Verifying Properties of Parallel
Programs: An Axiomatic Approach

Susan Owicki and David Gries
Communications of the ACM, 1976

Presented by Almog Benin
1/6/2014

Outline of talk

Introduction

ne language

ne axioms

Neorems

— mutual exclusion, termination & deadlock
Related work
Conclusions

Introduction

e Concurrent programs becomes more popular
* |t's harder to prove their correction

— Scheduling can be changed
— Regular testing is not enough

 The suggested solution:

— Axiomatic proof system

The language

* Derived from Algol 60

* Contains the usual statements:
— Assignment
— Conditional
— Loops: while \ for
— Compound \ null

The language — cont’

* Denote by:
— 1 — a set of variables
— 5 —a statement
— B —a boolean condition

 Parallel execution statement:

resource 1q,...,Tny,:
cobegin S,//...//S,, coend

e Critical section statement:
with r when B do S

beginy := 0, z := 0;
resource r(x,y, z): cobegin
with r when true do

beginx = x + 1;y:=1end

//

with r when true do

beginx :=x+1;z:=1end

coend

end

Example

Each statement has:
— Pre-condition P
— Post-condition Q

Wrote as{P} S {Q}

We assume that sequential
execution is simple to be proved.

[(r) - the invariant for the
resource r

— Remains true at all times outside
critical sections for r

{x =0}
beginy := 0, z := 0;

resource r(x,y, z): cobegin

with r when true do

{y=0AI(r)}
beginx :=x+1;y :=1end
{y=1AI(r)}

//

with 7 when true do

{z=0AI(r)}
beginx :=x+1;z:=1end
{z=1AI(r)}

coend

end

I(r) ={x=y+z}

Example — cont’

Each statement has:
— Pre-condition P
— Post-condition Q

Wrote as{P} S {Q}

* We assume that sequential
execution is simple to be proved.

* I(7r) - the invariant for the
resource r

— Remains true at all times outside
critical sections for r

{x =0}
beginy := 0, z := 0;

Axiom #1
resource r(x,y, z): cobegin
{y =0}
with r when true do ° g : : .
B The critical section axiom:
{y=0AI(r)}
beginx :=x+1;y = 1end — If:
{y=1A1()} « {IXVAPAB}S{I(r)AQ}
{y=1j} I(r) is the invariant from the
// cobegin statement
{z =0} * No variable freein Por Qs
with 7 when true do changed in another thread
{z=0AI()} — Then:
begin x == x +1;2:= 1 end » {P} with r when B do S {Q}
{z=1ANI(r)}
(z=1) * For example, set:
coend — P = uy — 0"
end - Q= "y =1"

) = (x =y 4+ 2) — B = true

{x =0}
beginy := 0, z := 0;

end

{y=0Az=0AI(r)}
resource r(x,y, z): cobegin

{y =0}
with r when true do
y=0AI(r)}
beginx = x + 1;y:=1end
y=1AI1(r)}
{v=1}
//
{z =0}
with r when true do
{z=0AI(r)}
beginx:=x+1;z:=1end
{z=1ANI(r)}
{z =1}
coend

{fy=1Az=1AI()}

I(r) ={x =y +z}

Axiom #2

The parallel execution axiom:
— |If:
* {P1} 51 {01} - {P1} Sn {0n}

* No variable free in P; or Q; is
changedin S; (i # j)

 Allvariablesin I(r) belong to
resource r

— Then:

« {PyA---ANPB, ANI(r)}resource r:
cobegin S, //---//S,, coend
{Q1 A AQuAI(r)}

For example, set:

_ P1 — "y — Oll
_ PZ — IIZ — Oll
_ Ql — lly — 1"

_ QZ — HZ — 1"

{x =0}
beginy := 0, z := 0;

(y=0Az=0A10) The consequence
resource r(x,y, z): cobegin
{y =0}
with r when true do . . .
y=0AI()} e Using the invariant, we
beginx = x + 1;y:=1end .
o have the result:
=1 —x=2
//
{z =0}
with r when true do
{z=0AI(r)}
beginx :=x+1;z:=1end
{z=1ANI(r)}
{z =1}
coend
{y=1Az=1AI(r)}
end
{x =2}

I(r)={x=y+2z}

Axiom #3 - Auxiliary Variable Axiom:

resource r(x): cobegin e Unable to proof using
with ¥ when true do the existing axioms.
x=x+1 * This program does the
// same as the former.
with r when true do

x:=x+1
coend

Axiom #3 - Auxiliary Variable Axiom:

resource r(x): cobegin The solution: make use
with 7 when true do of auxiliary variables
x=x+1 — Auxiliary variable is a
// variable which is
assigned, but never used
with r when true do — Removing this variable
x=x+1 doesn’t change the

coend program.

Axiom #3 - Auxiliary Variable Axiom:

resource r(x): cobegin e |If:
with 7 when true do — AV is an auxiliary variable
xi=x+1 set for a statement S.
— S’ obtained by deleting all
// assignments to variables in
with r when true do AV.
x=x+1 — {P} S {Q} is true
coend — P a.nd Q don’t rgfer to
variable any variables from
AV.
* Then:

— {P} S’ {Q}is also true.

The Dining Philosophers Problem

* 5 bowls of spaghetti
* 5forks
* 5 philosophers

e Each philosopher
repeatedly eats and
then thinks

* Needs 2 forks for eating

begin
for j := O step 1 until 4
af[j] = 2;

resource forks: cobegin
DPy//+//DPy

coend

end

forks :=af &

DPi:

for j :== 1 step 1 until N;

begin

end

with forks when af[i] = 2 do

beginaf[i© 1] ——;af[i ® 1] — —;

<eat i>
with forks when true do

beginaf[i © 1] + +; af[i ® 1] + +;

<think i>

end

end

begin DP;:
for j := 0 step 1 until 4 {eating[i] = 0}
begin af[j] := 2; eating[j] == 0 end | forj = 1step 1 until N;
<i

{I(forks) A eating[i] = 0,0 < 4}| begin
resource forks: cobegin with forks when af[i] = 2 do
DP,//--//DP, {eating|i] = 0 A afli] = 2 AI(forks)}
coend begin af[i © 1] — —; af i ® 1] — —; eating]|i] = 1 end
{I(forks) Aeating[i] = 0,0 <i < 4} {eating[i] = 1 ANI(forks)}
end <eat i>

with forks when true do

{eating|i] = 1 AI(forks)}

beginaf[i © 1] + +; af[i @ 1] + +;eating|i] = 0 end
{eating|i] = 0 AI(forks)}

eating - an auxiliary variable <think i>

forks = af & eating end

{eaing[i] = 0}

0 < eating|i] < 1 A (eating[i] =1 = af[i] =2) A
afi] = 2 — (eating[i © 1] + eating[i @ 1])

I[(forks) = {

OSL’S4}

Mutual Exclusion

We will prove that there are no 2 neighbors
eating together.

Assume by contradiction that there is i for which

eating|i] = eating|i @ 1] = 1.

We will derive a contradiction:

— (eating[i] =1Aeatingli®@ 1] =1A I(forks)) =
(afli] =2 Aafli] < 2) = false

— For that, we need to proof a new theorem.

* Because another philosopher may be in a critical section
(1(r) will not hold).

Theorem #1:
The Mutual Exclusion Theorem

Suppose:

S1 and S, are statements in
different parallel threads of a
program S

Neither §; nor S, belongs to a
critical section for resource r.

Let P; and P, be assertions that
holds during the execution of S
and S,, respectively.

(PLAP, ANI(T)) = false

Then:

S, and S, are mutually exclusive

if P; and P, are true when the
execution of S begins.

Example:

e 5 =<eati >

e S, =<eatiP1l>

e P, ={eatingli] = 1}

« P, ={eatingli ® 1] = 1}

By theorem #1:
(Pl/\Pz/\I(T')) :>falSe

In contradiction.

Deadlock

* Athread is blocked if it is stopped at the
statement with » when B do S because B is
false or because another thread is using
resource 7.

* A parallel program is blocked if at least one
thread is blocked, and all other threads are
either finished or blocked as well.

* A parallel program is deadlock-free if there is
no computation lead it to be blocked.

Theorem #2: The Blocking Theorem

e Suppose program S contains the statement:
— S’ = resource r; cobegin S,//---//S,, coend

* Let the with-when statements of thread §;, be
- S,i = with rkj when B,{ do Tkj

* Let pre(S,{) and [(r) be assertions derived
from a proof of {P} S {Q}.

Theorem #2: The Blocking Theorem — cont’

* D; means: “for each thread, it is either finished or
blocked at the beginning of one of its with-when
statement”:

o= \pwcsn |\ ot (s

k

* D, means: “There is at least one thread that is blocked
by one of the with-when statement”:

D, = \/ \/ <ﬂB,{ A pre(s,{))

Thenif D; A D, A I(r) = false, S is deadlock-free if P is
true when execution begins.

The Blocking Theorem in The
Dining Philosophers

Let S; = DP;. Thus:
D, = /\eating[i] =0 D, = \/Eli(af[i] * 2)

l 0 < eating|i] < 1A (eatingli]=1= alf[i] =2)A
afli] = 2 — (eating|i © 1] + eating|i D 1])

I[(forks) = {[0<i< 4}

Dy AD, ANI(forks) = false

And thus the dining philosophers program is deadlock free.

Theorem #3: Termination

* Definition: A statement T terminates
conditionally if it can be proved to terminate
under the assumption that it doesn’t become

blocked.

* Theorem: if T is a cobegin statement in a
program S which is deadlock-free, T
terminates if each of its parallel threads
terminates conditionally.

e Easy to be proved for the dining philosophers

Related work

* This work uses a language presented by Hoare
(1972).

— However, Hoare’s solution provides partial

correctness (a program that produces the correct
result or doesn’t terminate).

— It also fails to prove partial correctness for some
simple programs.

Conclusion

* We presented an axiomatic proof system for
parallel programs.

e We defined some theorems based on these
axioms.

 We applied these theorems on the dinning
philosophers problem.

Questions?

My thoughts

* |s that proof system cost-effective?

— Better than normal testing?

 What is the best way to use this proof system?
— Manual?
— Automatic?
— Interactive?

