On-the-Fly Garbage Collection: An Exercise in Cooperation

Edsget W. Dijkstra, Leslie Lamport, A.J. Martin and E.F.M. Steffens Communications of the ACM, 1978

> Presented by Almog Benin 25/5/2014

Outline of talk

- Introduction
- Problem formulation
- The first coarse-grained solution
- The second coarse-grained solution
- The fine-grained solution
- Related work
- Conclusions
- My own conclusions

INTRODUCTION

Dynamic Memory

- Operations:
 - Allocate (malloc)
 - Release (free)
- The programmer is responsible for releasing the memory

Garbage Collector (Mark & Sweep)

Free list:

14

- Responsible for determining which data is not in use (garbage)
- Generally, consists of 2 phases:
 - Marking phase
 - Appending phase
 (Sweeping phase)

Garbage Collector – cont'

- Responsible for determining which data is not in use (garbage)
- Generally, consists of 2 phases:
 - Marking phase
 - Appending phase
 (Sweeping phase)

Garbage Collector – cont'

- Responsible for determining which data is not in use (garbage)
- Generally, consists of 2 phases:
 - Marking phase
 - Appending phase (Sweeping phase)

Free list: 14 5 9 10

Motivation

- Sequential garbage collection:
 - Suspend all threads
 - Execute garbage collection
 - Resume all threads
- Thread suspension may not be suitable to some applications:
 - Real Time
 - User experience
- Can we maintain the garbage collection in a separated thread?

- Node #2 is always reachable!
- The collector observes nodes one at a time.

- Node #2 is always reachable!
- The collector observes nodes one at a time.

- Node #2 is always reachable!
- The collector observes nodes one at a time.

- Node #2 is always reachable!
- The collector observes nodes one at a time.

Now the collector observes node #0 and its successors.

- Node #2 is always reachable!
- The collector observes nodes one at a time.

- Node #2 is always reachable!
- The collector observes nodes one at a time.

- Node #2 is always reachable!
- The collector observes nodes one at a time.
- The collector may not notice that node #2 is reachable!

Now the collector observes node #1 and its successors.

Concurrent Garbage Collector

- Collecting the garbage concurrently to the computation proper.
 - Mutator thread
 - Collector thread
- We set the following constraints:
 - Minimal synchronization
 - Minimal overhead for the mutator
 - Collect the garbage "regardless" of the mutator activity

Granularity – The Grain of Action

- We use <....> to denote an atomic operation.
- Coarse-grained solution uses large atomic operations.
- Fine-grained solution uses small atomic operations.

PROBLEM FORMULATION

The Threads

• Mutator thread(s)

Represents the computation proper.

- Collector thread
 - Responsible of identifying and recycling the notused memory.

Memory Abstraction

- Directed graph of constant nodes (but varying edges).
- Each node represents a memory block.
- Each node may have 2 outgoing edges (for the relation "point to").

Free list: 14

Memory Abstraction – cont'

- Root nodes a fixed set of nodes that cannot be garbage.
- Reachable node a node that is reachable from at least one root node.
- Data structure the residual sub-graph of the reachable nodes.
- Garbage nodes nodes that are not reachable but are not in the free list.
- Free list a list of nodes found to be garbage.

Action Types

- Redirecting an outgoing edge of a reachable node towards an already reachable one.
- 2. Redirecting an outgoing edge of a reachable node towards a not yet reachable one without outgoing edges.

Action Types – cont'

- 3. Adding an edge pointing from a reachable node towards an already reachable one.
- 4. Adding an edge pointing from a reachable node towards a not yet reachable one without outgoing edges.
- 5. Removing an outgoing edge of a reachable node.

First Simplification

- Use special root node called "NIL".
- Pointing to such node represents a missing edge.
- Allows us to reduce the action types:
 - Action type 3 & 5 can be translated to type 1.
 - Action type 4 can be translated to type 2.

Second Simplification

- Introducing (some) special *root* nodes and linking to them NIL and all of the free nodes.
- Making the nodes of the free list as part of the data structure.
- Allows us to reduce the action types:
 - Action type 2 can be translated to two actions of type 1.

Second Simplification

- Introducing (some) special *root* nodes and linking to them NIL and all of the free nodes.
- Making the nodes of the free list as part of the data structure.
- Allows us to reduce the action types:
 - Action type 2 can be translated to two actions of type 1.

Second Simplification

- Introducing (some) special *root* nodes and linking to them NIL and all of the free nodes.
- Making the nodes of the free list as part of the data structure.
- Allows us to reduce the action types:
 - Action type 2 can be translated to two actions of type 1.

The Resulting Formulation

- There are 2 thread types:
 - Mutator(s):
 - "Redirect an outgoing edge of a reachable node towards an already reachable one" (Action type 1)
 - Collector:
 - Marking phase: "Mark all reachable nodes"
 - Appending phase: "Append all unmarked nodes to the free list an clear the marking from all nodes"
- For simplifying the description, we hide the new edges\nodes from the subsequent slides.

Correctness Criteria

- CC1: Every garbage node is eventually appended to the free list.
- CC2: Appending a garbage node to the free list is the collector's only modification of the shape of the data structure.

THE FIRST COARSE-GRAINED SOLUTION

Using Colors for marking

- 2 Basic colors:
 - White: Not found to be reachable yet.
 - Black: Found to be reachable.
- The monotonicity invariant "P1":
 - "No edge points from a black node to a white one"
- Need an intermediate color:

– Gray

The Mutator

- The "Shade" operation on a node:
 - If the node is white, make it gray.
 - Otherwise (gray\black), leave it unchanged.
- The mutator operation "M1":
 - <Redirect an outgoing edge of a reachable node towards an already reachable one, and shade the new target>

The Mutator

- The "Shade" operation on a node:
 - If the node is white, make it gray.
 - Otherwise (gray\black), leave it unchanged.
- The mutator operation "M1":
 - <Redirect an outgoing edge of a reachable node towards an already reachable one, and shade the new target>

The Collector: The Marking Phase

M is the

in the graph

- Shade all roots. 1.
- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - $< c \leftarrow color of node \#i >$ 1
 - 2. If c == Gray then
 - "C1": <Shade the successors 1. of node *#i* and make node *#i*. black>
 - 3. Else
 - 1. $k \leftarrow k 1$
 - 4. $i \leftarrow (i+1)\%M$

Green simple atomic operations. We will try to break the red.

Free list: 14

The Collector: The Marking Phase

M is the

Shade all roots. 1.

- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - $< c \leftarrow color of node \#i >$ 1
 - 2. If c == Gray then
 - "C1": <Shade the successors 1. of node #*i* and make node #*i* black>
 - 3. Else
 - 1. $k \leftarrow k 1$
 - 4. $i \leftarrow (i+1)\%M$

Green simple atomic operations. We will try to break the red.

Free list: 14

The Collector: The Marking Phase

Free list:

14

M is the

nodes count

in the graph

- 1. Shade all roots.
- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else
 - 1. $k \leftarrow k-1$
 - $4. \quad i \leftarrow (i+1)\% M$

Green simple atomic operations. We will try to break the red.

M is the

nodes count

in the graph

- 1. Shade all roots.
- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else
 - 1. $k \leftarrow k-1$
 - $4. \quad i \leftarrow (i+1)\% M$

Green simple atomic operations. We will try to break the red.

M is the

nodes count

in the graph

- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else

1.
$$k \leftarrow k-1$$

 $4. \quad i \leftarrow (i+1)\% M$

Green simple atomic operations. We will try to break the red.

M is the

nodes count

in the graph

- 1. Shade all roots.
- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else
 - 1. $k \leftarrow k-1$
 - $4. \quad i \leftarrow (i+1)\% M$

Green simple atomic operations. We will try to break the red.

M is the

nodes count

in the graph

- 1. Shade all roots.
- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else
 - 1. $k \leftarrow k-1$
 - $4. \quad i \leftarrow (i+1)\% M$

Green simple atomic operations. We will try to break the red.

M is the

nodes count

in the graph

- 1. Shade all roots.
- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else
 - 1. $k \leftarrow k 1$
 - 4. $i \leftarrow (i+1)\% M$

Free list:

M is the

nodes count

in the graph

- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else
 - 1. $k \leftarrow k-1$
 - $4. \quad i \leftarrow (i+1)\% M$

M is the

nodes count

in the graph

- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else
 - 1. $k \leftarrow k-1$
 - $4. \quad i \leftarrow (i+1)\% M$

Green simple atomic operations. We will try to break the red.

M is the

nodes count

in the graph

- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else

1.
$$k \leftarrow k-1$$

 $4. \quad i \leftarrow (i+1)\% M$

Green simple atomic operations. We will try to break the red.

M is the

nodes count

in the graph

- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else

1.
$$k \leftarrow k-1$$

 $4. \quad i \leftarrow (i+1)\% M$

Green simple atomic operations. We will try to break the red.

M is the

nodes count

in the graph

- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else

1.
$$k \leftarrow k-1$$

 $4. \quad i \leftarrow (i+1)\% M$

Green simple atomic operations. We will try to break the red.

M is the

nodes count

in the graph

- 1. Shade all roots.
- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else
 - 1. $k \leftarrow k-1$
 - $4. \quad i \leftarrow (i+1)\% M$

M is the

nodes count

in the graph

- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else

1.
$$k \leftarrow k-1$$

 $4. \quad i \leftarrow (i+1)\% M$

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

Green simple atomic operations. We will try to break the red.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

Green simple atomic operations. We will try to break the red.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. i + +

Green simple atomic operations. We will try to break the red.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

Green simple atomic operations. We will try to break the red.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

Green simple atomic operations. We will try to break the red.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

Green simple atomic operations.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

Green simple atomic operations.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

Green simple atomic operations.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

Green simple atomic operations.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

Green simple atomic operations.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

Green simple atomic operations.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

Green simple atomic operations.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. i + +

Green simple atomic operations.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. i + +

Green simple atomic operations.

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. i + +

Green simple atomic operations.

- 1. Shade all roots.
- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else
 - 1. $k \leftarrow k 1$
 - 4. $i \leftarrow (i+1)\% M$

- 1. Shade all roots.
- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else
 - 1. $k \leftarrow k 1$
 - 4. $i \leftarrow (i+1)\% M$

- 1. Shade all roots.
- 2. $i \leftarrow 0$
- 3. $k \leftarrow M$
- 4. While k > 0
 - 1. < $c \leftarrow \text{color of node } \#i >$
 - **2.** If c == Gray then
 - 1. "C1": <Shade the successors of node #*i* and make node #*i* black>
 - 3. Else
 - 1. $k \leftarrow k-1$
 - $4. \quad i \leftarrow (i+1)\% M$

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

Green simple atomic operations. We will try to break the r

- 1. While i < M
 - 1. < $c \leftarrow \text{color of node } \#i$ >
 - 2. If c ==WHITE then
 - 1. <Append node #*i* to the free list>
 - 3. Else if c == BLACK then
 - 1. <make node #*i* white>
 - 4. *i* + +

Green simple atomic operations.

Proof for Correction Criteria 2

- Reminder for CC2: "Appending a garbage node to the free list is the collector's only modification of the shape of data structure".
- The marking phase doesn't change the data structure.
- Prove the rest by showing that the following invariant holds after the marking phase completes:
 - "A white node with a number $\geq i$ is garbage"

Proof for Correction Criteria 2 – cont'

- For the first iteration (i = 0), this derives from the following observations:
 - The marking phase terminates when there is no gray node.
 - The absence of gray nodes is stable once reached.
 - At the end of the appending phase, there is no black nodes.

Proof for Correction Criteria 2 – cont'

- For the other iterations (*i* > 0), this derives from the following observations:
 - There are 2 ways to violate the invariance:
 - Making a non-garbage node white.
 - Making a (white) garbage node into non-garbage.
 - The mutator
 - doesn't convert nodes to white.
 - don't deal with to white garbage nodes.
 - The collector
 - For the *i*-th iteration, only the *i*-th node may change the color.

Proof for Correction Criteria 1

- Reminder for CC1: "Every garbage node is eventually appended to the free list".
- First we need to prove that both phases terminates correctly.
 - The marking phase terminates because the quantity $\mathbf{k} + \mathbf{M} * (\mathbf{X})$, where X is non-black nodes, decreases by at least 1 for each iteration.
 - The appending phase terminate obviously, and the mutator cannot change the color of the nodes.

Proof for Correction Criteria 1 – cont'

- At the beginning of the appending phase, the nodes can be partitioned into 3 sets:
 - The set of reachable nodes
 - They are black
 - The set of white garbage nodes
 - Will be appended to the free list in the first appending phase to come
 - The set of black garbage node
 - Will be appended to the free list in the next appending phase to come

THE SECOND COARSE-GRAINED SOLUTION

The BUGGY Proposal

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!
- A bug was found by Stenning & Woodger.

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

emo 👬

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

oly

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

- An attempt to break M1 into 2 atomic operations:
 - <Redirect an outgoing edge of a reachable node towards an already reachable one>
 - <Shade the new target>
- Shading must be the first in order to keep P1!

An attempt to break M1 into 2 atomic

norationci

The new idea – replacing the invariant P1 by weaker invariants.

Sinaue the new target

• Shading must be the first in order to keep P1!

Collector – Appending Phase

New Invariant: P2

- Propagation path: A path of consisting solely of edges with white targets, and starting from a gray node.
- P2: "For each white reachable node, there exists a propagation path leading to it"

New Invariant: P3

• P3: "Only the last edge placed by the mutator may lead from a black node to a white one"

The New Algorithm

- The collector remains the same!
- The mutator's new operation is the following M2:
 - <Shade the target of the previously redirected edge, and redirect an outgoing edge of a reachable node towards a reachable node>

Free list: 14

The New Algorithm

- The collector remains the same!
- The mutator's new operation is the following M2:
 - <Shade the target of the previously redirected edge, and redirect an outgoing edge of a reachable node towards a reachable node>

The New Algorithm

- The collector remains the same!
- The mutator's new operation is the following M2:
 - <Shade the target of the previously redirected edge, and redirect an outgoing edge of a reachable node towards a reachable node>

Correction proof

- P2 & P3 are invariants for this algorithm.
- By using these invariants we can proof the correctness of the second algorithm in the same manner of the first one.

THE FINE-GRAINED SOLUTION

- M2.1:
 - <Shade the target of the previously redirected edge>
- M2.2:
 - <Redirect an outgoing edge of a reachable node towards a reachable node>

Free list: 14

Free list:

14

- M2.1:
 - <Shade the target of the previously redirected edge>
- M2.2:
 - <Redirect an outgoing edge of a reachable node towards a reachable node>

Free list:

14

- M2.1:
 - <Shade the target of the previously redirected edge>
- M2.2:
 - <Redirect an outgoing edge of a reachable node towards a reachable node>

- M2.1:
 - <Shade the target of the previously redirected edge>
- M2.2:
 - <Redirect an outgoing edge of a reachable node towards a reachable node>

Free list: 14

- M2.1:
 - <Shade the target of the previously redirected edge>
- M2.2:
 - <Redirect an outgoing edge of a reachable node towards a reachable node>

Free list: 14

- Basically the same, but with finer operations.
- C1.1a:
 - C1.1: <m1 := number of the left-hand successor of node #i>
 - C1.2: <shade node #M1>
- C1.3a:
 - C1.3: <m2:= number of the right-hand successor of node #i>
 - C1.4: <shade node #M2>
- CI.5: <make node #i black>

- Basically the same, but with finer operations.
- **C1.1a**:
 - C1.1: <m1 := number of the left-hand successor of node #i>
 - C1.2: <shade node #M1>
- C1.3a:
 - C1.3: <m2:= number of the right-hand successor of node #i>
 - C1.4: <shade node #M2>
- CI.5: <make node #i black>

- Basically the same, but with finer operations.
- C1.1a:
 - C1.1: <m1 := number of the left-hand successor of node #i>
 - C1.2: <shade node #M1>
- C1.3a:
 - C1.3: <m2:= number of the right-hand successor of node #i>
 - C1.4: <shade node #M2>
- CI.5: <make node #i black>

- Basically the same, but with finer operations.
- C1.1a:
 - C1.1: <m1 := number of the left-hand successor of node #i>
 - C1.2: <shade node #M1>
- C1.3a:
 - C1.3: <m2:= number of the right-hand successor of node #i>
 - C1.4: <shade node #M2>
- CI.5: <make node #i black>

C-edges

 "C-edges": Edges whose targets detected as gray by the collector.

Free list: 14

C-edges

Root: • "C-edges": Edges whose targets detected as gray by the collector. C-edges Free list:

The New Invariants

- P2a: "Every root is gray or black, and for each white reachable node there exists a propagation path leading to it, containing no C-edges.
- P3a: "There exists at most one edge E satisfying that '(E is a black-to-white edge) or (E is C-edge with a white target)'.
 - The existence of E implies that the mutator is between action M2.2 and the subsequent M2.1, and that E is identical with the edge most recently redirected by the mutator.

Correction Proof

- P2a & P3a are invariants for this algorithm.
- By using these invariants we can proof the correctness of the fine-grained algorithm in the same manner of the coarse-grained ones.

Related work

- This is the first paper for concurrent GC.
- *"Real-Time Garbage Collection on General-Purpose Machines",* Yuasa, 1990

- Designed for single core systems.

- *"Multiprocessing compactifying garbage collection"*, Steele, 1975
 - Contained a bug.
 - Fixed in 1976.

Gries's proof

 $\{M free \land M graph\}$ Let k, j be indices of nodes reachable from ROOT; $\{Mfree \land Mgraph \land reachR(k) \land reachR(j)\}$ if true \Rightarrow {M free \land Mgraph \land reachR(k)} m[k].left := 0 $\{M free \land M graph \land reach R(k) \land \mathcal{L}k = 0\}$ [] true \Rightarrow {Mfree \land Mgraph \land reachR(k) \land reachR(j)} addleft(k, j) $\{M free \land M graph \land reachR(k) \land \mathcal{L}k = i\}$ **[]** true \Rightarrow Take first free node as k's left successor: $\{Mfree \land Mgraph \land reachR(k)\}$ f := M[FREE].left; $\{Mfree \land Mgraph \land reachR(k) \land \mathscr{L}FREE = f \neq 0\}$ addleft(k, f);(Ifree \land Mgraph \land reachR(k) \land $\mathscr{L}Free = \mathscr{L}k = f \neq 0 \land$ every path from ROOT to free list uses edge $(k, \mathcal{L} k)$ do $f = ENDFREE \Rightarrow$ skip od; (Ifree \land Mgraph \land reachR(k) \land $\mathscr{L}FREE = \mathscr{L}k = f \neq 0 \land$ every path from ROOT to free list uses edge $(k, \mathcal{L} k)$ addleft(FREE, m[f].left); (Ifree \land Mgraph \land reachR(k) \land $\mathscr{L}FREE = \mathscr{L}f \wedge \mathscr{L}k = f \wedge \mathscr{R}f = 0$ every path from ROOT to free list uses edge $(f, \mathcal{L}f)$ m[f].left := 0 $\{Mfree \land Mgraph\}$

{Mfree \land Mgraph} mutator : do true \Rightarrow

od

Collect: {Cfree $\land \neg$ mark \land all white nodes are unreachable} $\{Cfree \land Ccoll(-1)\}$ for i := 0 step 1 until N do {Cfree \land Ccoll(i - 1)} (4.3.1)if m[i].color = white \Rightarrow $\{Cfree \land Ccoll(i) \land \neg reach(i)\}$ m[i].left := 0; m[i].right := 0; $\{Cfree \land Ccoll(i) \land \neg reach(i) \land \mathcal{L}i = \mathcal{R}i = 0\}$ m[ENDFREE].left := i; $\{Ifree \land Ccoll(i) \land \mathscr{L}ENDFREE = i \neq 0 \land \mathscr{L}0 = \mathscr{R}0 = 0\}$ ENDFREE := i $\{Cfree \land Ccoll(i) \land ENDFREE = i\}$ $[m[i].color = black \Rightarrow \{Cfree \land Ccoll(i - 1) \land i black\}$ whiten(i) $\{Cfree \land Ccoll(i)\}$ $[] m[i].color = gray \Rightarrow skip \{Cfree \land Ccoll(i)\}$ fi $\{Cfree \land Ccoll(i)\};$ $\{C free \land Ccoll(N)\}$ $\{Cfree \land \neg mark \land no black nodes\}$

Conclusions

- Started by defining the problem
- Presented a fine-grained solution by 3 milestones:
 - The first coarse-grained solution
 - The second coarse-grained solution
 - The fine-grained solution

My Own Conclusion

- Very interesting idea.
- Applying these techniques on modern OS with multiple processes may raise some challenges
 - A Collector thread per process may lead to a serious performance impact.
 - Sharing the same collector thread between processes may lead to serous security issues to deal with.

Questions?

