Seminar in automatic tools for
analyzing programs with
dynamic memory

http://www.cs.tau.ac.il/~maon/teaching/2013-2014/
seminar/Seminar1314b.html




Scope

* Automatic tools for analyzing / executing
programs with dynamic memory



Programs with dynamic memory

* Programs manipulate resources
— Files
— Processes / threads
— Connections
— Memory

* malloc() / new()

* free() / delete() / -
— GC



Programming with dynamic memory

typedef struct Data {int d; struct Data *n} Da;

main() {
Da *pl = (Da*) malloc(sizeof(Da));
pl->d = SECRET_KEY;
Da *p2 = (Da*) malloc(sizeof(Da));
p2>d = 0;

pl->n p2;
p2->n = null;

free(pl);
free(p2)



Common Mistakes

typedef struct Data {int d; struct Data *n} Da;

main() {
Da *pl = (Da*) malloc(sizeof(Da));
pl->d = SECRET_KEY;
int dl1 = pl->d;

Da *p2
int d2

(Da*) malloc(sizeof(Da));
p2->d;

pl->n = p2; p2>n = pl;

free(pl);

int dl1 = pl->d;

Da *p3 = (Da*) malloc(sizeof(Da));
int d3 = p3->d;

Da *p4 = null;

int d4 = p4->d;

free(pl);



Common Mistakes

* Accessing uninitialized fields
* Double free
* No free

* Null-dereference

* Breaking invariants
— pl->n = p2; p2-2n null;
— pl->n = p2; p2->n = pl;



Undesired Outcome

Crashes
Incorrect behavior
Security vulnerabilities

_oss of life
| 0ss of money
_oss of reputation

Loss of Job



Programming Challenges

 Unbounded number of resources
— Heap = global resource
— No “names”
* |n direct access: pointers + pointer arithmetic's
* Complicated data structures

— List, trees, graphs
* Hard to maintain invariants
e Sharing is challenging

 Multithreading makes things worse!



Deallocation

Allocation is “easy”
“Deletion” is hard

Nasty bugs
Hard to get right

— Defensive programming



Programming Model

* Imperative programs
— Java, C, C++

* Sequential + multithreaded

* free() / GC
— Manual (free())
— Automatic (GC)



Solutions

* Manual memory management

— Runtime: Monitoring execution environment
e Catches errors
* Expensive

— Compile-time: Verify memory safety

 Static analysis
— Fully automatic / User-provided annotations

* Conservative
— Problem is undecidable



Solutions

* Automatic memory management (aka Garbage
Collection)

— Runtime environment recycles memory that will not be
used in the future of the execution

* Unused = unreachable by the program

— Object is garbage if it cannot be reached via a directed path from the
roots.

— Pros:
» Safe
e Simple
— Cons
* Runtime overhead
* Imprecision (drag)
— Compile time garbage collection can help



Topics — Manual Mem. Mang.

Runtime environments
— LINT and its derivatives
— Specialized memory allocators

Pointer Analysis
— The “golden age”
— Scalable and precise

Escape Analysis

Shape Analysis



Topics — Manual Mem. Mang.

e Sequential garbage collectors
— Reference counting
— Tracing

— Copying

* Concurrent garbage collectors
— Dijkstra, Steele, Yausa
— Stop the world
— Parallel
— Concurrent



Topics - Last lesson

* 5 minutes summary
* Discussion



Admin



Grades

70% Presentation

— 1 paper per person
— Lecture ~ 1 hour
5% Original insight

10% Participation
— Ask questions, clarifications, initiate discussions

15% Attendance

— It is OK to miss 1 talk
* Not yours!



Presentation

Choose paper

Read paper

Make draft presentation
— Use THIS theme

Meet me

— Discuss paper

— Go over presentation
Present paper

— Describe work
— Lead discussion

Send me presentation + 2-3 paragraphs on paper,
discussion, your own insight



Paper Title

Names of Authors

Your Name + date



Outline of talk

Introduction
Suggested Solution
Evaluation

Related work
Conclusions

Your own conclusions



Introduction

Problem area

Technical challenged addressed

Why is it important

What is the main insight

How is main insight utilized (high level)



Solution

* Technical description
— Algorithm
— Correctness
— Complexity

* Choose key subset of details
e Use examples + diagrams



Evaluation

* Experiments
e Benchmarks
e Conclusions



Related work

e What other solutions are out there

* How do they compare
— Pros
— Cons



Conclusions

What was done
Why is it important
Novel idea

What we learned



Your own conclusion

* Surprise me



