On-the-Fly Garbage Collection: An Exercise in Cooperation

Edsget W. Dijkstra, Leslie Lamport, A.J. Martin and E.F.M. Steffens
Communications of the ACM, 1978

Presented by Almog Benin

$$
25 / 5 / 2014
$$

Outline of talk

- Introduction
- Problem formulation
- The first coarse-grained solution
- The second coarse-grained solution
- The fine-grained solution
- Related work
- Conclusions
- My own conclusions

INTRODUCTION

Dynamic Memory

- Operations:
- Allocate (malloc)
- Release (free)
- The programmer is responsible for releasing the memory

Garbage Collector (Mark \& Sweep)

- Responsible for determining which data is not in use (garbage)
- Generally, consists of 2 phases:
- Marking phase
- Appending phase
(Sweeping phase)

Free list: 14

Garbage Collector - cont'

- Responsible for determining which data is not in use (garbage)
- Generally, consists of 2 phases:
- Marking phase
- Appending phase
(Sweeping phase)

Free list: 14

Garbage Collector - cont'

- Responsible for determining which data is not in use (garbage)
- Generally, consists of 2 phases:
- Marking phase
- Appending phase (Sweeping phase)

Motivation

- Sequential garbage collection:
- Suspend all threads
- Execute garbage collection
- Resume all threads
- Thread suspension may not be suitable to some applications:
- Real Time
- User experience
- Can we maintain the garbage collection in a separated thread?

The Challenge - Why it's a problem?

- Node \#2 is always reachable!
- The collector observes nodes one at a time.

The Challenge - Why it's a problem?

- Node \#2 is always reachable!
- The collector observes nodes one at a time.

The Program

The Challenge - Why it's a problem?

- Node \#2 is always reachable!
- The collector observes nodes one at a time.

The Program

The Challenge - Why it's a problem?

- Node \#2 is always reachable!
- The collector observes nodes one at a time.

Free list: 3

Now the collector observes node \#0 and its successors.

The Challenge - Why it's a problem?

- Node \#2 is always reachable!
- The collector observes nodes one at a time.

The Program

The Challenge - Why it's a problem?

- Node \#2 is always reachable!
- The collector observes nodes one at a time.

The Program

The Challenge - Why it's a problem?

- Node \#2 is always reachable!
- The collector observes nodes one at a time.
- The collector may not

Free list: 3 notice that node \#2 is reachable!

Now the collector observes node \#1 and its successors.

Concurrent Garbage Collector

- Collecting the garbage concurrently to the computation proper.
- Mutator thread
- Collector thread
- We set the following constraints:
- Minimal synchronization
- Minimal overhead for the mutator
- Collect the garbage "regardless" of the mutator activity

Granularity - The Grain of Action

- We use <....> to denote an atomic operation.
- Coarse-grained solution uses large atomic operations.
- Fine-grained solution uses small atomic operations.

PROBLEM FORMULATION

The Threads

- Mutator thread(s)
- Represents the computation proper.
- Collector thread
- Responsible of identifying and recycling the notused memory.

Memory Abstraction

- Directed graph of constant nodes (but varying edges).
- Each node represents a memory block.
- Each node may have 2 outgoing edges (for the relation "point to").

Free list: 14

Memory Abstraction - cont'

- Root nodes - a fixed set of nodes that cannot be garbage.
- Reachable node - a node that is reachable from at least one root node.
- Data structure - the residual sub-graph of the reachable nodes.
- Garbage nodes - nodes that are not reachable but are not in the free list.
- Free list - a list of nodes found to be garbage.

Action Types

1: Redirects R->R. 2: Redirects R->NR. 3: Add R->R. 4: Add R->NR. 5: delete

1. Redirecting an outgoing edge of a reachable node towards an already reachable one.
2. Redirecting an outgoing edge of a reachable node towards a not yet reachable one without outgoing edges.

Action Types - cont'

1: Redirects R->R. 2: Redirects R->NR. 3: Add R->R. 4: Add R->NR. 5:delete
3. Adding an edge pointing from a reachable node towards an already reachable one.
4. Adding an edge pointing from a reachable node towards a not yet reachable one without outgoing edges.
5. Removing an outgoing edge of a reachable node.

First Simplification

1: Redirects R->R. 2: Redirects R->NR. 3: Add R->R. 4: Add R->NR. 5:delete

- Use special root node called "NIL".
- Pointing to such node represents a missing edge.
- Allows us to reduce the action types:
- Action type 3 \& 5 can be translated to type 1.
- Action type 4 can be translated to type 2.

Second Simplification

1: Redirects R->R. 2: Redirects R->NR.

- Introducing (some) special root nodes and linking to them NIL and all of the free nodes.
- Making the nodes of the free list as part of the data structure.
- Allows us to reduce the action types:
- Action type 2 can be translated to two actions of type 1.

Second Simplification

1: Redirects R->R. 2: Redirects R->NR.

- Introducing (some) special root nodes and linking to them NIL and all of the free nodes.
- Making the nodes of the free list as part of the data structure.
- Allows us to reduce the action types:
- Action type 2 can be translated to two actions of type 1.

Second Simplification

1: Redirects R->R. 2: Redirects R->NR.

- Introducing (some) special root nodes and linking to them NIL and all of the free nodes.
- Making the nodes of the free list as part of the data structure.
- Allows us to reduce the action types:
- Action type 2 can be translated to two actions of type 1.

The Resulting Formulation

- There are 2 thread types:
- Mutator(s):
- "Redirect an outgoing edge of a reachable node towards an already reachable one" (Action type 1)
- Collector:
- Marking phase: "Mark all reachable nodes"
- Appending phase: "Append all unmarked nodes to the free list an clear the marking from all nodes"
- For simplifying the description, we hide the new edges \nodes from the subsequent slides.

Correctness Criteria

- CC1: Every garbage node is eventually appended to the free list.
- CC2: Appending a garbage node to the free list is the collector's only modification of the shape of the data structure.

THE FIRST COARSE-GRAINED SOLUTION

Using Colors for marking

- 2 Basic colors:
- White: Not found to be reachable yet.
- Black: Found to be reachable.
- The monotonicity invariant "P1":
- "No edge points from a black node to a white one"
- Need an intermediate color:
- Gray

The Mutator

- The "Shade" operation on a node:
- If the node is white, make it gray.
- Otherwise (gray \backslash black), leave it unchanged.
- The mutator operation "M1":
- <Redirect an outgoing edge of a reachable node towards an already reachable one, and shade the new target>

The Mutator

- The "Shade" operation on a node:
- If the node is white, make it gray.
- Otherwise (gray \backslash black), leave it unchanged.
- The mutator operation "M1":
- <Redirect an outgoing edge of a reachable node towards an already reachable one, and shade the new target>

The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$
4. While $k>0$
5. $\langle c \leftarrow$ color of node \#i>
6. If $c==$ Gray then
7. "C1": <Shade the successors of node $\# i$ and make node $\# i$ black>
8. Else

$$
\text { 1. } k \leftarrow k-1
$$

4. $\quad i \leftarrow(i+1) \% M$

Green simple atomic operations.
We will try to break the red.

The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$
4. While $k>0$
5. $<c \leftarrow$ color of node \#i>
6. If $c==$ Gray then
7. "C1": <Shade the successors of node $\# i$ and make node $\# i$ black>
8. Else

$$
\begin{aligned}
& \text { 1. } \quad k \leftarrow k-1 \\
& \text { 4. } i \leftarrow(i+1) \% M
\end{aligned}
$$

Green simple atomic operations.
We will try to break the red.

The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$

4. While $\boldsymbol{k}>\mathbf{0}$
5. $\langle c \leftarrow$ color of node \#i>
6. If $\boldsymbol{c}==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else

$$
\text { 1. } k \leftarrow k-1
$$

4. $\quad i \leftarrow(i+1) \% M$

Green simple atomic operations.
We will try to break the red.

The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$

4. While $\boldsymbol{k}>\mathbf{0}$
5. $\langle c \leftarrow$ color of node \#i>
6. If $\boldsymbol{c}==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else

$$
\text { 1. } k \leftarrow k-1
$$

4. $\quad i \leftarrow(i+1) \% M$

Green simple atomic operations.
We will try to break the red.

The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$

4. While $\boldsymbol{k}>\mathbf{0}$
5. $\langle c \leftarrow$ color of node \#i>
6. If $\boldsymbol{c}==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else

$$
\text { 1. } \quad k \leftarrow k-1
$$

4. $\quad i \leftarrow(i+1) \% M$

Green simple atomic operations.
We will try to break the red.

The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$

4. While $\boldsymbol{k}>\mathbf{0}$
5. $\langle c \leftarrow$ color of node \#i>
6. If $\boldsymbol{c}==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else

$$
\text { 1. } k \leftarrow k-1
$$

4. $\quad i \leftarrow(i+1) \% M$

Green simple atomic operations.
We will try to break the red.

The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$

4. While $\boldsymbol{k}>\mathbf{0}$
5. $\langle c \leftarrow$ color of node \#i>
6. If $\boldsymbol{c}==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else

$$
\text { 1. } k \leftarrow k-1
$$

4. $\quad i \leftarrow(i+1) \% M$

Green simple atomic operations.
We will try to break the red.

The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$

4. While $k>0$
5. $<c \leftarrow$ color of node \#i>
6. If $c==$ Gray then
7. "C1": <Shade the successors of node $\# i$ and make node $\# i$ black>
8. Else

$$
\text { 4. } \quad \begin{aligned}
& \text { 1. } \quad k \leftarrow k-1 \\
& i \leftarrow(i+1) \% M
\end{aligned}
$$

Free list:

Mutator interleaved!

The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$

4. While $\boldsymbol{k}>\mathbf{0}$
5. $\langle c \leftarrow$ color of node \#i>
6. If $\boldsymbol{c}==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else
9. \quad| 1. $\quad k \leftarrow k-1$ |
| :--- |
| i |

Green simple atomic operations.
We will try to break the red.

Free list:

The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$

4. While $\boldsymbol{k}>\mathbf{0}$
5. $\langle c \leftarrow$ color of node \#i>
6. If $\boldsymbol{c}==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else
9. \quad| 1. $\quad k \leftarrow k-1$ |
| :--- |
| i |

Green simple atomic operations.
We will try to break the red.
Free list:

The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$

4. While $\boldsymbol{k}>\mathbf{0}$
5. $\langle c \leftarrow$ color of node \#i>
6. If $\boldsymbol{c}==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else
9. \quad| 1. $\quad k \leftarrow k-1$ |
| :--- |
| i |

Green simple atomic operations.
We will try to break the red.
Free list:

The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$

4. While $\boldsymbol{k}>\mathbf{0}$
5. $\langle c \leftarrow$ color of node \#i>
6. If $\boldsymbol{c}==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else

$$
\text { 1. } k \leftarrow k-1
$$

4. $\quad i \leftarrow(i+1) \% M$

Green simple atomic operations.
We will try to break the red.
Free list:

The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$

4. While $\boldsymbol{k}>\mathbf{0}$
5. $\langle c \leftarrow$ color of node \#i>
6. If $\boldsymbol{c}==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else

$$
\text { 1. } k \leftarrow k-1
$$

4. $\quad i \leftarrow(i+1) \% M$

Green simple atomic operations.
We will try to break the red.

[^0]
The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$

4. While $\boldsymbol{k}>\mathbf{0}$
5. $\langle c \leftarrow$ color of node \#i>
6. If $\boldsymbol{c}==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else

$$
\text { 1. } k \leftarrow k-1
$$

4. $\quad i \leftarrow(i+1) \% M$

Green simple atomic operations.
We will try to break the red.

[^1]
The Collector: The Marking Phase

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$

4. While $\boldsymbol{k}>\mathbf{0}$
5. $\langle c \leftarrow$ color of node \#i>
6. If $\boldsymbol{c}==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else

$$
\text { 1. } k \leftarrow k-1
$$

4. $\quad i \leftarrow(i+1) \% M$

Green simple atomic operations.
We will try to break the red.

[^2]
The Collector: The Appending Phase

1. While $i<M$
2. $<c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white> 4. $i++$

Green simple atomic operations.
We will try to break the red.

Free list:

The Collector: The Appending Phase

1. While $i<M$
2. $<c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white> 4. $i++$

Green simple atomic operations.
We will try to break the red.

Free list:

The Collector: The Appending Phase

1. While $i<M$
2. $<c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white> 4. $i++$

Green simple atomic operations.
We will try to break the red.

Free list:

The Collector: The Appending Phase

1. While $i<M$
2. $<c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white> 4. $i++$

Green simple atomic operations.
We will try to break the red.

Free list:

The Collector: The Appending Phase

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white> 4. $i++$

Green simple atomic operations.
We will try to break the red.

Free list:

The Collector: The Appending Phase

1. While $i<M$
2. $<c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white>
6. $i++$

Green simple atomic operations.
We will try to break the red.

Free list:

The Collector: The Appending Phase

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white>
6. $i++$

Green simple atomic operations.
We will try to break the red.

Free list:

The Collector: The Appending Phase

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white>
6. $i++$

Green simple atomic operations.
We will try to break the red.

The Collector: The Appending Phase

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white> 4. $i++$

Green simple atomic operations.
We will try to break the red.

The Collector: The Appending Phase

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white>
6. $i++$

Green simple atomic operations.
We will try to break the red.

Free list:

The Collector: The Appending Phase

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white> 4. $i++$

Green simple atomic operations.
We will try to break the red.

Free list:

The Collector: The Appending Phase

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white>
6. $i++$

Green simple atomic operations.
We will try to break the red.

The Collector: The Appending Phase

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white>
6. $\quad i++$

Green simple atomic operations.
We will try to break the red.

The Collector: The Appending Phase

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white> 4. $i++$

Green simple atomic operations.
We will try to break the red.

The Collector: The Appending Phase

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white> 4. $\quad i++$

Green simple atomic operations.
We will try to break the red.

The Collector: The Appending Phase

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white>
6. $\quad i++$

Green simple atomic operations.
We will try to break the red.

The Collector: The Appending Phase

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white>
6. $\quad i++$

Green simple atomic operations.
We will try to break the red.

The Collector: The Marking Phase (2)

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$
4. While $k>0$
5. $<c \leftarrow$ color of node \#i>
6. If $c==$ Gray then
7. "C1": <Shade the successors of node $\# i$ and make node $\# i$ black>
8. Else
9. $\begin{gathered}\text { 1. } \\ i \leftarrow(i \leftarrow k-1 \\ \end{gathered}$

Green simple atomic operations.
We will try to break the red.

The Collector: The Marking Phase (2)

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$
4. While $k>0$
5. $<c \leftarrow$ color of node \#i>
6. If $c==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else
9. $k \leftarrow k-1$
10. $i \leftarrow(i+1) \% M$

Green simple atomic operations.
We will try to break the red.

The Collector: The Marking Phase (2)

1. Shade all roots.
2. $\quad i \leftarrow 0$
3. $k \leftarrow M$
4. While $\boldsymbol{k}>\mathbf{0}$
5. $<c \leftarrow$ color of node \#i>
6. If $\boldsymbol{c}==$ Gray then
7. "C1": <Shade the successors of node \#i and make node \#i black>
8. Else
9. $\quad \begin{gathered}\text { 1. } \\ i \leftarrow(i+k-1) \% M\end{gathered}$

Green simple atomic operations.
We will try to break the red.

The Collector: The Appending Phase(2)

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white>
6. $i++$

Green simple atomic operations.
We will try to break the red.

The Collector: The Appending Phase(2)

1. While $i<M$
2. $\langle c \leftarrow$ color of node \#i>
3. If $c==$ WHITE then
4. <Append node \#i to the free list>
5. Else if $c==$ BLACK then 1. <make node \#i white>
6. $i++$

Green simple atomic operations.
We will try to break the red.

Proof for Correction Criteria 2

- Reminder for CC2: "Appending a garbage node to the free list is the collector's only modification of the shape of data structure".
- The marking phase doesn't change the data structure.
- Prove the rest by showing that the following invariant holds after the marking phase completes:
- "A white node with a number $\geq i$ is garbage"

Proof for Correction Criteria 2 - cont ${ }^{\prime}$

- For the first iteration $(i=0)$, this derives from the following observations:
- The marking phase terminates when there is no gray node.
- The absence of gray nodes is stable once reached.
- At the end of the appending phase, there is no black nodes.

Proof for Correction Criteria 2 - cont ${ }^{\prime}$

- For the other iterations $(i>0)$, this derives from the following observations:
- There are 2 ways to violate the invariance:
- Making a non-garbage node white.
- Making a (white) garbage node into non-garbage.
- The mutator
- doesn't convert nodes to white.
- don't deal with to white garbage nodes.
- The collector
- For the i-th iteration, only the i-th node may change the color.

Proof for Correction Criteria 1

- Reminder for CC1: "Every garbage node is eventually appended to the free list".
- First we need to prove that both phases terminates correctly.
- The marking phase terminates because the quantity $k+M *(X)$, where X is non-black nodes, decreases by at least 1 for each iteration.
- The appending phase terminate obviously, and the mutator cannot change the color of the nodes.

Proof for Correction Criteria 1 - cont ${ }^{\prime}$

- At the beginning of the appending phase, the nodes can be partitioned into 3 sets:
- The set of reachable nodes
- They are black
- The set of white garbage nodes
- Will be appended to the free list in the first appending phase to come
- The set of black garbage node
- Will be appended to the free list in the next appending phase to come

THE SECOND COARSE-GRAINED SOLUTION

The BUGGY Proposal

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the first in order to keep P1!
- A bug was found by Stenning \& Woodger.

The BUGGY Proposal - Demo

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the first in order to keep P1!

2

Free list: 3

The BUGGY Proposal - Demo

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the

Mutator

The BUGGY Proposal - Demo

- An attempt to break M1 Root: 0 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the

Collector - Marking Phase first in order to keep P1!

The BUGGY Proposal - Demo

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the

Collector - Appending Phase

The BUGGY Proposal - Demo

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the

Collector - Marking Phase

Root: 0

The BUGGY Proposal - Demo

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the

Free list: 3

Mutator

The BUGGY Proposal - Demo

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the

Free list: 3

Mutator

The BUGGY Proposal - Demo

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the first in order to keep P1!

Collector - Marking Phase

Free list: 3

The BUGGY Proposal - Demo

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the

Collector - Appending Phase first in order to keep P1!

A Reachable Node in The Free List!

The BUGGY Proposal - Reply

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the first in order to keep P1!

The BUGGY Proposal - Reply

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the first in order to keep P1!

The BUGGY Proposal - Reply

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the

Collector - Marking Phase

The BUGGY Proposal - Reply

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the

Collector - Appending Phase

The BUGGY Proposal - Reply

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the

Collector - Marking Phase first in order to keep P1!

The BUGGY Proposal - Reply

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the first in order to keep P1!

Free list: 3

P1 is now violated!!!

Mutator

The BUGGY Proposal - Reply

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the first in order to keep P1!

Free list: 3

P1 is now violated!!!

Mutator

The BUGGY Proposal - Reply

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the

Free list: 3

P1 is now violated!!!

Collector - Marking Phase

The BUGGY Proposal - Reply

- An attempt to break M1 into 2 atomic operations:
- <Redirect an outgoing edge of a reachable node towards an already reachable one>
- <Shade the new target>
- Shading must be the

The BUGGY Proposal - Reply

- An attempt to break M1 into 2 atomic

The new idea - replacing the

 invariant P1 by weaker invariants.- Shading must be the

Collector - Appending Phase first in order to keep P1!

New Invariant: P2

- Propagation path: A path of consisting solely of edges with white targets, and starting from a gray node.
- P2: "For each white reachable node, there exists a propagation path leading to it"

New Invariant: P3

- P3: "Only the last edge placed by the mutator may lead from a black node to a white one"

The New Algorithm

- The collector remains the same!
- The mutator's new operation is the following M2:
- <Shade the target of the previously redirected edge, and redirect an outgoing edge of a reachable node towards a reachable node>

Free list: 14

The New Algorithm

- The collector remains the same!
- The mutator's new operation is the following M2:
- <Shade the target of the previously redirected edge, and redirect an outgoing edge of a reachable node towards a reachable node>

Free list:

The New Algorithm

- The collector remains the same!
- The mutator's new operation is the following M2:
- <Shade the target of the previously redirected edge, and redirect an outgoing edge of a reachable node towards a reachable node>

Correction proof

- P2 \& P3 are invariants for this algorithm.
- By using these invariants we can proof the correctness of the second algorithm in the same manner of the first one.

THE FINE-GRAINED SOLUTION

The New Mutator

- M2.1:
- <Shade the target of the previously redirected edge>
- M2.2:
- <Redirect an outgoing edge of a reachable node towards a reachable node>

Free list: 14

The New Mutator

- M2.1:
- <Shade the target of the previously redirected edge>
- M2.2:
- <Redirect an outgoing edge of a reachable node towards a reachable node>

Free list: 14

The New Mutator

- M2.1:
- <Shade the target of the previously redirected edge>
- M2.2:
- <Redirect an outgoing edge of a reachable node towards a reachable node>

Free list: 14

The New Mutator

- M2.1:
- <Shade the target of the previously redirected edge>
- M2.2:
- <Redirect an outgoing edge of a reachable node towards a reachable node>

Free list: 14

The New Mutator

- M2.1:
- <Shade the target of the previously redirected edge>
- M2.2:
- <Redirect an outgoing edge of a reachable node towards a reachable node>

Free list: 14

The New Collector

- Basically the same, but with finer operations.
- C1.1a:
- C1.1: <m1 := number of the left-hand successor of node \#i>
- C1.2: <shade node \#M1>
- C1.3a:
- C1.3: <m2:= number of the right-hand successor of node \#i>
- C1.4: <shade node \#M2>
- CI.5: <make node \#i black>

Free list: 14

The New Collector

- Basically the same, but with finer operations.
- C1.1a:
- C1.1: <m1 := number of the left-hand successor of node \#i>
- C1.2: <shade node \#M1>
- C1.3a:
- C1.3: <m2:= number of the right-hand successor of node \#i>
- C1.4: <shade node \#M2>
- CI.5: <make node \#i black>

The New Collector

- Basically the same, but with finer operations.
- C1.1a:
- C1.1: <m1 := number of the left-hand successor of node \#i>
- C1.2: <shade node \#M1>
- C1.3a:
- C1.3: <m2:= number of the right-hand successor of node \#i>
- C1.4: <shade node \#M2>
- CI.5: <make node \#i black>

Free list: 14

The New Collector

- Basically the same, but with finer operations.
- C1.1a:
- C1.1: <m1 := number of the left-hand successor of node \#i>
- C1.2: <shade node \#M1>
- C1.3a:
- C1.3: <m2:= number of the right-hand successor of node \#i>
- C1.4: <shade node \#M2>
- CI.5: <make node \#i black>

C-edges

- "C-edges": Edges whose targets detected as gray by the collector.

C-edges

- "C-edges": Edges whose targets detected as gray by the collector.

Free list: 14

The New Invariants

- P2a: "Every root is gray or black, and for each white reachable node there exists a propagation path leading to it, containing no C-edges.
- P3a: "There exists at most one edge E satisfying that '(E is a black-to-white edge) or (E is C-edge with a white target)'.
- The existence of E implies that the mutator is between action M2.2 and the subsequent M2.1, and that E is identical with the edge most recently redirected by the mutator.

Correction Proof

- P2a \& P3a are invariants for this algorithm.
- By using these invariants we can proof the correctness of the fine-grained algorithm in the same manner of the coarse-grained ones.

Related work

- This is the first paper for concurrent GC.
- "Real-Time Garbage Collection on GeneralPurpose Machines", Yuasa, 1990
- Designed for single core systems.
- "Multiprocessing compactifying garbage collection", Steele, 1975
- Contained a bug.
- Fixed in 1976.

```
{Mfree }\wedge\mathrm{ Mgraph}
mutator: do true }
    {Mfree ^Mgraph}
    Let }k,j\mathrm{ be indices of nodes reachable from ROOT;
    {Mfree ^ Mgraph ^ reachR(k)^ reachR(j)}
    if true }=>{M\mathrm{ free }\wedgeMgraph ^ reachR(k)
        m[k].left := 0
        {Mfree ^Mgraph ^ reachR(k)^\mathscr{Lk}=0}
    | true }=>{M\mathrm{ free }\wedgeMgraph ^ reachR(k) ^reachR(j)
        addleff(k,j)
        {Mfree }\wedge\mathrm{ Mgraph }\wedge\mathrm{ reachR(k)}\wedge\mathscr{Lk}=j
    | true }=>\mathrm{ Take first free node as k's left successor:
            {Mfree ^Mgraph ^ reachR(k)}
        f:=M[FREE].left;
    {Mfree \Mgraph ^ reachR(k)^\mathscr{LFREE =f }\not=0}
    addleft(k,f);
    Ifree }\wedge\mathrm{ Mgraph }\wedge\mathrm{ reachR(k)}
        LFree = \mathscr{k = f}=0^
        {\begin{array}{l}{\mathrm{ every path from ROOT to free list uses}}\\{\mathrm{ edge (k, LL k)}}\end{array}}
    do f}=ENDFREE=>\mathrm{ skip od;
        (Ifree }\wedge\mathrm{ Mgraph }\wedge\mathrm{ reach R(k)}
        LFREE = \mathscr{Lk = f}=0^
        every path from ROOT to free list uses
        edge (k,\mathscr{L}k)
    addleft(FREE, m[f].lefi);
        (Ifree }\wedge Mgraph ^ reachR(k)^
        LFREE=\mathscr{L}f\wedge\mathscr{Lk}=f\\wedge\mathscr{R}f=0
        {\begin{array}{l}{\mathrm{ every path from ROOT to free list uses }}\\{\mathrm{ edge (f,LLf)}}\end{array}}
    m[f].left := 0
    fi
    Mfree }\wedge\mathrm{ Mgraph }
    od
Let \(k, j\) be indices of nodes reachable from ROOT;
\(\{\) Mfree \(\wedge\) Mgraph \(\wedge\) reach \(R(k) \wedge\) reach \(R(j)\}\)
if true \(\Rightarrow\{M\) free \(\wedge\) Mgraph \(\wedge\) reach \(R(k)\}\) \(m[k]\).left \(:=0\)
\(\{\) Mfree \(\wedge\) Mgraph \(\wedge\) reach \(R(k) \wedge \mathscr{L k}=0\}\)
\(\square\) true \(\Rightarrow\{M\) free \(\wedge\) Mgraph \(\wedge\) reach \(R(k) \wedge\) reach \(R(j)\}\) addleft \((k, j)\)
\(\{\) Mfree \(\wedge\) Mgraph \(\wedge\) reach \(R(k) \wedge \mathscr{L} k=j\}\)
] true \(\Rightarrow\) Take first free node as \(k\) 's left successor:
\(\{\) Mfree \(\wedge\) Mgraph \(\wedge\) reach \(R(k)\}\)
[Mfreen
addleft \((k, f)\);
\(\left\{\begin{array}{l}\text { Ifree } \wedge \text { Mgraph } \wedge \text { reach } R(k) \wedge \\ \mathscr{L} F r e e=\mathscr{L} k=f \neq 0 \wedge \\ \text { every path from } R O O T \text { to free list uses } \\ \text { edge }(k, \mathscr{L} k)\end{array}\right\}\)
do \(f=E N D F R E E \Rightarrow\) skip od;
\(\left\{\begin{array}{c}\text { Ifree } \wedge \text { Mgraph } \wedge \text { reach } R(k) \\ \mathscr{L} F R E E=\mathscr{L} k=f \neq 0 \wedge\end{array}\right.\)
\(\left\{\begin{array}{l}\text { every path from ROOT to free list uses } \\ \text { edge }(k, \mathscr{L} k)\end{array}\right.\)
addleft(FREE, \(m[f]\).lefi);
\(\left\{\begin{array}{l}\text { Ifree } \wedge \text { Mgraph } \wedge \text { reach } R(k) \wedge \\ \mathscr{L} F R E E=\mathscr{L} f \wedge \mathscr{L} k=f \wedge \mathscr{R} f=0 \\ \text { every path from } R O O T \text { to free list uses } \\ \text { edge }(f, \mathscr{L} f)\end{array}\right\}\)
\(m[f]\).left \(:=0\)
f
od
```


Gries's proof

Collect:
$\{C$ free $\wedge \neg$ mark \wedge all white nodes are unreachable\}
$\{$ Cfree \wedge Ccoll (-1) \}
for $i:=0$ step 1 until N do
$\{$ Cfree $\wedge \operatorname{Ccoll}(i-1)\}$
if $m[i]$.color $=$ white \Rightarrow
$\{$ Cfree \wedge Ccoll $(i) \wedge \neg$ reach(i) $\}$
$m[i]$. left $:=0 ; m[i]$. right $:=0$;
$\left\{\right.$ Cfree \wedge Ccoll $(i) \wedge \neg$ reach(i) $\left.\wedge \mathscr{L}_{i}=\mathscr{R} i=0\right\}$
$m[E N D F R E E] . l e f t:=i$;
\{Ifree \wedge Ccoll $(i) \wedge \mathscr{L} E N D F R E E=i \neq 0 \wedge \mathscr{L} 0=\mathscr{R} 0=0\}$
ENDFREE := i
$\{$ Cfree \wedge Ccoll $(i) \wedge$ ENDFREE $=i\}$
\ $m[i]$. color $=$ black $\Rightarrow\{C$ free \wedge Ccoll $(i-1) \wedge i$ black $\}$
whiten(i)
$\{$ Cfree \wedge Ccoll(i) $\}$
[] $m[i]$. color $=$ gray \Rightarrow skip $\{C$ free \wedge Ccoll($(i)\}$
fi
$\{$ Cfree \wedge Ccoll $(i)\} ;$
$\{$ Cfree $\wedge \operatorname{Ccoll}(\mathrm{N})\}$
$\{$ Cfree $\wedge \neg$ mark \wedge no black nodes $\}$

Conclusions

- Started by defining the problem
- Presented a fine-grained solution by 3 milestones:
- The first coarse-grained solution
- The second coarse-grained solution
- The fine-grained solution

My Own Conclusion

- Very interesting idea.
- Applying these techniques on modern OS with multiple processes may raise some challenges
- A Collector thread per process may lead to a serious performance impact.
- Sharing the same collector thread between processes may lead to serous security issues to deal with.

Questions?

[^0]: Free list:

[^1]: Free list:

[^2]: Free list:

