
On-the-Fly Garbage Collection:
An Exercise in Cooperation

Edsget W. Dijkstra, Leslie Lamport,
A.J. Martin and E.F.M. Steffens

Communications of the ACM, 1978

Presented by Almog Benin
25/5/2014

Outline of talk

• Introduction

• Problem formulation

• The first coarse-grained solution

• The second coarse-grained solution

• The fine-grained solution

• Related work

• Conclusions

• My own conclusions

INTRODUCTION

Dynamic Memory

• Operations:

– Allocate (malloc)

– Release (free)

• The programmer is responsible for releasing
the memory

Garbage Collector (Mark & Sweep)

• Responsible for
determining which data
is not in use (garbage)

• Generally, consists of 2
phases:

– Marking phase

– Appending phase
(Sweeping phase)

0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

Garbage Collector – cont’

• Responsible for
determining which data
is not in use (garbage)

• Generally, consists of 2
phases:

– Marking phase

– Appending phase
(Sweeping phase)

0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

Garbage Collector – cont’

• Responsible for
determining which data
is not in use (garbage)

• Generally, consists of 2
phases:

– Marking phase

– Appending phase
(Sweeping phase)

0 1

2

Root:

Free list:

3 4

5

6 7

8

9

10

11 12 13

14

Motivation

• Sequential garbage collection:
– Suspend all threads

– Execute garbage collection

– Resume all threads

• Thread suspension may not be suitable to some
applications:
– Real Time

– User experience

• Can we maintain the garbage collection in a
separated thread?

The Challenge - Why it’s a problem?

• Node #2 is always
reachable!

• The collector observes
nodes one at a time.

 0

1

Root:

2

Free list: 3

The Challenge - Why it’s a problem?

• Node #2 is always
reachable!

• The collector observes
nodes one at a time.

 0

1

Root:

2

Free list: 3

The Program

The Challenge - Why it’s a problem?

• Node #2 is always
reachable!

• The collector observes
nodes one at a time.

 0

1

Root:

2

Free list: 3

The Program

The Challenge - Why it’s a problem?

• Node #2 is always
reachable!

• The collector observes
nodes one at a time.

 0

1

Root:

2

Free list: 3

Now the collector observes node #0 and its successors.

The Challenge - Why it’s a problem?

• Node #2 is always
reachable!

• The collector observes
nodes one at a time.

 0

1

Root:

2

Free list: 3

The Program

The Challenge - Why it’s a problem?

• Node #2 is always
reachable!

• The collector observes
nodes one at a time.

 0

1

Root:

2

Free list: 3

The Program

The Challenge - Why it’s a problem?

• Node #2 is always
reachable!

• The collector observes
nodes one at a time.

• The collector may not
notice that node #2 is
reachable!

 0

1

Root:

2

Free list: 3

Now the collector observes node #1 and its successors.

Concurrent Garbage Collector

• Collecting the garbage concurrently to the
computation proper.
– Mutator thread

– Collector thread

• We set the following constraints:
– Minimal synchronization

– Minimal overhead for the mutator

– Collect the garbage “regardless” of the mutator
activity

Granularity – The Grain of Action

• We use <….> to denote an atomic operation.

• Coarse-grained solution uses large atomic
operations.

• Fine-grained solution uses small atomic
operations.

PROBLEM FORMULATION

The Threads

• Mutator thread(s)

– Represents the computation proper.

• Collector thread

– Responsible of identifying and recycling the not-
used memory.

Memory Abstraction

• Directed graph of
constant nodes (but
varying edges).

• Each node represents a
memory block.

• Each node may have 2
outgoing edges (for the
relation “point to”).

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

Memory Abstraction – cont’

• Root nodes – a fixed set of
nodes that cannot be
garbage.

• Reachable node – a node
that is reachable from at
least one root node.

• Data structure – the
residual sub-graph of the
reachable nodes.

• Garbage nodes – nodes
that are not reachable but
are not in the free list.

• Free list – a list of nodes
found to be garbage.

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

Action Types

1. Redirecting an
outgoing edge of a
reachable node
towards an already
reachable one.

2. Redirecting an
outgoing edge of a
reachable node
towards a not yet
reachable one without
outgoing edges.

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

1: Redirects R->R. 2: Redirects R->NR. 3: Add R->R. 4: Add R->NR. 5:delete

Action Types – cont’

3. Adding an edge pointing
from a reachable node
towards an already
reachable one.

4. Adding an edge pointing
from a reachable node
towards a not yet
reachable one without
outgoing edges.

5. Removing an outgoing
edge of a reachable
node.

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

1: Redirects R->R. 2: Redirects R->NR. 3: Add R->R. 4: Add R->NR. 5:delete

First Simplification

• Use special root node
called “NIL”.

• Pointing to such node
represents a missing
edge.

• Allows us to reduce the
action types:
– Action type 3 & 5 can be

translated to type 1.

– Action type 4 can be
translated to type 2.

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

NIL

1: Redirects R->R. 2: Redirects R->NR. 3: Add R->R. 4: Add R->NR. 5:delete

Second Simplification

• Introducing (some)
special root nodes and
linking to them NIL and all
of the free nodes.

• Making the nodes of the
free list as part of the
data structure.

• Allows us to reduce the
action types:
– Action type 2 can be

translated to two actions
of type 1.

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

NIL S

1: Redirects R->R. 2: Redirects R->NR. 3: Add R->R. 4: Add R->NR. 5:delete

Second Simplification

• Introducing (some)
special root nodes and
linking to them NIL and all
of the free nodes.

• Making the nodes of the
free list as part of the
data structure.

• Allows us to reduce the
action types:
– Action type 2 can be

translated to two actions
of type 1.

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

NIL S

1: Redirects R->R. 2: Redirects R->NR. 3: Add R->R. 4: Add R->NR. 5:delete

Second Simplification

• Introducing (some)
special root nodes and
linking to them NIL and all
of the free nodes.

• Making the nodes of the
free list as part of the
data structure.

• Allows us to reduce the
action types:
– Action type 2 can be

translated to two actions
of type 1.

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

NIL S

1: Redirects R->R. 2: Redirects R->NR. 3: Add R->R. 4: Add R->NR. 5:delete

The Resulting Formulation

• There are 2 thread types:

– Mutator(s):

• “Redirect an outgoing edge of a reachable node towards an
already reachable one” (Action type 1)

– Collector:

• Marking phase: “Mark all reachable nodes”

• Appending phase: “Append all unmarked nodes to the free
list an clear the marking from all nodes”

• For simplifying the description, we hide the new
edges\nodes from the subsequent slides.

Correctness Criteria

• CC1: Every garbage node is eventually
appended to the free list.

• CC2: Appending a garbage node to the free list
is the collector’s only modification of the
shape of the data structure.

THE FIRST COARSE-GRAINED
SOLUTION

Using Colors for marking

• 2 Basic colors:

– White: Not found to be reachable yet.

– Black: Found to be reachable.

• The monotonicity invariant “P1”:

– “No edge points from a black node to a white
one”

• Need an intermediate color:

– Gray

The Mutator

• The “Shade” operation on
a node:
– If the node is white, make

it gray.

– Otherwise (gray\black),
leave it unchanged.

• The mutator operation
“M1”:
– <Redirect an outgoing edge

of a reachable node
towards an already
reachable one, and shade
the new target>

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

The Mutator

• The “Shade” operation on
a node:
– If the node is white, make

it gray.

– Otherwise (gray\black),
leave it unchanged.

• The mutator operation
“M1”:
– <Redirect an outgoing

edge of a reachable node
towards an already
reachable one, and shade
the new target>

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝑘 > 0

1. < 𝑐 ←color of node #𝑖>
2. If 𝑐 ==Gray then

1. “C1”: <Shade the successors
of node #𝑖 and make node #𝑖
black>

3. Else
1. 𝑘 ← 𝑘 − 1

4. 𝑖 ← 𝑖 + 1 %𝑀

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝑘 > 0

1. < 𝑐 ←color of node #𝑖>
2. If 𝑐 ==Gray then

1. “C1”: <Shade the successors
of node #𝑖 and make node #𝑖
black>

3. Else
1. 𝑘 ← 𝑘 − 1

4. 𝑖 ← 𝑖 + 1 %𝑀

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝒌 > 𝟎

1. < 𝒄 ←color of node #𝒊>
2. If 𝒄 ==Gray then

1. “C1”: <Shade the successors
of node #𝒊 and make node #𝒊
black>

3. Else
1. 𝒌 ← 𝒌 − 𝟏

4. 𝒊 ← 𝒊 + 𝟏 %𝑴

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝒌 > 𝟎

1. < 𝒄 ←color of node #𝒊>
2. If 𝒄 ==Gray then

1. “C1”: <Shade the successors
of node #𝒊 and make node #𝒊
black>

3. Else
1. 𝒌 ← 𝒌 − 𝟏

4. 𝒊 ← 𝒊 + 𝟏 %𝑴

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝒌 > 𝟎

1. < 𝒄 ←color of node #𝒊>
2. If 𝒄 ==Gray then

1. “C1”: <Shade the successors
of node #𝒊 and make node #𝒊
black>

3. Else
1. 𝒌 ← 𝒌 − 𝟏

4. 𝒊 ← 𝒊 + 𝟏 %𝑴

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝒌 > 𝟎

1. < 𝒄 ←color of node #𝒊>
2. If 𝒄 ==Gray then

1. “C1”: <Shade the successors
of node #𝒊 and make node #𝒊
black>

3. Else
1. 𝒌 ← 𝒌 − 𝟏

4. 𝒊 ← 𝒊 + 𝟏 %𝑴

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝒌 > 𝟎

1. < 𝒄 ←color of node #𝒊>
2. If 𝒄 ==Gray then

1. “C1”: <Shade the successors
of node #𝒊 and make node #𝒊
black>

3. Else
1. 𝒌 ← 𝒌 − 𝟏

4. 𝒊 ← 𝒊 + 𝟏 %𝑴

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝑘 > 0

1. < 𝑐 ←color of node #𝑖>
2. If 𝑐 ==Gray then

1. “C1”: <Shade the successors
of node #𝑖 and make node #𝑖
black>

3. Else
1. 𝑘 ← 𝑘 − 1

4. 𝑖 ← 𝑖 + 1 %𝑀

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Mutator
interleaved!

Free list:

14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝒌 > 𝟎

1. < 𝒄 ←color of node #𝒊>
2. If 𝒄 ==Gray then

1. “C1”: <Shade the successors
of node #𝒊 and make node #𝒊
black>

3. Else
1. 𝒌 ← 𝒌 − 𝟏

4. 𝒊 ← 𝒊 + 𝟏 %𝑴

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝒌 > 𝟎

1. < 𝒄 ←color of node #𝒊>
2. If 𝒄 ==Gray then

1. “C1”: <Shade the successors
of node #𝒊 and make node #𝒊
black>

3. Else
1. 𝒌 ← 𝒌 − 𝟏

4. 𝒊 ← 𝒊 + 𝟏 %𝑴

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝒌 > 𝟎

1. < 𝒄 ←color of node #𝒊>
2. If 𝒄 ==Gray then

1. “C1”: <Shade the successors
of node #𝒊 and make node #𝒊
black>

3. Else
1. 𝒌 ← 𝒌 − 𝟏

4. 𝒊 ← 𝒊 + 𝟏 %𝑴

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝒌 > 𝟎

1. < 𝒄 ←color of node #𝒊>
2. If 𝒄 ==Gray then

1. “C1”: <Shade the successors
of node #𝒊 and make node #𝒊
black>

3. Else
1. 𝒌 ← 𝒌 − 𝟏

4. 𝒊 ← 𝒊 + 𝟏 %𝑴

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝒌 > 𝟎

1. < 𝒄 ←color of node #𝒊>
2. If 𝒄 ==Gray then

1. “C1”: <Shade the successors
of node #𝒊 and make node #𝒊
black>

3. Else
1. 𝒌 ← 𝒌 − 𝟏

4. 𝒊 ← 𝒊 + 𝟏 %𝑴

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝒌 > 𝟎

1. < 𝒄 ←color of node #𝒊>
2. If 𝒄 ==Gray then

1. “C1”: <Shade the successors
of node #𝒊 and make node #𝒊
black>

3. Else
1. 𝒌 ← 𝒌 − 𝟏

4. 𝒊 ← 𝒊 + 𝟏 %𝑴

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Marking Phase

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝒌 > 𝟎

1. < 𝒄 ←color of node #𝒊>
2. If 𝒄 ==Gray then

1. “C1”: <Shade the successors
of node #𝒊 and make node #𝒊
black>

3. Else
1. 𝒌 ← 𝒌 − 𝟏

4. 𝒊 ← 𝒊 + 𝟏 %𝑴

Green simple atomic operations.
We will try to break the red.

𝑀 is the

nodes count
in the graph

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝑖 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝒊 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝒊 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝒊 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝒊 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝒊 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝒊 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝑖 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝒊 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝑖 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8 9 10

11 12 13

Free list:

14

Mutator
interleaved!

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝒊 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝒊 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8 9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝒊 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝑖 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8

9

10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝒊 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝑖 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8

9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝒊 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8

9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝒊 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8

9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝒊 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8

9 10

11 12 13

Free list:

14

The Collector: The Appending Phase

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝒊 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8

9 10

11 12 13

Free list:

14

The Collector: The Marking Phase (2)

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝑘 > 0

1. < 𝑐 ←color of node #𝑖>
2. If 𝑐 ==Gray then

1. “C1”: <Shade the successors
of node #𝑖 and make node #𝑖
black>

3. Else
1. 𝑘 ← 𝑘 − 1

4. 𝑖 ← 𝑖 + 1 %𝑀

Green simple atomic operations.
We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8

9 10

11 12 13

Free list:

14

The Collector: The Marking Phase (2)

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝑘 > 0

1. < 𝑐 ←color of node #𝑖>
2. If 𝑐 ==Gray then

1. “C1”: <Shade the successors
of node #𝑖 and make node #𝑖
black>

3. Else
1. 𝑘 ← 𝑘 − 1

4. 𝑖 ← 𝑖 + 1 %𝑀

Green simple atomic operations.
We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8

9 10

11 12 13

Free list:

14

The Collector: The Marking Phase (2)

1. Shade all roots.
2. 𝑖 ← 0
3. 𝑘 ← 𝑀
4. While 𝒌 > 𝟎

1. < 𝒄 ←color of node #𝒊>
2. If 𝒄 ==Gray then

1. “C1”: <Shade the successors
of node #𝒊 and make node #𝒊
black>

3. Else
1. 𝒌 ← 𝒌 − 𝟏

4. 𝒊 ← 𝒊 + 𝟏 %𝑴

Green simple atomic operations.
We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8

9 10

11 12 13

Free list:

14

The Collector: The Appending Phase(2)

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝑖 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3 4

5

6 7

8

9 10

11 12 13

Free list:

14

The Collector: The Appending Phase(2)

1. While 𝑖 < 𝑀
1. < 𝑐 ←color of node #𝑖>

2. If 𝑐 ==WHITE then
1. <Append node #𝑖 to the

free list>

3. Else if 𝑐 == BLACK then
1. <make node #𝑖 white>

4. 𝑖 + +

Green simple atomic
operations.

We will try to break the red.

 0 1

2

Root:

3

4

5

6 7

8

9 10

11 12 13

Free list:

14

Proof for Correction Criteria 2

• Reminder for CC2: “Appending a garbage node
to the free list is the collector’s only
modification of the shape of data structure”.

• The marking phase doesn’t change the data
structure.

• Prove the rest by showing that the following
invariant holds after the marking phase
completes:
– “A white node with a number ≥ 𝑖 is garbage”

Proof for Correction Criteria 2 – cont’

• For the first iteration (𝑖 = 0), this derives from the
following observations:

• The marking phase terminates when there is no gray node.

• The absence of gray nodes is stable once reached.

• At the end of the appending phase, there is no black
nodes.

Proof for Correction Criteria 2 – cont’

• For the other iterations (𝑖 > 0), this derives from the
following observations:

– There are 2 ways to violate the invariance:
• Making a non-garbage node white.

• Making a (white) garbage node into non-garbage.

– The mutator
• doesn’t convert nodes to white.

• don’t deal with to white garbage nodes.

– The collector
• For the 𝑖-th iteration, only the 𝑖-th node may change the

color.

Proof for Correction Criteria 1

• Reminder for CC1: “Every garbage node is
eventually appended to the free list”.

• First we need to prove that both phases
terminates correctly.

– The marking phase terminates because the
quantity 𝒌 +𝑴 ∗ 𝑿 , where 𝑋 is non-black
nodes, decreases by at least 1 for each iteration.

– The appending phase terminate obviously, and the
mutator cannot change the color of the nodes.

Proof for Correction Criteria 1 – cont’

• At the beginning of the appending phase, the
nodes can be partitioned into 3 sets:
– The set of reachable nodes

• They are black

– The set of white garbage nodes
• Will be appended to the free list in the first appending

phase to come

– The set of black garbage node
• Will be appended to the free list in the next appending

phase to come

THE SECOND COARSE-GRAINED
SOLUTION

The BUGGY Proposal

• An attempt to break M1 into 2 atomic
operations:

– <Redirect an outgoing edge of a reachable node
towards an already reachable one>

– <Shade the new target>

• Shading must be the first in order to keep P1!

• A bug was found by Stenning & Woodger.

The BUGGY Proposal - Demo

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

 0

1

Root:

2

Free list: 3

The BUGGY Proposal - Demo

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Mutator

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Demo

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Collector – Marking Phase

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Demo

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Collector – Appending Phase

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Demo

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Collector – Marking Phase

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Demo

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an
already reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Mutator

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Demo

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an
already reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Mutator

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Demo

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Collector – Marking Phase

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Demo

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Collector – Appending Phase

A Reachable Node in The Free List!

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Reply

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

 0

1

Root:

2

Free list: 3

The BUGGY Proposal - Reply

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Mutator

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Reply

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Collector – Marking Phase

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Reply

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Collector – Appending Phase

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Reply

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Collector – Marking Phase

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Reply

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an
already reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Mutator

P1 is now violated!!!

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Reply

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Mutator

P1 is now violated!!!

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Reply

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Collector – Marking Phase

P1 is now violated!!!

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Reply

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Collector – Appending Phase

P1 is now violated!!!

0

1

Root:

2

Free list: 3

The BUGGY Proposal - Reply

• An attempt to break M1
into 2 atomic
operations:

– <Redirect an outgoing
edge of a reachable
node towards an already
reachable one>

– <Shade the new target>

• Shading must be the
first in order to keep P1!

Collector – Appending Phase

P1 is now violated!!!

0

1

Root:

2

Free list: 3 The new idea – replacing the
invariant P1 by weaker invariants.

New Invariant: P2

• Propagation path: A
path of consisting solely
of edges with white
targets, and starting
from a gray node.

• P2: “For each white
reachable node, there
exists a propagation
path leading to it”

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

New Invariant: P3

• P3: “Only the last edge placed by the mutator
may lead from a black node to a white one”

The New Algorithm

• The collector remains
the same!

• The mutator’s new
operation is the
following M2:
– <Shade the target of the

previously redirected
edge, and redirect an
outgoing edge of a
reachable node towards
a reachable node>

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

The New Algorithm

• The collector remains
the same!

• The mutator’s new
operation is the
following M2:
– <Shade the target of the

previously redirected
edge, and redirect an
outgoing edge of a
reachable node towards
a reachable node>

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Mutator
interleaved!

Free list:

14

The New Algorithm

• The collector remains
the same!

• The mutator’s new
operation is the
following M2:
– <Shade the target of the

previously redirected
edge, and redirect an
outgoing edge of a
reachable node towards
a reachable node>

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Mutator
interleaved!

Free list:

14

Correction proof

• P2 & P3 are invariants for this algorithm.

• By using these invariants we can proof the
correctness of the second algorithm in the
same manner of the first one.

THE FINE-GRAINED SOLUTION

The New Mutator

• M2.1:

– <Shade the target of the
previously redirected
edge>

• M2.2:

– <Redirect an outgoing
edge of a reachable
node towards a
reachable node>

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

The New Mutator

• M2.1:

– <Shade the target of the
previously redirected
edge>

• M2.2:

– <Redirect an outgoing
edge of a reachable
node towards a
reachable node>

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

The New Mutator

• M2.1:

– <Shade the target of the
previously redirected
edge>

• M2.2:

– <Redirect an outgoing
edge of a reachable
node towards a
reachable node>

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

The New Mutator

• M2.1:

– <Shade the target of the
previously redirected
edge>

• M2.2:

– <Redirect an outgoing
edge of a reachable
node towards a
reachable node>

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

The New Mutator

• M2.1:

– <Shade the target of the
previously redirected
edge>

• M2.2:

– <Redirect an outgoing
edge of a reachable
node towards a
reachable node>

 0 1

2

Root:

Free list:

3 4

5 6 7

8 9 10

11 12 13

14

The New Collector

• Basically the same, but with
finer operations.

• C1.1a:
– C1.1: <m1 := number of the

left-hand successor of node
#i>

– C1.2: <shade node #M1>

• C1.3a:
– C1.3: <m2:= number of the

right-hand successor of node
#i>

– C1.4: <shade node #M2>

• CI.5: <make node #i black>

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

The New Collector

• Basically the same, but with
finer operations.

• C1.1a:
– C1.1: <m1 := number of the

left-hand successor of node
#i>

– C1.2: <shade node #M1>

• C1.3a:
– C1.3: <m2:= number of the

right-hand successor of node
#i>

– C1.4: <shade node #M2>

• CI.5: <make node #i black>

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

The New Collector

• Basically the same, but with
finer operations.

• C1.1a:
– C1.1: <m1 := number of the

left-hand successor of node
#i>

– C1.2: <shade node #M1>

• C1.3a:
– C1.3: <m2:= number of the

right-hand successor of node
#i>

– C1.4: <shade node #M2>

• CI.5: <make node #i black>

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

The New Collector

• Basically the same, but with
finer operations.

• C1.1a:
– C1.1: <m1 := number of the

left-hand successor of node
#i>

– C1.2: <shade node #M1>

• C1.3a:
– C1.3: <m2:= number of the

right-hand successor of node
#i>

– C1.4: <shade node #M2>

• CI.5: <make node #i black>

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

C-edges

• “C-edges”: Edges whose
targets detected as gray
by the collector.

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

C-edges

• “C-edges”: Edges whose
targets detected as gray
by the collector.

 0 1

2

Root:

3 4

5 6 7

8 9 10

11 12 13

Free list: 14

C-edges

The New Invariants

• P2a: “Every root is gray or black, and for each
white reachable node there exists a propagation
path leading to it, containing no C-edges.

• P3a: “There exists at most one edge E satisfying
that ‘(E is a black-to-white edge) or (E is C-edge
with a white target)’.
– The existence of E implies that the mutator is between

action M2.2 and the subsequent M2.1, and that E is
identical with the edge most recently redirected by
the mutator.

Correction Proof

• P2a & P3a are invariants for this algorithm.

• By using these invariants we can proof the
correctness of the fine-grained algorithm in
the same manner of the coarse-grained ones.

Related work

• This is the first paper for concurrent GC.

• “Real-Time Garbage Collection on General-
Purpose Machines”, Yuasa, 1990

– Designed for single core systems.

• “Multiprocessing compactifying garbage
collection”, Steele, 1975

– Contained a bug.

– Fixed in 1976.

Gries’s proof

Conclusions

• Started by defining the problem

• Presented a fine-grained solution by 3
milestones:

– The first coarse-grained solution

– The second coarse-grained solution

– The fine-grained solution

My Own Conclusion

• Very interesting idea.

• Applying these techniques on modern OS with
multiple processes may raise some challenges

– A Collector thread per process may lead to a
serious performance impact.

– Sharing the same collector thread between
processes may lead to serous security issues to
deal with.

Questions?

