] J

11

Semantic categories

Z
T
State

Example state:
Lookup:
Update:

Integers {0, 1, -1, 2, -2, ...}
Truth values {ff, tt}
Var — Z

s=[x+~5, y»7, z—0]
sx=5
S[x—6] = [x~6, y—7, z—0]

12

Denotational Semantics

|I)

A “mathematical” semantics
— [[S] is a mathematical object
— A fair amount of mathematics is involved

Compositional
— [while bdo S| = F([b], [S])

* Recall:
(S,s)—s',(while bdosS,s’)—s"

(while bdoS,s) =5 it B[b]s=tt

More abstract and canonical than Op. Sem.

— No notion of “execution”
* Merely definitions

— No small step vs. big step

Concurrency is an issue

13

Denotational Semantics

* Denotational semantics is also called
— Fixed point semantics
— Mathematical semantics
— Scott-Strachey semantics

* The mathematical objects are called
denotations
— Denotation: meaning; especially, a direct specific
meaning as distinct from an implied or associated

idea
* Though we still maintain a computational intuition

14

Important features

Syntax independence: The denotations of
programs should not involve the syntax of the
source language.

Soundness: All observably distinct programs
have distinct denotations;

Full abstraction: Two programs have the same
denotations precisely when they are
observationally equivalent.

Compositionality

15

Plan

* Denotational semantics of While (1st attempt)
 Math

— Complete partial orders
— Monotonicity
— Continuity
* Denotational semantics of while

16

Denotational semantics

A: Aexp — (2—N)

B: Bexp —=(=—T)

S: Stm —(2—2)

Defined by structural induction
— Compositional definition

17

Denotational semantics
A: Aexp — (Z—N)
B: Bexp —=(=—T)
S: Stm —(2—~2)

Defined by structural induction
— Compositional definition

wb]]ﬁm[[s]]ﬁsos[[s]] J

18

> > > P> > P

Denotational semantics of Aexp

: Aexp — (2—N)

[n]={(o, n) | 0 EZ}

[X] = {(c, o X) | 0 EZ}

[ag+a,]| ={(o, ng+n,) | (0, ng)EA[a,], (o,n,)EA]a,]}
[ag-a,] = {(0, ngn,) | (0, ng)EA[a,]], (o,n,)EA[a,]}
[agxa,] = {(o, ngx n,) | (0, ng)EA[a,], (o,n,)EA[a,]}

Functions Lemma: A [[a] is a function
represented as
sets of pairs

19

Denotational semantics of Aexp with A

 A: Aexp — (Z—N)

[n] = AoEZ.n

[X] = AoEZ.0(X)

[a,+a,]| = AoEZ.(A [a,]lo+A[a,]o)
[a,-a,]| = AoEZ.(A [a,]lo-A]a,]o)
[agxa,] = AoEZ.(A [a,]lo x Ala,]o)

Functions
represented as
lambda expressions

> > > P> P

20

* B
B
e B |

Denotational semantics of Bexp

 B: Bexp — (2—T)
[true] = {(o, true) | o €2}

[false] = {(o, false)

[a,=a,] = {(o, true)
{(o, false)

o &2}

0 EX & Ala,]o=A[a,] o}U
0 EX & Al a,lJlo=Aa,] o}

* B[ay=<a,]| ={(o, true) | c €EXZ & A[a,]Jlo < Ala,] o}U
{(0, false) | 0 EX & Alay]lotA[a,] o}

° B
° B
B

| — |

| e— |

[1b] ={(0, 1) | 0 EZ, (0, t) EB[b]}
boab,] ={(0, t, Ast,) | 0 EZ, (0, t,) EB[b,], (o, t;) EB[b,] }
b,vb,] ={(0, t, v;t,) | 0 EZ, (0, t,) EB[b,], (0, t;) EB[b,] }

Lemma: B[[b] is a function

21

Denotational semantics of statements?

* Intuition:

—Running a statement s starting from a
state o yields another state o’

« Can we define S [[s]| as a function that
mapsotoo’ ?

—S [.]: Stm —=(Z —= X)

22

Denotational semantics of commands?

Problem: running a statement might not yield
anything if the statement does not terminate

Solution: a special element L to denote a special
outcome that stands for non-termination

— For any set X, we write X, for X U {1}

Convention:

—wheneverfEX — X , weextend fto X, = X,
“strictly” so that f(L) =L

23

Denotational semantics of statements?

* We try:

— S
e s
N
N

-|f
if B

[.] :stm—(E, —-3,)

_sqp]]o o

: S0 731 :I]O‘S ”:51]] (S [[50]]0)

0 then s, else sl]] o=

Ib]] O then S [[so]] O else S [[51]] O

24

Examples

e S[X:=2; X:=1]Jo= o[X~1]
*S |f true then X:=2; X:=1 else]] 0= O[X~1]

— The semantics does not care about intermediate
states

— So far, we did not explicitly need L

25

Denotational semantics of loops?

+ S|lwhilebdos [|o=2

26

Denotational semantics of loops?

e Goal: Find a function from states to states such
which defines the meaning of W

* |ntuition:

— while b dos

~/

— if b then (s; while b do s) else skip

27

Denotational semantics of loops?

e Goal: Find a function from states to states such
which defines the meaning of W

* |ntuition:
— S[while b do s]

— S[Jif b then (s; while b do s) else skip]]

28

Denotational semantics of loops?

e Goal: Find a function from states to states such
which defines the meaning of W

* |ntuition:
— S[while b do s]

— S[Jif b then (s; while b do s) else skip]]

29

Denotational semantics of loops?
» Abbreviation W=S [while b do s

 Solution 1:

— W(o) = if B[[b]]O then W(S[[s]] O) else o

* Unacceptable solution
— Defines W in terms of itself
— It not evident that a suitable W exists

— It may not describe W uniquely
(e.g., for while true do skip)

30

Denotational semantics of loops?

e Goal: Find a function from states to states such
which defines the meaning of W

* Approach: Solve domain equation
— S[while b do s]

— S[Jif b then (s; while b do s) else skip]]

31

Introduction to Domain Theory

 We will solve the unwinding equation through a

general theory of recursive equations

* Think of programs as processors of streams of bits
(streams of 0’ s and 1’ s, possibly terminated by S)

What properties can we expect?

input —

—> output

32

Motivation

* Let “isone” be a function that must return “1S”
when the input string has at least a 1 and “0S”

otherwise

— isone(00...0S) =0S
— isone(xx...1...S) =1S
— isone(0...0) =7

* Monotonicity: in terms of information

— Output is never retracted

* More information about the input is reflected in more
information about the output

— How do we express monotonicity precisely?

33

Montonicity

* Define a partial order
XEY
— A partial order is reflexive, transitive, and anti-symmetric
— y is a refinement of x

* “more precise”
* For streams of bits x =y when x is a prefix of y

* For programs, a typical order is:
— No output (yet) = some output

34

Montonicity

* Aset equipped with a partial order is a poset
* Definition:
— D and E are postes

— A function f: D —E is monotonic if
Vx,y €D: x =, y = f(x) = f(y)

— The semantics of the program ought to be a
monotonic function

* More information about the input leads to more
information about the output

35

Montonicity Example

* Consider our “isone” function with the prefix
ordering
* Notation:
— OXis the stream with k consecutive 0" s
— 0%is the infinite stream with only 0’ s
e Question (revisited): what is isone(0k)?
— By definition, isone(0%S) = 0S and isone(0¥1S) = 1S
— But 0= 0kS and Ok = 0 k1S
— “isone” must be monotone, so:
* isone(0%) = isone(0kS) = 0S
 isone(0) = isone(0k1S) = 1S
— Therefore, monotonicity requires that isone(0*) is a
common prefix of 0S and 1S, namely ¢

36

Motivation

Are there other constraints on “isone”?
Define “isone” to satisfy the equations
— isone(g)=¢

— isone(1s)=1S

— isone(0s)=isone(s)

— isone($)=05S

What about 07

Continuity: finite output depends only on finite input
(no infinite lookahead)

— Intuition: A program that can produce observable results
can do it in a finite time

37

Chains

* A chain is a countable increasing sequence
<X>={x. EX | X, EX E ... }

* An upper bound of a set if an element “bigger” than
all elements in the set

* The least upper bound is the “smallest” among
upper bounds:

— x; E LU<x,>foralliEeN

— Lxx> Ey for all upper bounds y of <x.>
and it is unique if it exists

38

Complete Partial Orders

* Not every poset has an upper bound
— with L= n and n=n for all n EN

— {1, 2} does not have an upper bound

* Sometimes chains have no upper bound

The chain
1 0<l<s2=...

does not have an upper bound

1

1

39

Complete Partial Orders

It is convenient to work with posets where every
chain (not necessarily every set) has a least upper
bound

A partial order P is complete if every chain in P has a
least upper bound also in P

We say that P is a complete partial order (cpo)

A cpo with a least (“bottom”) element L is a pointed
cpo (pcpo)

40

Examples of cpo’ s

Any set P with the order
xCyifand onlyif x=yis acpo
It is discrete or flat

If we add L so that L= x for all x € P, we get a flat pointed cpo

The set N with < is a poset with a bottom, but not a complete
one

The set N U { o0 } with n = is a pointed cpo
The set N with= is a cpo without bottom

Let S be a set and P(S) denotes the set of all subsets of S
ordered by set inclusion
— P(S) is a pointed cpo

41

Constructing cpos

e |f Dand E are pointed cpos, then so is
DxE

(X, V) E e (X ,y)iff XSy x andy=; y’

J—DxE (J—D;J—E)
|—|(X|;y|)_(|—|DXi;|_|Eyi)

42

Constructing cpos (2)

 [fSisasetof Eisapcpos, then sois
S—E
mCm iff Vs ES: m(s) = m’ (s)
Lo e =As. L
LI (m,m)=As.m(s) LI: m’ (s)

43

Continuity

A monotonic function maps a chain of inputs
into a chain of outputs:

Xo E X, E... = f(x,) Ef(x)) E ...
* |tis always true that:

LI, <f(x,)> = f(L, <x.>)
* But

f(L, <x.>)= LI, <f(x.)>

is not always true

44

3
2
1
0

A Discontinuity Example

f(L; <x>)+ L1 <f(x;)>

\
\
7

45

Continuity

Each f(x.) uses a “finite” view of the input
f(LI<x>) uses an “infinite” view of the input

A function is continuous when

f(LI<xi>) = L, <f(x:)>

The output generated using an infinite view of the

input does not contain more information than all of
the outputs based on finite inputs

46

Continuity

Each f(x.) uses a “finite” view of the input
f(LI<x>) uses an “infinite” view of the input

A function is continuous when

f(LI<xi>) = L, <f(x:)>

The output generated using an infinite view of the

input does not contain more information than all of
the outputs based on finite inputs

Scott’s thesis: The semantics of programs can be
described by a continuous functions

47

Examples of Continuous Functions

For the partial order (N U{x }, <)

— The identity function is continuous
id(LIn;) = Uid(n,)

— The constant function “five(n)=5" is continuous
five(LUn,) = LIfive(n,)

— If isone(0%) =¢ then isone is continuos

For a flat cpo A, any monotonic function f: A, — A,
such that f is strict is continuous

Chapter 8 of the Wynskel textbook includes many more
continuous functions

48

Fixed Points

W(S[s] o) if B[b](0)=true
* Solve equation: Ww(0o)=X o if B[b](o)=false
1 if B[b](0)= L

where W:3, — 5, ; W=S[while be do s

e Alternatively, W = F(W) where:

{ W(S[[s] o) if B%[b]]qm)ﬁrue
F(W) = Ao. o if B| b ||(0)=false
1 if B|b||(0)= 1

49

Fixed Point (cont)

Thus we are looking for a solution for W = F(W)
— a fixed point of F

Typically there are many fixed points

We may argue that W ought to be continuous
WeERR, — 2]
Cut the number of solutions

We will see how to find the least fixed point for such
an equation provided that F itself is continuous

50

Fixed Point Theorem

Define Fk = Ax. F(F(... F(x)...)) (F composed k times)

If D is a pointed cpo and F: D — D is continuous,
then

— for any fixed-point x of Fand k €N
Fk (1) = x

— The least of all fixed points is
LI Fe(L)

Proof:

i. By induction on k.
Base: FO(L)=1 =x
Induction step: F**1 (L)=F(Fk (L)) = F(x) =x

ii. It suffices to show that LI, F¥(L) is a fixed-point
F(L F* (1)) = Ly Pt () = Uy Fe (1)

51

Fixed-Points (notes)

* |f Fis continuous on a pointed cpo, we know
how to find the least fixed point

* All other fixed points can be regarded as
refinements of the least one

— They contain more information, they are more
precise

— In general, they are also more arbitrary

52

Fixed-Points (notes)

* |f Fis continuous on a pointed cpo, we know
how to find the least fixed point

* All other fixed points can be regarded as
refinements of the least one

— They contain more information, they are more
precise

— In general, they are also more arbitrary

— They also make less sense for our purposes

53

Denotational Semantics of While

e 3 isaflat pointed cpo
— A state has more information on non-termination

— Otherwise, the states must be equal to be comparable (information-
wise)

* We want strict functions } — 3,
— therefore, continuous functions

* The partial orderon} — 3,
f= giff f(x) =L or f(x) = g(x) forallx& |
— g terminates with the same state whenever f terminates
— g might terminate for more inputs

54

Denotational Semantics of While

Recall that W is a fixed point of

F:[[ZJ_e ZJ_]Q[ZJ_e ZJ_]]
w(S[s](0)) if B[b](0)=true
Fis continuous Flw)=Ac.{ O if B[b](c)=false
1 if B[b]/(0)= L

Thus, we set S[while b do c]| = LIF¥()

— Least fixed point
* Terminates least often of all fixed points

Agrees on terminating states with all fixed point

55

Denotational Semantics of While

nwv OU”U U O

:if b then s, e

Ao. if B[b

S [while b do s]
— k=0, 1, ...

[skip] = Ao.o
[X := exp] = ho.o[X — Allexp

[so:5: [I=Mous[[s, [(s [s, o)

]

| S—

O]

se sl]] =

] o then S [[so]] oelse S [[sl]] O

= LIFX(L)

— F = Aw. Ao. if B[b](0)=true w(S[s](0)) else o

56

Example(1)

* while true do skip

* B2, =2 1=l —=2.]]
{W(S[[s]](o)) if B[b]/(o0)=true
F=Aw.AO.

O if B[b](0)=false
1 if B[b]l(0)= 1

B[true|=\o.true
S[skip]=ho.0

F=Aw.AO.w(O)

FO(L)=1 UFY{L)=1L U FL)=1L =

57

Example(2)

 while false do s

* B2, =2 1=l —=2.]]
{W(S[[s]](o)) if B[b]/(o0)=true
F=Aw.AO.

o if B[b](0)=false
i if B[b](0)= L

B[false[|=ho.false

F=AW.AO.O

F(L)=L U FY1)=ho.c UF(1)=ro.0 =AO.0

58

Fo(L)
FH(1)

F2(L)

Fk(L)
Ifp(F)

Example(3)
| while x=3 dox =x-1]=0LFL) k=0, 1, ...

where
F=Aw. Ao. if o(x)=3 w(o[x — o(x) -1]) else ©

1

if o(x)=3 L(o[x+~ o(x)-1]) else ©
if o(x)=3 then L else o

if o(x)=3 then F}(o[x~ o(x) -1]) else ©

if o(x)=3 then (if o[x — o(x) -1] x #3 then L else o[x~ o(x)-1]) else ©
if o(x)=3 (if o(x) #4 then L else o[x+~ o(x)-1]) else o

if o(x) €{3, 4} then o[x+~ 3] else L

if o(x) €{3, 4, ..k} then o[x— 3] else L
if o(x) =3 then o[x+— 3] else L

59

Z.=0;
while X >0 do (
Y: =X
while (Y>0) do
l:=7+Y;
Y:=Y-1;)
X=X-1
)

Example 4 Nested Loops

60

Z.=0;
while X >0 do (
Y: =X
while (Y>0) do
l:=7+Y;
Y:=Y-1;)
X=X-1
)

Example 4 Nested Loops

[Y=0][Z = o(Z)+o(Y) * (o(Y)+1)/2] if o(Y)=0
s[inner-loop]J=
1 if o(Y)<0

[Ys0] if o(X)=0
X~0
s[outer-loop]= EZ >]O'(X) x (0(X)+1) x (1 +(20(X) +1)/3)/4]

1 if o(X)=0

[Y—O]

[X~0]
s[S]= [Z ~ o(Z)+0(X) x (o(X) + 1) x (1 + (20(X) + 1)/3)/4]
if o(X)<0

if o(X)<0

L

61

Equivalence of Semantics

e Vo, 0 EX:
? _ b4 sk b4
o =S[s]loe<s, 0>—= 0’ <<s, 0>=*0

62

Complete Partial Orders

e Let (D, =) be a partial order

— D is a complete lattice if every subset has both
greatest lower bounds and least upper bounds

63

Knaster-Tarski Theorem

e Letf: L—L be a monotonic function on a
complete lattice L

* The least fixed point Ifp(f) exists
— Ifp(f) = M{x €L: f(x)=x}

64

« Fix(f)={l:1eL, f(l) =)
. Red(f)={l:1eL, f(l) =}

e Tarski’ s Theorem 1955: if f is monotone

Fixed Points

* A monotone function f: L — L where Red(f) -
(L, =, LI, M, 4, T) is a complete lattice ed(f)

o Ext(f)={:1eL, =)} Fix(f)
-LEL=f(,)= f(l,)

then:
— Ifp(f) = 1 Fix(f) = " Red(f) € Fix(f)
— gfp(f) = LI Fix(f) = LI Ext(f) € Fix(f)

Summary

Denotational definitions are not necessarily better than
operational semantics, and they usually require more
mathematical work

The mathematics may be done once and for all
The mathematics may pay off:

Some of its techniques are being transferred to operational
semantics.

It is trivial to prove that

— 1f B[b,] = B[b,] and C [[c,] = C[c,]
— Then C[while b, do ¢,] = C[while b, do c,]

e compare with the operational semantics

66

Summary

* Denotational semantics provides a way to declare

the meaning of programs in an abstract way
* side-effects
* loops
* Recursion
* Gotos
* non-determinism

— But not low level concurrency

* Fixed point theory provides a declarative way to
specify computations
— Many usages

67

The End

68

