Program Analysis and
Verification

0368-4479
http://www.cs.tau.ac.il/~maon/teaching/2013-2014/paav/paav1314b.html

Noam Rinetzky

Lecture 5: Aximatic Semantics

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

Good manners

e Mobiles

Home Work Assignment #1

In the following, we refer to the “Semantics with Application” book as “the
book”. The book can be found here:
http://www.daimi.au.dk/~bra8130/Wiley book/wiley.html.

Solve Ex 2.8 and 2.18 in the book.

2. Inthe previous question, you were asked to extend the While language
with a new construct (a for loop). Extend the proof of theorem 2.26 in
the book (semantic equivalence) to handle for commands.

3. Solve Ex 2.34 in the book.
Read Section 2.5 in the book and solve Ex 2.45.

5. Prove or disprove: The denotational semantics of any statement in the
While language shown in the lectures is a monotone and continuous
function.

6. Define a denotational semantics for the the While language extended
with the random command. (The extension is described in Question 3) .

Denotational Sematnics

Added examples

Equivalences of operational and denotational
semantics

Complete lattices
Tarski-Kantor Fixed-point theorem

Axiomatic Semantics

Robert Floyd C.A.R. Hoare Edsger W. Dijkstra

Rle—

Proving program correctness

* Why prove correctness?
* What is correctness?
* How?
— Reasoning at the operational semantics level

* Tedious
* Error prone

— Formal reasoning using “axiomatic” semantics
* Syntactic technique (“game of tokens”)
 Mechanically checkable

— Sometimes automatically derivable

A simple imperative language: While

Abstract syntax:
az=n|x|a +a,|axa,| a—a,
b::= true | false
‘ a, = dy | a, < a, | _'b| bl/\bQ
S:=x:=a | skip | §; S,
if 6 then §, else §,
while bdo §

Program correctness concepts

* Property = a certain relationship between initial

state and final state - o 0 Giner notions of
properties exist

* Partial correctness = properties that hold

if program terminates .o Vostly focus i
this course

 Termination = program always terminates
— i.e., for every input state

partial correctness + termination = total correctness
o
O

Other correctness concepts exist:
resource usage, linearizability, ...

Factorial example

S, =y = 1; while = (x=1) do (y := y*x; x = x-1)

* Factorial partial correctness property =

— if the statement terminates then the final value of
y will be the factorial of the initial value of x

e Whatif sx<0?

* Formally, using natural semantics:
(S¢.., sy — s’ implies s’ y = (s x)!

Natural semantics for While

lass,] (x:=a,s)— s[x—>AA|a]s]
[skip,] (skip,s)—s

(S, s) —>5,(S,,s)—s"

[comp,,] (S:5,5)— s

[if*] . (S1,5) =8’ if Z[b]s=tt
ns
(if bthenS,elseS, s)—s

([(Sy5) =5 t B[] s =1
(if bthenS,elseS,s)—s

[while] (while bdoS,s)—s if Bb]s=ff

[Whilettns] <S’ S> — S”. <Whlle bdo 5, SI> —s” if Z[b]s=tt
(while bdoS,s)—s"

10

Staged proof

The proof proceeds in three stages:

Stage 1: We prove that the body of the while loop satisfies:
if (y :=y*xx;x:=x—1,s) > s"and s" x>0
if (y := y*xx; x :=x s) — s" and s" x *)
then (s y) x (s x)! = (s" y) x (s" x)! and s x >0

Stage 2: We prove that the while loop satisfies:
if (while ~(x=1) do (y := y*x; x := x—1), 5) = s" (%)
then (s y) x (s x)! =s"yand s" x=1and s x > 0

Stage 3: We prove the partial correctness property for the complete program:
if (y := 1; while ~(x=1) do (y := y*x; x := x—1), s) = &' ey
then s y = (s x)! and s x > 0

In each of the three stages the derivation tree of the given transition is inspected
in order to prove the property.

11

First stage

Stage 1: We prove that the body of the while loop satisfies:

if (y :=yxx; x:=x%x—-1,s) = s"and s" x> 0 *)

then (s y) x (s x)! = (8" y) x (s" x)! and s x > 0

In the first stage we consider the transition
(y == yxx; x := x—1, 5) = 5"
According to [comp,s| there will be transitions
(y := y*x, s) — s’ and (x :=x—1, ') = "

for some s’. From the axiom [ass,s| we then get that s’ = s[yr—>.A[yxx]s] and that
s" = s'[x—A[x—1]s']. Combining these results we have

s" = s[y—=>(s y)x(s x)][x—(s x)—1]
Assuming that s” x > 0 we can then calculate

(" y) * (5" ¥)! = ((s ¥) * (s X)) * ((s x)=1)! = (s y) * (s x)!

and since s x = (s” x) + 1 this shows that (*) does indeed hold.

12

Second stage

Stage 2: We prove that the while loop satisfies:
if (while ~(x=1) do (y := y*x; x := x—1), 5) — 5"

(**)

then (s y) x (s x)! =s"yand s x=1and s x> 0

In the second stage we proceed by induction on the shape of the derivation tree
for

!

(while —(x=1) do (y := y*x; x := x—1),5) = s

13

(while - (x=1) do (y := y*x; x := x-1),s)—¢

One of two axioms and rules could have been used to construct this derivation.
If [whilefl] has been used then s’ = s and B[-(x=1)]s = ff. This means that
s’ x = 1 and since 1! = 1 we get the required (s y) x (s x)! = s y and s x > 0.
This proves (**).

Next assume that [whileflts] is used to construct the derivation. Then it must
be the case that B[-(x=1)]s = tt and

(y == yxx; x ;== x—1, s) = 5"
and
(while —(x=1) do (y := y*xx; x := x—1), s") — ¢

for some state s”. The induction hypothesis applied to the latter derivation gives
that

(s"y)x(s"x)! =s'"yand s"x=1and s" x>0
From (*) we get that

(sy)*x(sx)! =(s"y) x(s" x)! and s x > O
Putting these results together we get

(sy)x(sx)! =s'yands'x=1andsx >0

This proves (**) and thereby the second stage of the proof is completed.

14

Third stage

Stage 3: We prove the partial correctness property for the complete program:

if (y := 1; while ~(x=1) do (y := y*x; x := x—1), 5) = s’
then s y = (s x)! and s x > 0

(¥¥*)

Finally, consider the third stage of the proof and the derivation
(y == 1; while —(x=1) do (y := y*X; X :=x—1), §) = &
According to [compyg] there will be a state s” such that
(y=1,s) = 35"
and
(while —(x=1) do (y := y*x; x := x—1), s") — ¢

From axiom [ass,s| we see that s” = s[y++1] and from (**) we get that s x > 0
and therefore s x > 0. Hence (s x)! = (s" y) x (s” x)! holds and using (**) we get

(sx)!=("y)x ")) =5y

as required. This proves the partial correctness of the factorial statement.

15

How easy was that?

* Proof is very laborious

— Need to connect all transitions and argues about
relationships between their states

— Reason: too closely connected to semantics of
programming language

* |s the proof correct?

 How did we know to find this proof?
— |s there a methodology?

16

Axiomatic verification approach

What do we need in order to prove that the
program does what it supposed to do?

Specify the required behavior

Compare the behavior with the one obtained by the
operational semantics

Develop a proof system for showing that the program
satisfies a requirement

Mechanically use the proof system to show correctness

The meaning of a program is a set of verification rules

17

Assertions, a.k.a Hoare triples

{PICd

precondition

statement
a.k.a command

).

postcondition

 Pand Q are state predicates
— Example: x>0

* If P holds in the initial state, and

if execution of C terminates on that s
then Q will hold in the state in which

 Cis notrequired to always terminate

tate,
C halts

{true} while true do skip {false}

18

Total correctness assertions

[P]C[Q]

* If P holds in the initial state,
execution of C must terminate on that state,
and Q will hold in the state in which C halts

19

Y -

Factorial example

1?2}

l; while - (x=1) do (y

17}

= y*x,; X

= x-1)

20

First attempt

We need a way to
“remember” value of
X before execution

Ooo,

{ x>0}

:= 1; while = (x=1) do (y := y*x; x :=

{y=x!}

x-1)

Holds only for value of x at
state after execution finishes

21

Y -

Fixed assertion

A logical variable, must not
appear in statement - immutable

“
{X=N |
l; while - (x=1) do (y := y*x; x

{y=n! A n>0}

= x-1)

22

The proof outline

{x=n}
y := 1;
{x>0 = y*x!=n! A n>x}
while - (x=1l) do
{x-1>0 = (y*x) *(x-1) I=n! A n>(x-1) }
y 1= y*x;
{x-1>0 = y*(x-1) !=n! A n>(x-1) }
x = x-1
{y*x!l=nl An>0 A x=1}

23

Factorial example

S, =y = 1; while = (x=1) do (y := y*x; x = x-1)

e Factorial partial correctness property = if the
statement terminates then the final value of y
will be the factorial of the initial value of x

— Whatif s x<0?

* Formally, using natural semantics:
(S¢..,s) — s’ implies s’ y = (s x)!

24

Staged proof

The proof proceeds in three stages:

Stage 1: We prove that the body of the while loop satisfies:
if (y :=y*xx;x:=x—1,s) > s"and s" x>0
if (y := y*xx; x :=x s) — s" and s" x *)
then (s y) x (s x)! = (s" y) x (s" x)! and s x >0

Stage 2: We prove that the while loop satisfies:
if (while ~(x=1) do (y := y*x; x := x—1), 5) = s" (%)
then (s y) x (s x)! =s"yand s" x=1and s x > 0

Stage 3: We prove the partial correctness property for the complete program:
if (y := 1; while ~(x=1) do (y := y*x; x := x—1), s) = &' ey
then s y = (s x)! and s x > 0

In each of the three stages the derivation tree of the given transition is inspected
in order to prove the property.

25

Stages

sy-(sx)!=s"y-(s"x)I Asx>0

— T
s y = y*x; x := x-1 S"
sy-(sx)!=s"y-(s"x)IAs"x=1Asx>0
T
v
while -~ (x=1) do (y := y*x; x := x-1) s"

S

p——

l

sSSy=(sx)IAsx>0

T

S y

:= 1; while - (x=1) do (y :=

y*x,;, x := x-1) S

26

Inductive proof over iterations

sy-(sx)! = m sx>0
T —

S (y := y*x; x := x-1) S’

’
S while - (x=1) do (y := y*x; x := x-1) S"

!///’l

S while - (x=1) do (y := y*x; x := x-1) SII

I
SY-(sx)lEs”y-(s"x)INs'x=1Asx>0

27

Assertions, a.k.a Hoare triples

{P}C{Q}

 Pand Q are state predicates
— Example: x>0

* If P holds in the initial state, and
if execution of C terminates on that state,
then Q will hold in the state in which C halts

* Cis not required to always terminate
{true} while true do skip {false}

28

Total correctness assertions

[P]C[Q]

* If P holds in the initial state,
execution of C must terminate on that state,
and Q will hold in the state in which C halts

29

Y -

Factorial assertion

A logical variable, must not
appear in statement - immutable

“
{X=N |
l; while - (x=1) do (y := y*x; x

{y=n! A n>0}

= x-1)

30

Factorial partial correctness proof

{x=n}
y := 1;
{x>0 = y*x!=nl A n>x }
while - (x=1l) do
{x-1>0= (y*x) *(x-1) !=n! A n>(x-1) }

Y = y*x;
{x-1>0 = y*(x-1) !=n! A n>(x-1) }
x = x-1

{y*x!l=nl An>0 A x=1}

31

Formalizing partial correctness

*SEP

— P holds in state s
* 2. —program states

1 — undefined

s, [cls=1°

if (C,s) — ¢’
else

2

32

Formalizing partial correctness

*SEP

— P holds in state s

Q
* 2. —program states e‘r
1 —undefined .\

* {P}C{Q}
—Vs,s’€X.(sEP A(C, s)—s') = s'EQ
alternatively

—VseX.(sePAS [C]s+1) =S _[C] EQ

— Convention: L =Pforall P 0
VseXx. SIZP — Sns[[c]] S IZQ Why did we choose
natural semantics?

33

Formalizing partial correctness

*SEP

— P holds in state s

Q
* X2 —program states e‘r
L —undefined .\

* {P}C{Q}
— Vs, s’ €X.(sEP A{C, s)=*s") = s’=Q
alternatively
o \V/S = 2) (SIZP /\ Ssos[[C]] SiJ—) — SSOSIIC]] IZQ

— Convention: L =P forall P
VseX.s=P=S_[C]sE=Q

34

How do we express predicates?

* Extensional approach

— Abstract mathematical functions
P:State — T

* Intensional approach

— Via language of formulae

35

An assertion language

* Bexp is not expressive enough to express
predicates needed for many proofs

— Extend Bexp
* Allow quantifications

—-Vz. ..
—3z. ...

e 47. z=kxn

* Import well known mathematical concepts
—nl=nx(n-1)x--2x1

36

An assertion language

Either a program variables or a
logical variable

W

a:=n|lx|a +a,|axa

2 | a,— dy
A:= true | false
|al:a2|alsa2|_lA|Al/\AQ|A1VAQ

| A, = A, | Vz. A | Jz. 4

37

First Order Logic Reminder

38

Free/bound variables

e A variable is said to be bound in a formula

when it occurs in the scope of a quantifier.

Otherwise it is said to be free
— di. k=ixm
— (i+100<77)AVi. j+1=i+3)

* FV(A) = the free variables of A

* Defined inductively on the abstract syntax
tree of A

39

Free variables

40

Su bShtunOn What if t is not pure?

* An expression tis pure (a term) if it does not
contain quantifiers

* A[t/z] denotes the assertion A’ which is the
same as A, except that all instances of the free

variable z are replaced by t
o A= k=ixm

A[5/Kk] =

A[5/i] =

41

Calculating substitutions

n[t/z] =n
x[t/z] = x
x[t/x] =t

(01 + az)[t/z]

:al

(a, % a,)[t/z] =a,

(a, - a,)[t/z]

=al

t/z.
t/z.
t/z] -

42

Calculating substitutions

true[t/x] = true

false[t/x] = false

(0, = a,)[t/z] = a,[t/z] = a,[t/z]
(a, < a,)[t/z]=a,[t/z] < a,[t/Z]
(-A)t/z] =-(A[t/z])

(A A A)[t/z] = A, [t/z] A A,lt/z]
(A, V A,)[t/z] = A, [t/z] V A,[t/Z]
(A, = A,)[t/z] = A,[t/z] = A,[t/Z]

(Vz.A)[t/z] =Vz. A
(Vz. A)lt/y] = Vz. Alt/y]
(Fz. A)[t/z] =T z. A
(3 z. A)[t/y] = 3 z. Alt/y]

Proof Rules

44

Axiomatic semantics for While

ass,] { Pla/x] }x:=a{P}

skip,] {P}skip{P}

{Pis;{Q}, {Q}S,{R}
[Compp] . {P}Sl; Sz{R}

Notice similarity
to natural
semantics rules

< {bAP}S, {Q}, {-bAP}S, {Q}
[it,] {P}if bthenS,elsesS, {Q}

| IbAP}S{P)
[while,] oy hile bdoS{bAP]
{P}s{Q} . , ,
[cons] P1S{Q) if P=P and Q' =Q

45

Assignment rule

[ass,] {Pla/x]}x:=a{P}

A “backwards” rule

x := a always finishes six—~A[a]s] E P

Why is this true?
— Recall operational semantics:

[ass (x :=a,s)— s[x~»A|a]s]

Example: {y*z<9} x:=y*z {x<9}
What about {y*z<9Aw=5} x:=y*z {w=5}"?

ns|

46

skip rule

[skip,] {P}skip{P)

[skip,.] (skip, s) — S

47

Composition rule

comp] LP1S:{QL {Q}s,{R}
P {P}S;S,{R}

(5,5) —5,(S,,8) — 5"
[Compns] <51’ 52’ S> N Sn

* Holds when S, terminates in every state where P

holds and then Q holds
and S, terminates in every state where Q holds

and then R holds
48

Condition rule

ibAP}S1Q), {ZbAP}S,1Q}

if .

i,] {P}if bthenS,else$,{Q}
et (5,8)— 8 i =
Uigs (if bthenS,elseS,s)—s F7lbls=u
[ifﬁns] <521 5>_)S’ if Z[b]s=ff

(if bthenS,elseS, s)—s

49

Loop rule

{bAP}S{P]}
{P}while bdoS{-bAP}

[while]

[while] (while bdoS,s)—s if Z[b]s=ff

[whilett] S, 5>%S”. (while bdoS,s)—s" ppps-n
(while bdoS,s)y—s"

 Here P is called an invariant for the loop
— Holds before and after each loop iteration
— Finding loop invariants — most challenging part of proofs

 When loop finishes, b is false

50

Rule of consequence

{P}s{Q}
{P}s{qQ}

[cons] if PP’ and Q'=Q

* Allows strengthening the precondition and
weakening the postcondition

* The only rule that is not sensitive to the form
of the statement

51

Rule of consequence

{P}s{Q}
{P}s{qQ}

[cons] if PP’ and Q'=Q

* Why do we need it?
e Allows the following
{y*z<9} x:=y*z {x<9}
{y*z<9Aw=5} x:=y*z {x<10}

52

Inference trees

Similar to derivation trees of natural
semantics

_eaves are ...
nternal nodes correspond to ...

nference tree is called

— Simple if tree is only an axiom
— Composite otherwise

53

Provability

e We say that an assertion{P}C{Q}is
provable if there exists an inference tree
— Written as |—p{P}C{Q}
— Are inference trees unique?
{true} x:=1; x:=x+5 {x>0}

* Proofs of properties of axiomatic semantics
use induction on the shape of the inference
tree

— Example: prove {P}C{true}foranyPandC

54

Factorial proof

Goal: {x=n}y:=1; while (x=1) do (y:=y*x; x:=x-1) {y=n!An>0}

W=while (x=1l) do (y:=y*x; x:=x-1)

INV=x>0=(y-x!=nlAn>x)

{INV[x-1/x][y*x/y] } y:=y*x {INV[x-1/x]} {INV[x-1/x] }x:=x-1 {INV}

[comp]
{INV[x-1/x][y*x/y] } y:=y*x; x:=x-1{INV}
[cons]
{x=1 AINV}y:=y*x; x:=x-1{INV}
[while]
(NVILATY y:=1 {INV} {INV}W {x=1 AINV }
[cons] [cons]
{x=n} y:=1 {INV} {INV}W {y=n! An>0}
[comp]

{x=n}while (x=1) do (y:=y*x; x:=x-1) {y=n!An>0}

55

Annotated programs

e A streamlined version of inference trees
— Inline inference trees into programs
— A kind of “proof carrying code”

— Going from annotated program to proof tree is a
linear time translation

56

Annotating composition

 We caninline inference trees into programs

* Using proof equivalence of S;; (S,; S;3) and (S;; S,); S3
instead writing deep trees, e.g.,

{PrS, {P} {P}S,{P7} {P"}S;{P”} {P”"}S,{P"}
{P}(S,; S,) {P”} {P’}(S5;S,)1{Q}
{P} (S, S,); (S35 5,) 1@}

* We can annotate a composition S;; S,;...; S, by
{P}S, {P,}S, .. {P. ;} S, 1 {P.}

57

Annotating conditions
{bAP}S {Q}, {=bAP}S5{Q}

it} {P}if bthen§;elseS, {Q}
{P}
if b then
{bAP}
51
else
5,
{Q}

58

Annotating conditions
{bAP}S {Q}, {=bAP}S5{Q}

[if] .
P* {P}if bthenS,else$,{Q}
{P}
if b then
{bAP}
31 Usually Q is the result of using
{ Ql } the consequence rule, so a more
el se explicit annotation is
52
{Q,}
{Q}

59

Annotating loops

{bAP}S{P]}
{P}while bdoS{-bAP}

[while]

{P}

while b do
{bAP}
S

{-b AP}

60

Annotating loops

{bAP}S{P]}
{P}while bdoS{-bAP}

[while]

{P}

while b do
{bAP} P’ implies P
S

{P"} —b A P implies Q
{=bAPH Q}/

61

Annotated factorial program

{x=n}
y := 1;
{x>0 = y*x!=n! A n>x}
while - (x=1) do
{x-1>0= (y*x) *(x-1) !=n! A n>(x-1) }

Yy = y*x;
{x-1>0 = y*(x-1) !=n! A n>(x-1) }
x = x-1

{y*x!=nl An>0}

e Contrast with proof via natural semantics

 Where did the inductive argument over loop iterations go?

62

Properties of the semantics

Equivalence

— What is the analog of program
equivalence in axiomatic verification?

Soundness
— Can we prove incorrect properties?

Completeness
— Is there something we can’t prove?

63

Provable equivalence

* We say that C, and C, are provably equivalent
if for all Pand Q

. iP1CG {Qlifandonlyif- {P}C,{Q}
 Examples:

—S; skipand$

—S5,; (5, 53)and (S5 S,); S,

64

Sy; (Sy; S3) Is provably equivalent to (Sy; S,); S

{PYS,{P’} {P’}S;{Q}
{P}S, {P’} {P'} (S5 S5) {Q}
{P}S,; (S5 S5) {Q}

{PtS, {P} {P'}S,{P"}
{P} (5 S,) {P"} {P’}5,{Q}
{P} (S5 S,); S;{Q}

65

Valid assertions

e Wesaythat{P}C{Q}isvalidif
for all states s, if s=P and (C, s)—s’ then s’

* Denoted by =, {P}C{Q}

GH()

66

Logical implication and equivalence

* We write A = B if for all states s
ifs=AthensE=B
—{s|sEA}C{s|sE=B}

— For every predicate A: false = A = true

e WewriteA=BifA=BandB=A
— false < 5=7

* |n writing Hoare-style proofs, we will often
replace a predicate A with A’ such that A < A’
and A’ is “simpler”

67

Soundness and completeness

* The inference system is sound:
- {P}C{Q}implies= {P}C{Q}

 The inference system is complete:
-, {P}C{Q}implies+ {P}C{Q}

68

Weakest liberal precondition

* A backward-going predicate transformer

 The weakest liberal precondition for Q is
s = wlp(C, Q)

if and only if for all states s’

if (C, s)—s’ thens’ =Q

Propositions:
1. E{wlp(C, Q) c{Q}
2. If =, {P}C{Q}then P= wip(C, Q)

69

Strongest postcondition

* A forward-going predicate transformer
* The strongest postcondition for P is

s" =sp(P, C)

if and only if there exists s such that
if (C, s)—s"ands =P

2. If

2 {PIC{sp(P,C)}

=p{P}C{Q}thensp(P,C):>Q

70

Predicate transformer semantics

* wlp and sp can be seen functions that transform
predicates to other predicates

— wlp[C] : Predicate — Predicate
{P}c{Q}ifandonlyifwlp[C] Q=P

— sp[[C] : Predicate — Predicate
{P}Cc{Q}ifandonlyif sp[[C] P=Q

71

Hoare logic is (relatively) complete

* Proving

=, {P}C{Q}implies— {P}C{Q}

is the same as proving

H, {wlp(C, Q) 1 C{Q}

* Suppose that = {P}C{Q}

then (from proposition 2) P = { wip(C, Q) }

‘cons.] {P}s{Q}
“{wlp(C,Q)}s{Q}

72

= W

Calculating wlp

p(skip, Q) =Q
o(x :=a, Q) = Qla/x]
0(S4; S,, Q) =wlp(S,, wip(S,, Q))
o(if bthenS,elses,, Q)=
(b Awlp(Sy, Q) V (=b A wlp(S,, Q)

E £ 2 =2

. wlp(while bdoS§,Q)=.."7

hard to capture

73

Calculating wlp of a loop

Idea: we know the following statements are semantically equivalent
while bdoS
if bdo (S; while bdoS) else skip

Let’s try to substitute and calculate on

wip(while bdoS, Q)=
wlp(if bdo (S; while bdoS) else skip, Q)=
(b Awlp(S; while bdosS, Q) V (-bAwlp(skip, Q)) =

(b Awlp(S, wlp(while bdo S, Q))) V (wbAQ)

Looplinv = (b A wlp(S, Looplnv)) V (=b A Q)] We havea recurrence

The loop invariant

74

Prove the following triple

{ timer > 0 }

while (timer > 0) do
timer := timer - 1
{ timer = 0 }

Looplnv = (b A wlp(S, Looplnv)) V (=b A Q)
Let’s substitute Looplnv with timer>0

Show that timer>0 is equal to

(timer>0 A wlp(timer:=timer-1, timer>0)) V (timer<0 A timer=0)
= (timer>0 A (timer>0)[timer-1/timer]) V (timer<0 A timer=0)

= (timer>0 A timer-1>0) V (timer<0 A timer=0)

=timer>0 V timer=0

=timer>0

/5

Issues with wlp-based proofs

* Requires backwards reasoning — not very
Intuitive

* Backward reasoning is non-deterministic —
causes problems when While is extended with
dynamically allocated heaps (aliasing)

* Also, a few more rules will be helpful

76

Conjunction rule

{P}s{Q} {P}S{qQ'}
{PAP}S{QAQ'}

[conj]

* Not necessary (for completeness) but practically
useful

e Starting point of extending Hoare logic to handle
parallelism

e Related to Cartesian abstraction
— Will point this out when we learn it

77

Structural Rules

.. 1P1C{Q} {P}C{Q}
i ey P cilava)

. {P}cCc{Q}
[eXIStp]{EIv.P}C{Hv.Q}

veFV(C)

{P}C{Q}
IVv.P}C{Vv.Q}

[univ,] veFV(C)

[Inv,] {F}C{F} Mod(C) N FV(F)={}

 Mod(C) = set of variables assigned to in sub-statements of C
* FV(F) = free variables of F

/78

Invariance + Conjunction = Constancy

{P}c{Q}
{FAP}C{FAQ}

[constancy,] Mod(C) N FV(F)={}

 Mod(C) = set of variables assigned to in sub-statements of C
* FV(F) = free variables of F

79

Floyd’s strongest postcondition rule

[asSgoya] { P} x:=a{3v.x=alv/x] A Plv/x] }
where v is a fresh variable

 Example
{z=x }x:=x+1{7 }

* This rule is often considered problematic
because it introduces a quantifier — needs to
be eliminated further on

e \We will now see a variant of this rule

80

“Smal

|II

assignment axiom

Create an explicit Skolem
variable in precondition

Then assign the resulting
value to x

T

First evaluate a
in the precondition state
(as a may access x)

N A

[assgyql { X=V } x:=a { x=a[v/x] }
where ve¢FV(a)

 Examples:
{x=n} x:=5*y {
{x=n} x:=x+1 {

{x=y} x:=y+1{
{x=n} x:=y+1 {

[exist] {An. x=n} x:=y+1 {

}
}
}

)

[constancy,] {z=9} x:=y+1 { }

} therefore {true} x:=y+1 {

}

81

Buggy sum program

{ yv»0 A x=0 A res=0 }
Inv = { y20 A res=Sum(0, x) }
= { y>0 A res=m A x=n A m=Sum(0, n) }
while (x<y) do
{ y20 A res=m A x=n A m=Sum(0, n) A x<y A n<y }

X := x+1
{ 20 A res=m A x=n+l1l A m=Sum(0, n) A n<y}
res := res+x

{ 20 A res=m+x A x=n+l A m=Sum(0, n) A n<y}
{ y>0 A res-x=Sum(0, x-1) A n<y}
{ y>0 A res=Sum(0, x) }

{ y>0 A res=Sum(0, x) A x>y } =
{res = Sum(0, y) }

82

Background axiom

Sum program -

{x=Sum(0, n) } {y=n+1}

 Define Sum(0, n) = 0+1+...+n
{ x+y=Sum(0, n+1) }

{ y>0 }

x :=0

{ v20 A x=0 }

res := 0

{ v20 A x=0 A res=0 }

Inv = { y>0 A res=Sum(0, x) A x<y }

{ y>0 A res=m A x=n A n<y A m=Sum(0, n) }
while (x<y) do
{ y>20 A res=m A x=n A m=Sum(0, n) A x<y A n<ly }

res := res+x
{ y20 A res=m+x A x=n A m=Sum(0, n) A n<y }
X = x+1

{ y>0 A res=m+x A x=n+l A m=Sum(0, n) A n<y }
{ y20 A res-x=Sum(0, x-1) A x-1<y }
{ y20 A res=Sum(0, x) }

{ y20 A res=Sum(0, x) A x<y A x>y }
{ v>0 A res=Sum(0, y) A x=y }
{ res = Sum(0, y) }

83

Floyd’s strongest postcondition rule

[asSgoya] { P} x:=a{3v.x=alv/x] A Plv/x] }
where v is a fresh variable

 Example
{z=x }x:=x+1{7 }

* This rule is often considered problematic
because it introduces a quantifier — needs to
be eliminated further on

e \We will now see a variant of this rule

84

Floyd’s strongest postcondition rule

[asSgoya] { P} x:=a{3v.x=alv/x] A Plv/x] }
where v is a fresh variable

 Example
{z=x } x;=x+1 { dv. x=v+1 A z=Vv }

* This rule is often considered problematic
because it introduces a quantifier — needs to
be eliminated further on

e \We will now see a variant of this rule

85

“Smal

|II

assignment axiom

Create an explicit Skolem
variable in precondition

Then assign the resulting
value to x

T

First evaluate a
in the precondition state
(as a may access x)

N A

[assqql { X=V } x:=a { x=a[v/x] }
where ve¢FV(a)

 Examples:
{x=n} x:=5*y {
{x=n} x:=x+1 {

{x=n} x:=y+1 {

[exist] {dn. x=n} x:=y+1 {

}
}

}

[consgancyp] {z=9} x:=y+1 { }

} therefore {true} x:=y+1 {

}

86

|II

“Smal

assignment axiom

[ass gyl { X=V } x:=a { x=al[v/x] }
where ve¢FV(a)

 Examples:

{x=n} x:=5*y {x=5*y}
{x=n} x:=x+1 {x=n+1}

{x=n} x:=y+1 { }
[exist] {dn. x=n} x:=y+1 {
[consgancyp] {z=9} x:=y+1 {

} therefore {true} x:=y+1 {
}

}

87

|II

“Smal

assignment axiom

[ass gyl { X=V } x:=a { x=al[v/x] }
where ve¢FV(a)

 Examples:

{x=n} x:=5*y {x=5*y}
{x=n} x:=x+1 {x=n+1}

{x=n}x:=y+1 {x=y+1}
[exist] {dn. x=n} x:=y+1 {
[consgancyp] {z=9} x:=y+1 {

} therefore {true} x:=y+1 {
}

}

88

|II

“Small” assignment axiom

[ass gyl { X=V } x:=a { x=al[v/x] }
where ve¢FV(a)

 Examples:

{x=n} x:=5*y {x=5*y}
{x=n} x:=x+1 {x=n+1}

{x=n}x:=y+1 {x=y+1}
[exist_] {dn. x=n} x:=y+1 {dn. x=y+1} therefore {true} x:=y+1 {x=y+1}
[consgancyp] {z=9} x:=y+1 {z=9 A x=y+1}

89

Buggy sum program

{ yv»0 A x=0 A res=0 }
Inv = { y20 A res=Sum(0, x) }
= { y>0 A res=m A x=n A m=Sum(0, n) }
while (x<y) do
{ y20 A res=m A x=n A m=Sum(0, n) A x<y A n<y }

X := x+1
{ 20 A res=m A x=n+l1l A m=Sum(0, n) A n<y}
res := res+x

{ 20 A res=m+x A x=n+l A m=Sum(0, n) A n<y}
{ y>0 A res-x=Sum(0, x-1) A n<y}
{ y>0 A res=Sum(0, x) }

{ y>0 A res=Sum(0, x) A x>y } =
{res = Sum(0, y) }

90

Sum program

Background axiom

 Define Sum(0, n) = 0+1+...+n —\

{ y=0 }

x =1 — —n+

{ y20 A x=<1 } [axm_Sum]{x Sum(0, n) }{y=n+1}

res := 0 { x+y=Sum(0, n+1) }

{ yv>0 A x=1 A res=0 }

Inv = { y20 A res=Sum(0, x-1) A x<y+1 }
{ y>0 A res=m A %x=n A n<y+l A m=Sum(0, n-1) }

while (x<y) do
{ >0 A res=m A x=n A m=Sum(0, n-1) A x<y A n<y+l }

res := res+x
{ y>0 A res=m+x A x=n A m=Sum(0, n-1) A n<y+l }
x = x+1

{ yv>20 A res=m+x A x=n+l1l A m=Sum(0, n-1) A n<y+l }
{ v20 A res-x=Sum(0, x-1) A x-1<y+1l }
{ y>0 A res=Sum(0, x-1) A x<y+1l } // axm-Sum

{ y20 A res=Sum(0, x-1) A x<y+1l A x>y }
{ v20 A res=Sum(0, x-1) A x=y+1 }

{ y>0 A res=Sum(0, y) }

{ res = Sum(0, y) }

Sum program

 Define Sum(0, n) = 0+1+...+n

Background axiom

{ y20 } \///'
x :=1 _ _

{ y20 A x=0 } [axm-Sum]{X_Sum(Or n) }{ y=n+1 }
res := 0 {X+y:Sum(O’ n.|.1) }

{ y>0 A x=0 A res=0 }

Inv = { y>0 A res=Sum(0, x-1) A x<y+l }

while (x<y) do
{ v20 A res=m A x=n A m=Sum (0, n-1) A n<y+l A x<y }
res := res+x
{ y20 A res=m+x A x=n A m=Sum(0, n-1) A n<y+1l }
{ yv>0 A res=Sum(0, n) A x=n A n<y+l } // axm-Sum
X = x+1
{ y20 A res=Sum(0, n) A x=n+l1l A n<y+1l }
{ v>0 A res=Sum(0, x-1) A x<y+1 }

{ y>0 A res=Sum(0, x-1) A x<y+1l A x>y }
{ y20 A res=Sum(0, x-1) A x=y+1 }

{ y20 A res=Sum(0, y) }

{ res = Sum(0, y) 1}

92

Example 1: Absolute value program

{ }
1f x<0 then
X = -X
else
skip

{ }

93

Absolute value program

{ x=v }
i1f x<0 then
{ x=v A %<0 }

X = -X

{ x=-v A x>0 }
else

{ x=v A x>0 }

skip

{ x=v A x>0 }
{ v<O0 A x=-v V v>0 A x=v}
{ x=|v]| }

94

Example 2: Variable swap program

}

Il
"

T
I
o <3

95

Variable swap program
x=a A y=b }

x=a A y=b A t=a }

x=b A y=a A t=a }

{

t

{

X

{ x=b A y=b A t=a }

v

{

{ x=b A y=a } // cons

96

Example 3: Axiomatizing data types

Sz=x:=a | x:=yla] | yla] :=x
skip | §;; 5,

if 6 then §, else §,
while 6do §

* We added a new type of variables — array
variables

— Model array variable as a functiony :Z — 2
* We need the two following axioms:

{ylIx~a](x)=a}
{ zzx = y[x~a](z) = y(2) }

97

Array update rules (wp)

Sz=x:=a | x:=yla] | yla] :=x

skip | §;; 5,
if 6 then §, else §,
while 6do §

A very general approach — allows

* Treat an array assignment Ms an

handling many data types

update to the array functiony
— y :=y[a—~x] meaning y'=Av. v=a ? X : y(v)

array-update] { Plyla~x]/y] } yla] :==x{P}
array-load] { Ply(a)/x] } x :=y[a] { P }

98

Array update rules (wp) example

* Treat an array assignment y[a] := x as an
update to the array function y

— y :=y[a—~x] meaning y'=Av. v=a ? x : y(v)

[array-update] { Ply[a~x]/y] } yla] :=x{ P}
{x=y[im7](i)} yli]:=7 {x=y(i)}
{x=7} yli]:=7 {x=y(i)}

[array-load] { P[y(a)/x] } x :==yla] { P }
{y(a)=7} x:=y[a] {x=7}

99

Array update rules (sp)

In both rules

/ v, g, and b are fresh

[array-update;] { x=v A y=g A a=b } y[a] := x { y=g[b—V] }

[array-load] { y=g A a=b } x := y[a] { x=g(b) }

100

Array-max program

nums : array
N : int // N stands for num’s length
{ N=0 }

X 0

[T

res nums [0]
while x < N
1f nums[x] > res then
res := nums|[x]
X :'=x + 1

101

Array-max program

nums : array
N : int // N stands for num’s length
{ N>0 A nums=orig nums }
x :=0
res := nums|[0]
while x < N

1f nums[x] > res then

res := nums|[x]
X :=x + 1
Post,: { x=N }
Post,: { nums=orig nums }
Post;: { Vm. O<m<N = nums (m)<res }
Post,: { dm. O<m<N A nums (m)=res }

102

Summary

* C programming language
* P assertions
e {P} C {Q} judgments
 {Pla/x] }x:=a{P} proof Rules
— Soundness
— Completeness

e x=N}vy:=factorial (x){y=N!} proofs

103

Extensions to axiomatic semantics

Procedures
Total correctness assertions

Assertions for execution time

— Exact time

— Order of magnitude time
Assertions for dynamic memory
— Separation Logic

Assertions for parallelism

— Owicki-Gries

— Concurrent Separation Logic

— Rely-guarantee

104

