Program Analysis and Verification

0368-4479

http://www.cs.tau.ac.il/~maon/teaching/2013-2014/paav/paav1314b.html

Noam Rinetzky

Lecture 5: Aximatic Semantics

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

Good manners

Mobiles

Home Work Assignment #1

In the following, we refer to the "Semantics with Application" book as "the book". The book can be found here:

http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html.

- Solve Ex 2.8 and 2.18 in the book.
- 2. In the previous question, you were asked to extend the While language with a new construct (a for loop). Extend the proof of theorem 2.26 in the book (semantic equivalence) to handle for commands.
- 3. Solve Ex 2.34 in the book.
- 4. Read Section 2.5 in the book and solve Ex 2.45.
- 5. Prove or disprove: The denotational semantics of any statement in the While language shown in the lectures is a monotone and continuous function.
- 6. Define a denotational semantics for the the While language extended with the random command. (The extension is described in Question 3).

Denotational Sematnics

- Added examples
- Equivalences of operational and denotational semantics

- Complete lattices
- Tarski-Kantor Fixed-point theorem

Axiomatic Semantics

Robert Floyd

C.A.R. Hoare

Edsger W. Dijkstra

Proving program correctness

- Why prove correctness?
- What is correctness?
- How?
 - Reasoning at the operational semantics level
 - Tedious
 - Error prone
 - Formal reasoning using "axiomatic" semantics
 - Syntactic technique ("game of tokens")
 - Mechanically checkable
 - Sometimes automatically derivable

A simple imperative language: While

Abstract syntax:

$$a := n \mid x \mid a_1 + a_2 \mid a_1 \star a_2 \mid a_1 - a_2$$
 $b :=$ true | false
 $\mid a_1 = a_2 \mid a_1 \le a_2 \mid \neg b \mid b_1 \land b_2$
 $S := x := a \mid$ skip $\mid S_1; S_2 \mid$ if b then S_1 else S_2
 \mid while b do S

Program correctness concepts

- Property = a certain relationship between initial state and final state
- Partial correctness = properties that hold
 if program terminates
 Mostly focus in this course
- Termination = program always terminates
 - i.e., for every input state

partial correctness + termination = total correctness

Other correctness concepts exist: resource usage, linearizability, ...

Factorial example

```
S_{fac} \equiv y := 1; while \neg (x=1) do (y := y*x; x := x-1)
```

- Factorial partial correctness property =
 - if the statement terminates then the final value of y will be the factorial of the initial value of x
 - What if $s \times < 0$?
- Formally, using natural semantics:

$$\langle S_{fac}, s \rangle \rightarrow s' \text{ implies } s' \mathbf{y} = (s \mathbf{x})!$$

Natural semantics for While

$$[ass_{ns}] \quad \langle \mathbf{x} := a, s \rangle \to s[\mathbf{x} \mapsto \mathcal{A}[\![a]\!] s]$$

$$[skip_{ns}] \quad \langle \mathbf{s} \, kip, s \rangle \to s$$

$$[comp_{ns}] \quad \frac{\langle S_1, s \rangle \to s', \langle S_2, s' \rangle \to s''}{\langle S_1; S_2, s \rangle \to s''}$$

$$[if^{tt}_{ns}] \quad \frac{\langle S_1, s \rangle \to s'}{\langle if \ b \, then \, S_1 \, else \, S_2, s \rangle \to s'} \quad \text{if } \mathcal{B}[\![b]\!] \, s = tt$$

$$[if^{ff}_{ns}] \quad \frac{\langle S_2, s \rangle \to s'}{\langle if \ b \, then \, S_1 \, else \, S_2, s \rangle \to s'} \quad \text{if } \mathcal{B}[\![b]\!] \, s = ff$$

$$[while^{ff}_{ns}] \quad \langle while \ b \, do \, S, s \rangle \to s \quad \text{if } \mathcal{B}[\![b]\!] \, s = ff$$

$$[while^{tt}_{ns}] \quad \frac{\langle S, s \rangle \to s', \langle while \ b \, do \, S, s' \rangle \to s''}{\langle while \ b \, do \, S, s \rangle \to s''} \quad \text{if } \mathcal{B}[\![b]\!] \, s = tt$$

Staged proof

The proof proceeds in three stages:

Stage 1: We prove that the body of the while loop satisfies:

if
$$\langle y := y \star x; x := x - 1, s \rangle \to s'' \text{ and } s'' x > 0$$

then $(s y) \star (s x)! = (s'' y) \star (s'' x)! \text{ and } s x > 0$

$$(*)$$

Stage 2: We prove that the while loop satisfies:

if
$$\langle \text{while } \neg(\text{x=1}) \text{ do } (\text{y} := \text{y*x}; \text{x} := \text{x-1}), s \rangle \rightarrow s''$$

then $(s \text{ y}) * (s \text{ x})! = s'' \text{ y and } s'' \text{x} = \mathbf{1} \text{ and } s \text{x} > \mathbf{0}$ (**)

Stage 3: We prove the partial correctness property for the complete program:

if
$$\langle y := 1$$
; while $\neg(x=1)$ do $(y := y \star x; x := x-1), s \rangle \rightarrow s'$
then $s' y = (s x)!$ and $s x > 0$ (***)

In each of the three stages the derivation tree of the given transition is inspected in order to prove the property.

First stage

Stage 1: We prove that the body of the while loop satisfies:

if
$$\langle y := y \star x; x := x - 1, s \rangle \rightarrow s'' \text{ and } s'' x > 0$$

then $(s y) \star (s x)! = (s'' y) \star (s'' x)! \text{ and } s x > 0$

$$(*)$$

In the first stage we consider the transition

$$\langle y := y \star x; x := x-1, s \rangle \rightarrow s''$$

According to $[comp_{ns}]$ there will be transitions

$$\langle y := y \star x, s \rangle \to s' \text{ and } \langle x := x-1, s' \rangle \to s''$$

for some s'. From the axiom $[ass_{ns}]$ we then get that $s' = s[y \mapsto \mathcal{A}[y \star x]s]$ and that $s'' = s'[x \mapsto \mathcal{A}[x-1]s']$. Combining these results we have

$$s'' = s[y \mapsto (s y) \star (s x)][x \mapsto (s x) - 1]$$

Assuming that $s'' \times 0$ we can then calculate

$$(s'' y) \star (s'' x)! = ((s y) \star (s x)) \star ((s x) - 1)! = (s y) \star (s x)!$$

and since $s \mathbf{x} = (s'' \mathbf{x}) + \mathbf{1}$ this shows that (*) does indeed hold.

Second stage

Stage 2: We prove that the while loop satisfies:

if
$$\langle \text{while } \neg(\text{x=1}) \text{ do } (\text{y} := \text{y*x}; \text{x} := \text{x-1}), s \rangle \rightarrow s''$$

then $(s \text{ y}) * (s \text{ x})! = s'' \text{ y and } s'' \text{x} = \mathbf{1} \text{ and } s \text{x} > \mathbf{0}$ (**)

In the *second stage* we proceed by induction on the shape of the derivation tree for

$$\langle \text{while } \neg(\text{x=1}) \text{ do } (\text{y} := \text{y*x}; \text{x} := \text{x-1}), s \rangle \rightarrow s'$$

$$\langle \text{while } \neg (x=1) \text{ do } (y := y*x; x := x-1), s \rangle \rightarrow s'$$

One of two axioms and rules could have been used to construct this derivation. If [while $_{ns}^{ff}$] has been used then s' = s and $\mathcal{B}[\neg(x=1)]s = ff$. This means that s' = x = 1 and since x' = x = 1 we get the required x' = x = 1 and x' = x = 1 a

Next assume that [while^{tt}_{ns}] is used to construct the derivation. Then it must be the case that $\mathcal{B}[\neg(x=1)]s = tt$ and

$$\langle y := y \star x; x := x-1, s \rangle \rightarrow s''$$

and

$$\langle \text{while } \neg (x=1) \text{ do } (y := y \star x; x := x-1), s'' \rangle \rightarrow s'$$

for some state s''. The induction hypothesis applied to the latter derivation gives that

$$(s'' y) \star (s'' x)! = s' y$$
 and $s' x = 1$ and $s'' x > 0$

From (*) we get that

$$(s y) \star (s x)! = (s'' y) \star (s'' x)!$$
 and $s x > 0$

Putting these results together we get

$$(s y) \star (s x)! = s' y \text{ and } s' x = 1 \text{ and } s x > 0$$

This proves (**) and thereby the second stage of the proof is completed.

Third stage

Stage 3: We prove the partial correctness property for the complete program:

if
$$\langle y := 1$$
; while $\neg(x=1)$ do $(y := y \star x; x := x-1), s \rangle \rightarrow s'$
then $s' y = (s x)!$ and $s x > 0$ (***)

Finally, consider the third stage of the proof and the derivation

$$\langle y := 1; \text{ while } \neg(x=1) \text{ do } (y := y \star x; x := x-1), s \rangle \rightarrow s'$$

According to [comp_{ns}] there will be a state s'' such that

$$\langle y := 1, s \rangle \to s''$$

and

$$\langle \text{while } \neg (x=1) \text{ do } (y := y \star x; x := x-1), s'' \rangle \rightarrow s'$$

From axiom [ass_{ns}] we see that $s'' = s[y \mapsto 1]$ and from (**) we get that s'' x > 0 and therefore s x > 0. Hence $(s x)! = (s'' y) \star (s'' x)!$ holds and using (**) we get

$$(s \mathbf{x})! = (s'' \mathbf{y}) \star (s'' \mathbf{x})! = s' \mathbf{y}$$

as required. This proves the partial correctness of the factorial statement.

How easy was that?

- Proof is very laborious
 - Need to connect all transitions and argues about relationships between their states
 - Reason: too closely connected to semantics of programming language
- Is the proof correct?
- How did we know to find this proof?
 - Is there a methodology?

Axiomatic verification approach

- What do we need in order to prove that the program does what it supposed to do?
- Specify the required behavior
- Compare the behavior with the one obtained by the operational semantics
- Develop a proof system for showing that the program satisfies a requirement
- Mechanically use the proof system to show correctness
- The meaning of a program is a set of verification rules

Assertions, a.k.a Hoare triples

- P and Q are state predicates
 - Example: **x**>0
- If P holds in the initial state, and
 if execution of C terminates on that state,
 then Q will hold in the state in which C halts
- C is not required to always terminate {true} while true do skip {false}

Total correctness assertions

[P]C[Q]

 If P holds in the initial state, execution of C must terminate on that state, and Q will hold in the state in which C halts

Factorial example

```
 \left\{ \begin{array}{c} ? \\ ? \\ y := 1; \text{ while } \neg (x=1) \text{ do } (y := y*x; \ x := x-1) \\ \left\{ \begin{array}{c} ? \\ ? \end{array} \right\}
```

First attempt

Holds only for value of x at state after execution finishes

Fixed assertion

A logical variable, must not appear in statement - immutable

```
 \left\{ \begin{array}{l} \mathbf{x} = n \end{array} \right\}  y := 1; while \neg (\mathbf{x} = 1) do (y := y*x; x := x-1)  \left\{ \begin{array}{l} \mathbf{y} = n! \ \land \ n > 0 \end{array} \right\}
```

The proof outline

```
\{ x=n \}
 y := 1;
\{ \mathbf{x} > 0 \Rightarrow \mathbf{y}^* \mathbf{x} ! = \mathbf{n}! \land \mathbf{n} \geq \mathbf{x} \}
while \neg (x=1) do
     \{\mathbf{x-1}>0 \Rightarrow (\mathbf{y}*\mathbf{x})*(\mathbf{x-1}) = n! \land n \geq (x-1)\}
      y := y*x;
     \{x-1>0 \Rightarrow y^*(x-1) \mid =n! \land n \geq (x-1)\}
      x := x-1
\{ \mathbf{y}^* \mathbf{x}! = \mathbf{n}! \land \mathbf{n} > 0 \land \mathbf{x} = 1 \}
```

Factorial example

```
S_{fac} \equiv y := 1; while \neg (x=1) do (y := y*x; x := x-1)
```

- Factorial partial correctness property = if the statement terminates then the final value of y will be the factorial of the initial value of x
 - What if s x < 0?
- Formally, using natural semantics: $\langle S_{fac}, s \rangle \rightarrow s'$ implies s' y = (s x)!

Staged proof

The proof proceeds in three stages:

Stage 1: We prove that the body of the while loop satisfies:

if
$$\langle y := y \star x; x := x - 1, s \rangle \to s'' \text{ and } s'' x > 0$$

then $(s y) \star (s x)! = (s'' y) \star (s'' x)! \text{ and } s x > 0$

$$(*)$$

Stage 2: We prove that the while loop satisfies:

if
$$\langle \text{while } \neg(\text{x=1}) \text{ do } (\text{y} := \text{y*x}; \text{x} := \text{x-1}), s \rangle \rightarrow s''$$

then $(s \text{ y}) * (s \text{ x})! = s'' \text{ y and } s'' \text{x} = \mathbf{1} \text{ and } s \text{x} > \mathbf{0}$ (**)

Stage 3: We prove the partial correctness property for the complete program:

if
$$\langle y := 1$$
; while $\neg(x=1)$ do $(y := y \star x; x := x-1), s \rangle \rightarrow s'$
then $s' y = (s x)!$ and $s x > 0$ (***)

In each of the three stages the derivation tree of the given transition is inspected in order to prove the property.

Stages

Inductive proof over iterations

```
sy \cdot (sx)! = (s'y \cdot (s'x)!) \land sx > 0

S (y := y*x; x := x-1)

S' while \neg (x=1) do (y := y*x; x := x-1)

s'y \cdot (s'x)! \cdot s''y \cdot (s''x)! \land s''x = 1 \land s'x > 0
```

S while
$$\neg (x=1)$$
 do $(y := y*x; x := x-1)$

$$s y \cdot (s x)! = s'' y \cdot (s'' x)! \land s'' x = 1 \land s x > 0$$

Assertions, a.k.a Hoare triples

- P and Q are state predicates
 - Example: x>0
- If P holds in the initial state, and
 if execution of C terminates on that state,
 then Q will hold in the state in which C halts
- C is not required to always terminate{true} while true do skip {false}

Total correctness assertions

[P]C[Q]

 If P holds in the initial state, execution of C must terminate on that state, and Q will hold in the state in which C halts

Factorial assertion

A logical variable, must not appear in statement - immutable

```
 \left\{ \begin{array}{l} \mathbf{x} = n \end{array} \right\}  y := 1; while \neg (\mathbf{x} = 1) do (y := y*x; x := x-1)  \left\{ \begin{array}{l} \mathbf{y} = n! \ \land \ n > 0 \end{array} \right\}
```

Factorial partial correctness proof

```
\{ x=n \}
y := 1;
\{ \mathbf{x} > 0 \Rightarrow \mathbf{y}^* \mathbf{x} ! = \mathbf{n}! \land \mathbf{n} \ge \mathbf{x} \}
while \neg (x=1) do
     \{x-1>0 \Rightarrow (y*x)*(x-1)!=n! \land n\geq (x-1)\}
     y := y*x;
     \{x-1>0 \Rightarrow y^*(x-1) \mid =n! \land n \geq (x-1)\}
     x := x-1
\{ \mathbf{y}^* \mathbf{x}! = \mathbf{n}! \land \mathbf{n} > 0 \land \mathbf{x} = 1 \}
```

Formalizing partial correctness

- $s \models P$ - P holds in state s
- Σ program states \bot undefined

$$S_{\text{ns}} \llbracket C \rrbracket s = \begin{cases} s' & \text{if } \langle C, s \rangle \to s' \\ \bot & \text{else} \end{cases}$$

Formalizing partial correctness

- $s \models P$
 - P holds in state s
- Σ program states \bot undefined
- { P } C { Q }

$$- \forall s \in \Sigma . (s \models P \land S_{ns} \llbracket C \rrbracket s \neq \bot) \Rightarrow S_{ns} \llbracket C \rrbracket \models Q$$

- Convention: $\bot \models P$ for all P $\forall s \in \Sigma . s \models P \Rightarrow S_{ns} \llbracket C \rrbracket s \models Q$

Why did we choose natural semantics?

Formalizing partial correctness

- $s \models P$
 - P holds in state s
- Σ program states \bot undefined
- { P } C { Q }

$$- \forall s, s' \in \Sigma \ . \ (s \models P \land \langle C, s \rangle \Rightarrow *s') \Rightarrow s' \models Q$$
 alternatively

$$- \forall s \in \Sigma . (s \models P \land S_{sos}[C] s \neq \bot) \Rightarrow S_{sos}[C] \models Q$$

- Convention: $\bot \models P$ for all P $\forall s \in \Sigma . s \models P \Rightarrow S_{sos} \llbracket C \rrbracket s \models Q$

How do we express predicates?

- Extensional approach
 - Abstract mathematical functions

 $P: \mathbf{State} \to \mathbf{T}$

- Intensional approach
 - Via language of formulae

An assertion language

- Bexp is not expressive enough to express predicates needed for many proofs
 - Extend Bexp
- Allow quantifications
 - $-\forall z...$
 - $-\exists z...$
 - $\exists z. \ z = k \times n$
- Import well known mathematical concepts

$$-n! \equiv n \times (n-1) \times \cdots \times 1$$

An assertion language

Either a program variables or a logical variable

$$a := n \mid x \mid a_1 + a_2 \mid a_1 \star a_2 \mid a_1 - a_2$$
 $A := \mathbf{true} \mid \mathbf{false}$
 $\mid a_1 = a_2 \mid a_1 \leq a_2 \mid \neg A \mid A_1 \land A_2 \mid A_1 \lor A_2 \mid A_1 \Rightarrow A_2 \mid \forall z. \ A \mid \exists z. \ A$

First Order Logic Reminder

Free/bound variables

- A variable is said to be bound in a formula when it occurs in the scope of a quantifier.
 Otherwise it is said to be free
 - ∃i. k=i×m
 - $-(i+100 \le 77) \land \forall i. j+1=i+3)$
- $FV(A) \equiv$ the free variables of A
- Defined inductively on the abstract syntax tree of A

Free variables

Substitution

What if *t* is not pure?

- An expression t is pure (a term) if it does not contain quantifiers
- A[t/z] denotes the assertion A' which is the same as A, except that all instances of the free variable z are replaced by t
- $A \equiv \exists i. k=i \times m$ A[5/k] =A[5/i] =

Calculating substitutions

$$x[t/z] = x$$

 $x[t/x] = t$

$$(a_1 + a_2)[t/z] = a_1[t/z] + a_2[t/z]$$

$$(a_1 * a_2)[t/z] = a_1[t/z] * a_2[t/z]$$

$$(a_1 - a_2)[t/z] = a_1[t/z] - a_2[t/z]$$

n[t/z] = n

Calculating substitutions

```
true[t/x] = true
false[t/x] = false
(a_1 = a_2)[t/z] = a_1[t/z] = a_2[t/z]
(a_1 \le a_2)[t/z] = a_1[t/z] \le a_2[t/z]
(\neg A)[t/z] = \neg (A[t/z])
(A_1 \wedge A_2)[t/z] = A_1[t/z] \wedge A_2[t/z]
(A_1 \lor A_2)[t/z] = A_1[t/z] \lor A_2[t/z]
(A_1 \Longrightarrow A_2)[t/z] = A_1[t/z] \Longrightarrow A_2[t/z]
(\forall z. A)[t/z] = \forall z. A
(\forall z. A)[t/y] = \forall z. A[t/y]
(\exists z. A)[t/z] = \exists z. A
(\exists z. A)[t/v] = \exists z. A[t/v]
```

Proof Rules

Axiomatic semantics for While

[
$$ass_p$$
] { $P[a/x]$ } $x := a$ { P }
[$skip_p$] { P } $skip$ { P }

Notice similarity to natural semantics rules

$$[comp_{p}] = \frac{\{P\}S_{1}\{Q\}, \{Q\}S_{2}\{R\}}{\{P\}S_{1}; S_{2}\{R\}}$$

$$\bigcirc O = \frac{\{b \land P\}S_{1}\{Q\}, \{\neg b \land P\}S_{2}\{Q\}}{\{P\} \text{ if } b \text{ then } S_{1} \text{ else } S_{2}\{Q\}}$$

[while_p]
$$\frac{\{b \land P\}S\{P\}}{\{P\}\text{ while } b \text{ do } S\{\neg b \land P\}}$$

[cons_p]
$$\frac{\{P'\}S\{Q'\}}{\{P\}S\{Q\}}$$
 if $P \Rightarrow P'$ and $Q' \Rightarrow Q$

Assignment rule

[ass_p]
$$\{P[a/x]\}x := a\{P\}$$

- A "backwards" rule
- x := a always finishes

 $s[x \mapsto \mathcal{A}[a]s] \models P$

- Why is this true?
 - Recall operational semantics:

[ass_{ns}]
$$\langle x := a, s \rangle \rightarrow s[x \mapsto \mathcal{A}[a]s]$$

Example: {y*z<9} x:=y*z {x<9}
 What about {y*z<9\w=5} x:=y*z {w=5}?

skip rule

$$[skip_{ns}] \langle skip, s \rangle \rightarrow s$$

Composition rule

[comp_p]
$$\frac{\{P\}S_1\{Q\}, \{Q\}S_2\{R\}\}}{\{P\}S_1; S_2\{R\}}$$

[comp_{ns}]
$$\langle S_1, s \rangle \rightarrow s', \langle S_2, s' \rangle \rightarrow s''$$

 $\langle S_1; S_2, s \rangle \rightarrow s''$

Holds when S₁ terminates in every state where P holds and then Q holds and S₂ terminates in every state where Q holds and then R holds

Condition rule

[if_p]
$$\frac{\{b \land P\}S_1\{Q\}, \{\neg b \land P\}S_2\{Q\}\}}{\{P\} \text{if } b \text{ then } S_1 \text{ else } S_2\{Q\}}$$

Loop rule

[while_p]
$$\frac{\{b \land P\}S\{P\}}{\{P\}\text{while } b \text{do } S\{\neg b \land P\}}$$

[while
$$b ext{ do } S, s \rangle \to s$$
 if $\mathcal{B}[b] s = \mathbf{ff}$

[while $b ext{ do } S, s' \rangle \to s''$ if $\mathcal{B}[b] s = \mathbf{ff}$

[while $b ext{ do } S, s' \rangle \to s''$ if $\mathcal{B}[b] s = \mathbf{tt}$

- Here P is called an invariant for the loop
 - Holds before and after each loop iteration
 - Finding loop invariants most challenging part of proofs
- When loop finishes, b is false

Rule of consequence

[cons_p]
$$\frac{\{P'\}S\{Q'\}}{\{P\}S\{Q\}}$$
 if $P \Rightarrow P'$ and $Q' \Rightarrow Q$

- Allows strengthening the precondition and weakening the postcondition
- The only rule that is not sensitive to the form of the statement

Rule of consequence

[cons_p]
$$\frac{\{P'\}S\{Q'\}}{\{P\}S\{Q\}}$$
 if $P \Rightarrow P'$ and $Q' \Rightarrow Q$

- Why do we need it?
- Allows the following

$${y*z<9} x:=y*z {x<9}$$

{ $y*z<9 \land w=5$ } $x:=y*z {x<10}$

Inference trees

- Similar to derivation trees of natural semantics
- Leaves are ...
- Internal nodes correspond to ...
- Inference tree is called
 - Simple if tree is only an axiom
 - Composite otherwise

Provability

- We say that an assertion { P } C { Q } is
 provable if there exists an inference tree
 - Written as \vdash_p { *P* } *C* { *Q* }
 - Are inference trees unique? {true} x:=1; x:=x+5 {x≥0}
- Proofs of properties of axiomatic semantics use induction on the shape of the inference tree
 - Example: prove $\vdash_p \{P\}C\{$ **true** $\}$ for any P and C

Factorial proof

```
Goal: \{x=n\}y:=1; while (x\neq 1) do (y:=y*x; x:=x-1) \{y=n! \land n>0\}
W = \text{while } (x\neq 1) \text{ do } (y:=y*x; x:=x-1)
INV = x > 0 \Rightarrow (y \cdot x! = n! \land n \ge x)
```

```
[comp] \frac{ \{ \mathsf{INV}[\mathsf{x-1/x}][\mathsf{y}^*\mathsf{x/y}] \} \ \mathbf{y} := \mathbf{y}^*\mathbf{x} \ \{ \mathsf{INV}[\mathsf{x-1/x}] \} \ \ \{ \mathsf{INV}[\mathsf{x-1/x}] \} \ \mathbf{x} := \mathbf{x} - \mathbf{1} \ \{ \mathsf{INV} \} }{ \{ \mathsf{INV}[\mathsf{x-1/x}][\mathsf{y}^*\mathsf{x/y}] \} \ \mathbf{y} := \mathbf{y}^*\mathbf{x} ; \ \mathbf{x} := \mathbf{x} - \mathbf{1} \ \{ \mathsf{INV} \} } } \\ [cons] \frac{ \{ \mathbf{x} \neq \mathbf{1} \land \mathsf{INV} \} \ \mathbf{y} := \mathbf{y}^*\mathbf{x} ; \ \mathbf{x} := \mathbf{x} - \mathbf{1} \ \{ \mathsf{INV} \} }{ \{ \mathsf{INV} \} \ \mathbf{y} := \mathbf{1} \ \{ \mathsf{INV} \} } } \\ [cons] \frac{ \{ \mathsf{INV}[\mathsf{1/y}] \} \ \mathbf{y} := \mathbf{1} \ \{ \mathsf{INV} \} }{ \{ \mathsf{INV} \} \ \mathbf{y} := \mathbf{1} \ \{ \mathsf{INV} \} } } \\ [cons] \frac{ \{ \mathsf{INV} \} \ \mathbf{y} := \mathbf{1} \ \{ \mathsf{INV} \} }{ \{ \mathsf{INV} \} \ \mathbf{y} := \mathbf{1} \ \{ \mathsf{INV} \} } } \\ [comp] \frac{ \{ \mathsf{INV} \} \ \mathbf{y} := \mathbf{1} \ \{ \mathsf{INV} \} }{ \{ \mathsf{INV} \} \ \mathbf{y} := \mathbf{1} \ \{ \mathsf{INV} \} } } \\ [comp] \frac{ \{ \mathsf{INV} \} \ \mathbf{y} := \mathbf{1} \ \{ \mathsf{INV} \} }{ \{ \mathsf{INV} \} \ \mathbf{y} := \mathbf{1} \ \{ \mathsf{INV} \} } } \\ [comp] \frac{ \{ \mathsf{INV} \} \ \mathbf{y} := \mathbf{1} \ \{ \mathsf{INV} \} }{ \{ \mathsf{INV} \} \ \mathbf{y} := \mathbf{1} \ \{ \mathsf{INV} \} } }
```

Annotated programs

- A streamlined version of inference trees
 - Inline inference trees into programs
 - A kind of "proof carrying code"
 - Going from annotated program to proof tree is a linear time translation

Annotating composition

- We can inline inference trees into programs
- Using proof equivalence of S_1 ; $(S_2; S_3)$ and $(S_1; S_2)$; S_3 instead writing deep trees, e.g.,

$$\frac{\{P\} \, S_1 \, \{P'\} \, \{P'\} \, S_2 \, \{P''\}}{\{P\} \, \{S_1; \, S_2\} \, \{P''\}} \quad \frac{\{P''\} \, S_3 \, \{P'''\} \, \{P'''\} \, S_4 \, \{P''\}}{\{P''\} \, \{S_3; \, S_4\} \, \{Q\}}$$

• We can annotate a composition S_1 ; S_2 ;...; S_n by $\{P_1\} S_1 \{P_2\} S_2 ... \{P_{n-1}\} S_{n-1} \{P_n\}$

Annotating conditions

```
[if<sub>p</sub>] \frac{\{b \land P\}S_1\{Q\}, \{\neg b \land P\}S_2\{Q\}\}}{\{P\} \text{ if } b \text{ then } S_1 \text{ else } S_2\{Q\}}
  { P }
  if b then
               \{b \land P\}
  else
  { Q }
```

Annotating conditions

```
[if<sub>p</sub>] \frac{\{b \land P\}S_1\{Q\}, \{\neg b \land P\}S_2\{Q\}\}}{\{P\} \text{if } b \text{ then } S_1 \text{ else } S_2\{Q\}}
```

```
\{P\} if b then \{b \land P\} S_1 \{Q_1\} else S_2 \{Q_2\}
```

Usually Q is the result of using the consequence rule, so a more explicit annotation is

Annotating loops

```
[while<sub>p</sub>] \frac{\{b \land P\}S\{P\}}{\{P\}\text{ while } b \text{ do } S\{\neg b \land P\}}
   { P }
   while b do
               \{b \land P\}
   \{\neg b \land P\}
```

Annotating loops

```
\frac{\{b \land P\}S\{P\}}{\{P\}\text{ while } b \text{ do } S\{\neg b \land P\}}
[while<sub>p</sub>]
   { P }
   while b do
              \{b \land P\}
                                          P' implies P
                                              \neg b \land P implies Q
  \{\neg b \land P\} { Q }
```

Annotated factorial program

```
{ x=n }
  y := 1;
{ x>0 \Rightarrow y^*x!=n! \land n \ge x }
while \neg (x=1) do
  { x-1>0 \Rightarrow (y^*x)^*(x-1)!=n! \land n \ge (x-1) }
  y := y^*x;
  { x-1>0 \Rightarrow y^*(x-1)!=n! \land n \ge (x-1) }
  x := x-1
{ y^*x!=n! \land n>0 }
```

- Contrast with proof via natural semantics
- Where did the inductive argument over loop iterations go?

Properties of the semantics

Equivalence

— What is the analog of program equivalence in axiomatic verification?

Soundness

– Can we prove incorrect properties?

Completeness

— Is there something we can't prove?

Provable equivalence

- We say that C_1 and C_2 are provably equivalent if for all P and Q
 - $\vdash_{p} \{P\} C_1 \{Q\} \text{ if and only if } \vdash_{p} \{P\} C_2 \{Q\}$
- Examples:
 - -S; **skip** and S
 - $-S_1$; $(S_2; S_3)$ and $(S_1; S_2); S_3$

S_1 ; $(S_2; S_3)$ is provably equivalent to $(S_1; S_2)$; S_3

$$\frac{\{P'\}\,S_2\,\{P''\}\ \{P''\}\,S_3\,\{Q\}}{\{P\}\,S_1\,\{P'\}} \frac{\{P'\}\,\{S_2;\,S_3\}\,\{Q\}}{\{P\}\,S_1;\,(S_2;\,S_3)\,\{Q\}}$$

$$\frac{\{P\} S_1 \{P'\} \{P'\} S_2 \{P''\}}{\{P\} (S_1; S_2) \{P''\}} \frac{\{P''\} S_3 \{Q\}}{\{P\} (S_1; S_2); S_3 \{Q\}}$$

Valid assertions

- We say that $\{P\}C\{Q\}$ is valid if for all states s, if $s \models P$ and $\langle C, s \rangle \rightarrow s'$ then $s' \models Q$
- Denoted by $\models_p \{P\}C\{Q\}$

Logical implication and equivalence

- We write $A \Rightarrow B$ if for all states s if $s \models A$ then $s \models B$
 - $-\{s \mid s \models A\} \subseteq \{s \mid s \models B\}$
 - − For every predicate *A*: $false \Rightarrow A \Rightarrow true$
- We write $A \Leftrightarrow B$ if $A \Rightarrow B$ and $B \Rightarrow A$ $-false \Leftrightarrow 5=7$
- In writing Hoare-style proofs, we will often replace a predicate A with A' such that A ⇔ A' and A' is "simpler"

Soundness and completeness

• The inference system is sound:

$$-\vdash_{p} \{P\}C\{Q\} \text{ implies} \vDash_{p} \{P\}C\{Q\}$$

The inference system is complete:

$$- \models_{p} \{ P \} C \{ Q \} \text{ implies } \vdash_{p} \{ P \} C \{ Q \}$$

Weakest liberal precondition

- A backward-going predicate transformer
- The weakest liberal precondition for Q is $s \models wlp(C, Q)$ if and only if for all states s'

if $\langle C, s \rangle \rightarrow s'$ then $s' \models Q$

Propositions:

- 1. $\models_p \{ wlp(C, Q) \} C \{ Q \}$
- 2. If $\models_p \{P\}C\{Q\}$ then $P \Rightarrow wlp(C, Q)$

Strongest postcondition

- A forward-going predicate transformer
- The strongest postcondition for P is

$$s' \models \operatorname{sp}(P, C)$$

if and only if there exists s such that if $\langle C, s \rangle \rightarrow s'$ and $s \models P$

- 1. $\models_{p} \{ P \} C \{ sp(P, C) \}$
- 2. If $\models_p \{ P \} C \{ Q \}$ then $sp(P, C) \Rightarrow Q$

Predicate transformer semantics

 wlp and sp can be seen functions that transform predicates to other predicates

```
- wlp\llbracket C \rrbracket: Predicate → Predicate
{ P } C { Q } if and only if wlp\llbracket C \rrbracket Q = P
```

```
- sp\llbracket C \rrbracket: Predicate → Predicate
{ P } C { Q } if and only if sp\llbracket C \rrbracket P = Q
```

Hoare logic is (relatively) complete

• Suppose that $\models_p \{ P \} C \{ Q \}$ then (from proposition 2) $P \Rightarrow \{ wlp(C, Q) \}$

$$[\mathsf{cons}_{\mathsf{p}}] \frac{\{P\}S\{Q\}}{\{\mathsf{wlp}(C,Q)\}S\{Q\}}$$

Calculating wlp

- 1. wlp(skip, Q) = Q
- 2. wlp(x := a, Q) = Q[a/x]
- 3. $wlp(S_1; S_2, Q) = wlp(S_1, wlp(S_2, Q))$
- 4. $wlp(if b then S_1 else S_2, Q) =$ $(b \land wlp(S_1, Q)) \lor (\neg b \land wlp(S_2, Q))$
- 5. wlp(while b do S, Q) = ...?

 hard to capture

Calculating wlp of a loop

```
Idea: we know the following statements are semantically equivalent
    while b do S
    if b \text{ do } (S; \text{ while } b \text{ do } S) else skip
Let's try to substitute and calculate on
wlp(while b do S, Q) =
wlp(if b do (S; while b do S) else skip, Q) =
(b \land \mathsf{wlp}(S; \mathsf{while} b \mathsf{do} S, Q)) \lor (\neg b \land \mathsf{wlp}(\mathsf{skip}, Q)) =
(b \land wlp(S, wlp(while b do S, Q))) \lor (\neg b \land Q)
Loopinv = (b \land wlp(S, Loopinv)) \lor (\neg b \land Q)
                                                            We have a recurrence
```

Prove the following triple

= $(timer>0 \land (timer\geq0)[timer-1/timer]) \lor (timer\leq0 \land timer=0)$

= (timer>0 \wedge timer-1 \geq 0) \vee (timer \leq 0 \wedge timer=0)

= timer> $0 \lor timer=0$

= timer > 0

Issues with wlp-based proofs

- Requires backwards reasoning not very intuitive
- Backward reasoning is non-deterministic causes problems when While is extended with dynamically allocated heaps (aliasing)
- Also, a few more rules will be helpful

Conjunction rule

[conj_p]
$$\frac{\{P\}S\{Q\} \{P'\}S\{Q'\}}{\{P \land P'\}S\{Q \land Q'\}}$$

- Not necessary (for completeness) but practically useful
- Starting point of extending Hoare logic to handle parallelism
- Related to Cartesian abstraction
 - Will point this out when we learn it

Structural Rules

$$[disj_p] \frac{\{P\} C \{Q\} \{P'\} C \{Q'\}}{\{P \lor P'\} C \{Q \lor Q'\}}$$

$$[exist_p] \frac{\{P\} C \{Q\}}{\{\exists v. P\} C \{\exists v. Q\}} v \notin FV(C)$$

$$[\operatorname{univ}_{p}] \frac{\{P\} C \{Q\}}{\{\forall v. P\} C \{\forall v. Q\}} v \notin FV(C)$$

$$[\mathsf{Inv}_{\mathsf{p}}] \{ F \} C \{ F \} \; \mathsf{Mod}(C) \cap \mathsf{FV}(F) = \{ \}$$

- Mod(C) = set of variables assigned to in sub-statements of C
- FV(F) = free variables of F

Invariance + Conjunction = Constancy

[constancy_p]
$$\frac{\{P\}C\{Q\}}{\{F \land P\}C\{F \land Q\}}$$
 Mod(C) \cap FV(F)={}

- Mod(C) = set of variables assigned to in sub-statements of C
- FV(F) = free variables of F

Floyd's strongest postcondition rule

```
[ass<sub>Floyd</sub>] \{P\}x := a\{\exists v. x = a[v/x] \land P[v/x]\}
where v is a fresh variable
```

- Example
 { z=x } x:=x+1 { ?∃v. x=v+1 ∧ z=v }
- This rule is often considered problematic because it introduces a quantifier – needs to be eliminated further on
- We will now see a variant of this rule

Create an explicit Skolem variable in precondition

• Examples:

Then assign the resulting value to *x*

First evaluate *a* in the precondition state (as *a* may access *x*)

```
[ass<sub>floyd</sub>] \{x=v\}x:=a\{x=a[v/x]\}
where v\notin FV(a)
```

[constancy_p] $\{z=9\}$ x:=y+1 $\{z=9 \land x=y+1\}$

{x=n} x:=5*y {x=5*y} {x=n} x:=x+1 {x=n+1} {x=y} x:=y+1 {x=y+1} {x=n} x:=y+1 {x=y+1}

[exist_n] $\{\exists n. x=n\} x:=y+1 \{\exists n. x=y+1\} \text{ therefore } \{true\} x:=y+1 \{x=y+1\}$

Buggy sum program

```
{ y≥0 }
\mathbf{x} := 0
{ y \ge 0 \land x = 0 }
res := 0
{ y \ge 0 \land x=0 \land res=0 }
Inv = \{ y \ge 0 \land res = Sum(0, x) \}
      = \{ y \ge 0 \land res = m \land x = n \land m = Sum(0, n) \}
while (x≤y) do
          { y \ge 0 \land res=m \land x=n \land m=Sum(0, n) \land x \le y \land n \le y }
           x := x+1
          { y \ge 0 \land res=m \land x=n+1 \land m=Sum(0, n) \land n \le y}
          res := res+x
          { y \ge 0 \land res=m+x \land x=n+1 \land m=Sum(0, n) \land n \le y}
          { y \ge 0 \land res-x=Sum(0, x-1) \land n \le y}
          { y \ge 0 \land res=Sum(0, x) }
{ y \ge 0 \land res=Sum(0, x) \land x>y } \rightleftarrows
\{res = Sum(0, y)\}
```

Background axiom

Sum program

```
• Define Sum(0, n) = 0+1+...+n \frac{\{x=Sum(0, n)\}\{y=n+1\}}{\{x+v=Sum(0, n+1)\}}
```

```
{ y≥0 }
x := 0
{ y \ge 0 \land x = 0 }
res := 0
{ y \ge 0 \land x=0 \land res=0 }
Inv = { y \ge 0 \land res = Sum(0, x) \land x \le y
         { y \ge 0 \land res=m \land x=n \land n \le y \land m=Sum(0, n) }
while (x < y) do
          { y \ge 0 \land res=m \land x=n \land m=Sum(0, n) \land x < y \land n < y }
         res := res+x
          { y \ge 0 \land res=m+x \land x=n \land m=Sum(0, n) \land n < y
         x := x+1
          { y \ge 0 \land res=m+x \land x=n+1 \land m=Sum(0, n) \land n < y }
          { y \ge 0 \land res-x=Sum(0, x-1) \land x-1 < y }
          { y \ge 0 \land res = Sum(0, x) }
{ y \ge 0 \land res=Sum(0, x) \land x \le y \land x \ge y }
{ y \ge 0 \land res=Sum(0, y) \land x=y }
\{ res = Sum(0, y) \}
```

Floyd's strongest postcondition rule

```
[ass<sub>Floyd</sub>] \{P\}x := a\{\exists v. x = a[v/x] \land P[v/x]\}
where v is a fresh variable
```

- Example
 { z=x } x:=x+1 { ?∃v. x=v+1 ∧ z=v }
- This rule is often considered problematic because it introduces a quantifier – needs to be eliminated further on
- We will now see a variant of this rule

Floyd's strongest postcondition rule

[ass_{Floyd}] $\{P\}x := a\{\exists v. x = a[v/x] \land P[v/x]\}$ where v is a fresh variable

- Example
 { z=x } x:=x+1 { ∃v. x=v+1 ∧ z=v }
- This rule is often considered problematic because it introduces a quantifier – needs to be eliminated further on
- We will now see a variant of this rule

Create an explicit Skolem variable in precondition

Then assign the resulting value to *x*

First evaluate *a* in the precondition state (as *a* may access *x*)

```
[ass<sub>floyd</sub>] \{x=v\}x:=a\{x=a[v/x]\}
where v\notin FV(a)
```

```
[ass<sub>floyd</sub>] \{x=v\}x:=a\{x=a[v/x]\}
where v\notin FV(a)
```

```
• Examples: \{x=n\} \ x:=5*y \ \{x=5*y\} \ \{x=n\} \ x:=x+1 \ \{x=n+1\} \ \{x=n\} \ x:=y+1 \ \{x=y+1\} \ \{x=x+1\} \ \{x=y+1\} \ \{
```

```
[ass<sub>floyd</sub>] \{x=v\}x:=a\{x=a[v/x]\}
where v\notin FV(a)
```

• Examples: $\{x=n\} \ x:=5*y \ \{x=5*y\} \ \{x=n\} \ x:=x+1 \ \{x=n+1\} \ \{x=n\} \ x:=y+1 \ \{x=y+1\} \ \{z=y+1\} \ \{$

[ass_{floyd}]
$$\{x=v\}x:=a\{x=a[v/x]\}$$

where $v\notin FV(a)$

• Examples: $\{x=n\} \ x:=5*y \ \{x=5*y\} \ \{x=n\} \ x:=x+1 \ \{x=n+1\} \ \{x=n\} \ x:=y+1 \ \{x=y+1\} \ [exist_p] \ \{\exists n. \ x=n\} \ x:=y+1 \ \{\exists n. \ x=y+1\} \ [constancy_p] \ \{z=9\} \ x:=y+1 \ \{z=9 \ \land \ x=y+1\} \$

Buggy sum program

```
{ y≥0 }
\mathbf{x} := 0
{ y \ge 0 \land x = 0 }
res := 0
{ y \ge 0 \land x=0 \land res=0 }
Inv = \{ y \ge 0 \land res = Sum(0, x) \}
      = \{ y \ge 0 \land res = m \land x = n \land m = Sum(0, n) \}
while (x≤y) do
          { y \ge 0 \land res=m \land x=n \land m=Sum(0, n) \land x \le y \land n \le y }
           x := x+1
          { y \ge 0 \land res=m \land x=n+1 \land m=Sum(0, n) \land n \le y}
          res := res+x
          { y \ge 0 \land res=m+x \land x=n+1 \land m=Sum(0, n) \land n \le y}
          { y \ge 0 \land res-x=Sum(0, x-1) \land n \le y}
          { y \ge 0 \land res=Sum(0, x) }
{ y \ge 0 \land res=Sum(0, x) \land x>y } \rightleftarrows
\{res = Sum(0, y)\}
```

Sum program

• Define Sum(0, n) = 0+1+...+n

Background axiom

```
{ y≥0 }
x := 1
                                      [axm-Sum] \frac{x=Sum(0, n)}{y=n+1}
x+y=Sum(0, n+1)
{ y \ge 0 \land x=1 }
res := 0
{ y \ge 0 \land x=1 \land res=0 }
Inv = { y \ge 0 \land res=Sum(0, x-1) \land x \le y+1
         { v \ge 0 \land res=m \land x=n \land n \le v+1 \land m=Sum(0, n-1)}
while (x \le y) do
         { y \ge 0 \land res=m \land x=n \land m=Sum(0, n-1) \land x < y \land n \le y+1 }
         res := res+x
          { y \ge 0 \land res=m+x \land x=n \land m=Sum(0, n-1) \land n \le y+1
         x := x+1
          { y \ge 0 \land res=m+x \land x=n+1 \land m=Sum(0, n-1) \land n \le y+1 }
          { y \ge 0 \land res-x=Sum(0, x-1) \land x-1 < y+1 }
          { y \ge 0 \land res=Sum(0, x-1) \land x \le y+1 } // axm-Sum
{ y \ge 0 \land res=Sum(0, x-1) \land x \le y+1 \land x>y }
{ y \ge 0 \land res=Sum(0, x-1) \land x=y+1 }
{ y \ge 0 \land res=Sum(0, y) }
\{ res = Sum(0, y) \}
```

Sum program

• Define Sum(0, n) = 0+1+...+n

Background axiom

```
{ y≥0 }
x := 1
                                            [axm-Sum] {x=Sum(0, n)}{y=n+1}
{x+y=Sum(0, n+1)}
{ y \ge 0 \land x = 0 }
res := 0
{ y \ge 0 \land x=0 \land res=0 }
Inv = { y \ge 0 \land res=Sum(0, x-1) \land x \le y+1
while (x≤y) do
          { y \ge 0 \land res=m \land x=n \land m=Sum(0, n-1) \land n \le y+1 \land x < y }
          res := res+x
          { y \ge 0 \land res=m+x \land x=n \land m=Sum(0, n-1) \land n \le y+1 }
          { y \ge 0 \land res=Sum(0, n) \land x=n \land n \le y+1 } // axm-Sum
          x := x+1
          { y \ge 0 \land res=Sum(0, n) \land x=n+1 \land n \le y+1 }
          { y \ge 0 \land res=Sum(0, x-1) \land x \le y+1 }
{ y \ge 0 \land res=Sum(0, x-1) \land x \le y+1 \land x>y }
{ y \ge 0 \land res=Sum(0, x-1) \land x=y+1 }
{ y \ge 0 \land res=Sum(0, y) }
\{ res = Sum(0, y) \}
```

Example 1: Absolute value program

```
{
   if x<0 then
    x := -x
else
    skip
{
   }</pre>
```

Absolute value program

```
\{ x=v \}
if x<0 then
        \{ x=v \land x<0 \}
           x := -x
           { x=-v \land x>0 }
else
           \{ \mathbf{x} = \mathbf{v} \land \mathbf{x} \ge 0 \}
           skip
            \{ \mathbf{x}=\mathbf{v} \land \mathbf{x} \geq 0 \}
{ \mathbf{v} < \mathbf{0} \land \mathbf{x} = -\mathbf{v} \lor \mathbf{v} \ge \mathbf{0} \land \mathbf{x} = \mathbf{v} }
\{ x = |v| \}
```

Example 2: Variable swap program

```
{
}
t := x
x := y
y := t
{
}
```

Variable swap program

```
\{ x=a \land y=b \}
t := x
{ x=a \land y=b \land t=a }
x := y
\{ x=b \land y=b \land t=a \}
y := t
{ x=b \land y=a \land t=a }
\{ x=b \land y=a \} // cons \}
```

Example 3: Axiomatizing data types

```
S := x := a \mid x := y[a] \mid y[a] := x
\mid \text{skip} \mid S_1; S_2
\mid \text{if } b \text{ then } S_1 \text{ else } S_2
\mid \text{while } b \text{ do } S
```

- We added a new type of variables array variables
 - Model array variable as a function y : \mathbf{Z} → \mathbf{Z}
- We need the two following axioms:

$$\{ y[x \mapsto a](x) = a \}$$
$$\{ z \neq x \Rightarrow y[x \mapsto a](z) = y(z) \}$$

Array update rules (wp)

```
S ::= x := a \mid x := y[a] \mid y[a] := x | skip | S_1; S_2 | A very general approach – allows handling many data types | while b do S
```

Treat an array assignment y[a]:= x as an update to the array function y

```
-y := y[a \mapsto x] meaning y'=\lambdav. v=a ? X : y(v)
```

```
[array-update] { P[y[a \mapsto x]/y] } y[a] := x \{ P \}
[array-load] { P[y(a)/x] } x := y[a] \{ P \}
```

Array update rules (wp) example

• Treat an array assignment y[a] := x as an update to the array function y

```
-y := y[a \mapsto x] meaning y' = \lambda v. v = a ? x : y(v)
```

```
[array-update] { P[y[a \mapsto x]/y] } y[a] := x \{ P \}

\{x = y[i \mapsto 7](i)\} y[i] := 7 \{x = y(i)\}

\{x = 7\} y[i] := 7 \{x = y(i)\}

[array-load] { P[y(a)/x] } x := y[a] \{ P \}

\{y(a) = 7\} x := y[a] \{x = 7\}
```

Array update rules (sp)

```
In both rules v, g, \text{ and } b \text{ are fresh} [array-update<sub>F</sub>] { x=v \land y=g \land a=b } y[a] := x \{ y=g[b\mapsto v] \}
```

```
[array-load<sub>F</sub>] { y=g \land a=b } x := y[a] { x=g(b) }
```

Array-max program

```
nums : array
N : int // N stands for num's length
{ N \ge 0 \land nums = original}
\mathbf{x} := 0
res := nums[0]
while x < N
    if nums[x] > res then
         res := nums[x]
    x := x + 1
```

Array-max program

```
nums : array
N : int // N stands for num's length
{ N \ge 0 \land nums = orig nums }
\mathbf{x} := 0
res := nums[0]
while x < N
     if nums[x] > res then
           res := nums[x]
     x := x + 1
Post_1: \{ x=N \}
Post<sub>2</sub>: { nums=orig nums }
Post<sub>3</sub>: { \forallm. 0 \le m \le N \Rightarrow nums(m) \le res }
Post<sub>4</sub>: { \exists m. 0 \le m < N \land nums(m) = res }
```

Summary

- C programming language
- P assertions
- {P} C {Q} judgments
- $\{P[a/x]\} \times := a \{P\}$ proof Rules
 - Soundness
 - Completeness
- $\{x = N\}$ y:=factorial(x) $\{y = N!\}$ proofs

Extensions to axiomatic semantics

- Procedures
- Total correctness assertions
- Assertions for execution time
 - Exact time
 - Order of magnitude time
- Assertions for dynamic memory
 - Separation Logic
- Assertions for parallelism
 - Owicki-Gries
 - Concurrent Separation Logic
 - Rely-guarantee