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Introduction 

• Concurrent programs becomes more popular 

• It’s harder to prove their correction 

– Scheduling can be changed 

– Regular testing is not enough 

• The suggested solution: 

– Axiomatic proof system 



The language 

• Derived from Algol 60 

• Contains the usual statements: 

– Assignment 

– Conditional 

– Loops: while \ for 

– Compound \ null 



The language – cont’ 

• Denote by: 
– 𝑟 – a set of variables 

– 𝑆 – a statement 

– 𝐵 – a boolean condition 

• Parallel execution statement: 
resource 𝑟1,…,𝑟𝑚: 

cobegin 𝑆1//…//𝑆𝑛 coend 

• Critical section statement: 
with r when 𝐵 do 𝑆 



*𝑥 = 0+ 

begin 𝑦 ≔ 0, 𝑧 ≔ 0; 
*𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼 𝑟 + 

resource 𝑟(𝑥, 𝑦, 𝑧): cobegin 
*𝑦 = 0+ 

with 𝑟 when 𝑡𝑟𝑢𝑒 do 
*𝑦 = 0 ∧ 𝐼 𝑟 + 

begin 𝑥 ≔ 𝑥 + 1; 𝑦 ≔ 1 end 
*𝑦 = 1 ∧ 𝐼 𝑟 + 

*𝑦 = 1+ 

// 
𝑧 = 0  

with 𝑟 when 𝑡𝑟𝑢𝑒 do 
*𝑧 = 0 ∧ 𝐼 𝑟 + 

begin 𝑥 ≔ 𝑥 + 1; z ≔ 1 end 
*𝑧 = 1 ∧ 𝐼 𝑟 + 

*𝑧 = 1+ 

coend 
𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼 𝑟  

end 
*𝑥 = 2+ 
𝐼 𝑟 = *𝑥 = 𝑦 + 𝑧+ 

• Each statement has: 
– Pre-condition 𝑃 

– Post-condition 𝑄 

• Wrote as 𝑃  𝑆 *𝑄+ 

• We assume that sequential 
execution is simple to be proved. 

• 𝐼(𝑟) – the invariant for the 
resource r 
– Remains true at all times outside 

critical sections for r 

 

 

Example  



*𝒙 = 𝟎+ 

begin 𝑦 ≔ 0, 𝑧 ≔ 0; 
*𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼 𝑟 + 

resource 𝑟(𝑥, 𝑦, 𝑧): cobegin 
*𝑦 = 0+ 

with 𝑟 when 𝑡𝑟𝑢𝑒 do 
*𝒚 = 𝟎 ∧ 𝑰 𝒓 + 

begin 𝑥 ≔ 𝑥 + 1; 𝑦 ≔ 1 end 
*𝒚 = 𝟏 ∧ 𝑰 𝒓 + 

*𝑦 = 1+ 

// 
𝑧 = 0  

with 𝑟 when 𝑡𝑟𝑢𝑒 do 
*𝒛 = 𝟎 ∧ 𝑰 𝒓 + 

begin 𝑥 ≔ 𝑥 + 1; z ≔ 1 end 
*𝒛 = 𝟏 ∧ 𝑰 𝒓 + 

*𝑧 = 1+ 

coend 
𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼 𝑟  

end 
*𝑥 = 2+ 
𝑰 𝒓 = *𝒙 = 𝒚 + 𝒛+ 

• Each statement has: 
– Pre-condition 𝑃 

– Post-condition 𝑄 

• Wrote as 𝑃  𝑆 *𝑄+ 

• We assume that  sequential 
execution is simple to be proved. 

• 𝑰(𝒓) – the invariant for the 
resource r 
– Remains true at all times outside 

critical sections for r 

 
 

 

Example – cont’ 



*𝑥 = 0+ 

begin 𝑦 ≔ 0, 𝑧 ≔ 0; 
*𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼 𝑟 + 

resource 𝑟(𝑥, 𝑦, 𝑧): cobegin 
*𝒚 = 𝟎+ 

with 𝑟 when 𝑡𝑟𝑢𝑒 do 
*𝑦 = 0 ∧ 𝐼 𝑟 + 

begin 𝑥 ≔ 𝑥 + 1; 𝑦 ≔ 1 end 
*𝑦 = 1 ∧ 𝐼 𝑟 + 

*𝒚 = 𝟏+ 

// 
𝒛 = 𝟎  

with 𝑟 when 𝑡𝑟𝑢𝑒 do 
*𝑧 = 0 ∧ 𝐼 𝑟 + 

begin 𝑥 ≔ 𝑥 + 1; z ≔ 1 end 
*𝑧 = 1 ∧ 𝐼 𝑟 + 

*𝒛 = 𝟏+ 

coend 
𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼 𝑟  

end 
*𝑥 = 2+ 
𝐼 𝑟 = *𝑥 = 𝑦 + 𝑧+ 

• The critical section axiom: 
– If: 

• 𝐼 𝑟 ∧ 𝑃 ∧ 𝐵  𝑆 *𝐼 𝑟 ∧ 𝑄+ 

• 𝐼(𝑟) is the invariant from the 
cobegin statement 

• No variable free in P or Q is 
changed in another thread 

– Then: 
• 𝑃  with 𝑟 when 𝐵 do 𝑆 *𝑄+ 

• For example, set: 
– 𝑃 = "y = 0" 

– 𝑄 = "𝑦 = 1" 

– 𝐵 = 𝑡𝑟𝑢𝑒 
 

Axiom #1 



*𝑥 = 0+ 

begin 𝑦 ≔ 0, 𝑧 ≔ 0; 
*𝒚 = 𝟎 ∧ 𝒛 = 𝟎 ∧ 𝑰 𝒓 + 

resource 𝑟(𝑥, 𝑦, 𝑧): cobegin 
*𝑦 = 0+ 

with 𝑟 when 𝑡𝑟𝑢𝑒 do 
*𝑦 = 0 ∧ 𝐼 𝑟 + 

begin 𝑥 ≔ 𝑥 + 1; 𝑦 ≔ 1 end 
*𝑦 = 1 ∧ 𝐼 𝑟 + 

*𝑦 = 1+ 

// 
𝑧 = 0  

with 𝑟 when 𝑡𝑟𝑢𝑒 do 
*𝑧 = 0 ∧ 𝐼 𝑟 + 

begin 𝑥 ≔ 𝑥 + 1; z ≔ 1 end 
*𝑧 = 1 ∧ 𝐼 𝑟 + 

*𝑧 = 1+ 

coend 
𝒚 = 𝟏 ∧ 𝒛 = 𝟏 ∧ 𝑰 𝒓  

end 
*𝑥 = 2+ 
𝐼 𝑟 = *𝑥 = 𝑦 + 𝑧+ 

• The parallel execution axiom: 
– If: 

• 𝑃1  𝑆1 *𝑄1+ … 𝑃𝑛  𝑆𝑛 *𝑄𝑛+ 
• No variable free in 𝑃𝑖 or 𝑄𝑖  is 

changed in 𝑆𝑗  (𝑖 ≠ 𝑗)  
• All variables in 𝐼(𝑟) belong to 

resource 𝑟 

– Then: 
• *𝑃1 ∧ ⋯∧ 𝑃𝑛 ∧ 𝐼 𝑟 + resource 𝑟: 

cobegin 𝑆1//⋯//𝑆𝑛  coend 
𝑄1 ∧ ⋯∧ 𝑄𝑛 ∧ 𝐼 𝑟  

• For example, set: 

– 𝑃1 = "𝑦 = 0" 

– 𝑃2 = "𝑧 = 0“ 

– 𝑄1 = "𝑦 = 1" 

– 𝑄2 = "𝑧 = 1" 

Axiom #2 



*𝑥 = 0+ 

begin 𝑦 ≔ 0, 𝑧 ≔ 0; 
*𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼 𝑟 + 

resource 𝑟(𝑥, 𝑦, 𝑧): cobegin 
*𝑦 = 0+ 

with 𝑟 when 𝑡𝑟𝑢𝑒 do 
*𝑦 = 0 ∧ 𝐼 𝑟 + 

begin 𝑥 ≔ 𝑥 + 1; 𝑦 ≔ 1 end 
*𝑦 = 1 ∧ 𝐼 𝑟 + 

*𝑦 = 1+ 

// 
𝑧 = 0  

with 𝑟 when 𝑡𝑟𝑢𝑒 do 
*𝑧 = 0 ∧ 𝐼 𝑟 + 

begin 𝑥 ≔ 𝑥 + 1; z ≔ 1 end 
*𝑧 = 1 ∧ 𝐼 𝑟 + 

*𝑧 = 1+ 

coend 
𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼 𝑟  

end 
*𝒙 = 𝟐+ 
𝐼 𝑟 = *𝑥 = 𝑦 + 𝑧+ 

• Using the invariant, we 
have the result: 

– 𝒙 = 𝟐 

The consequence 



Axiom #3 - Auxiliary Variable Axiom: 

resource r(x): cobegin  

with 𝑟 when true do  
𝑥 ≔ 𝑥 + 1 

// 

with r when true do  
𝑥 ≔ 𝑥 + 1 

coend 

• Unable to proof using 
the existing axioms. 

• This program does the 
same as the former. 



Axiom #3 - Auxiliary Variable Axiom: 

resource r(x): cobegin  

with 𝑟 when true do  
𝑥 ≔ 𝑥 + 1 

// 

with r when true do  
𝑥 ≔ 𝑥 + 1 

coend 

• The solution: make use 
of auxiliary variables 

– Auxiliary variable is a 
variable which is 
assigned, but never used 

– Removing this variable 
doesn’t change the 
program. 

𝑦 ≔ 1 



Axiom #3 - Auxiliary Variable Axiom: 

resource r(x): cobegin  

with 𝑟 when true do  
𝑥 ≔ 𝑥 + 1 

// 

with r when true do  
𝑥 ≔ 𝑥 + 1 

coend 

• If: 
– AV is an auxiliary variable 

set for a statement 𝑆. 

– 𝑆’ obtained by deleting all 
assignments to variables in 
AV. 

– 𝑃  𝑆 *𝑄+ is true 

– 𝑃 and 𝑄 don’t refer to 
variable any variables from 
AV. 

• Then: 
– 𝑃  𝑆′ *𝑄+ is also true. 



The Dining Philosophers Problem 

  • 5 bowls of spaghetti 

• 5 forks 

• 5 philosophers 

• Each philosopher 
repeatedly eats and 
then thinks 

• Needs 2 forks for eating 

 



begin 

 for 𝑗 ≔ 0 step 1 until 4 

 begin af,𝑗- ≔ 2; 𝑒𝑎𝑡𝑖𝑛𝑔,𝑗- ≔ 0 end 

 𝐼 𝑓𝑜𝑟𝑘𝑠 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0,0 ≤ 𝑖 ≤ 4  

 resource 𝑓𝑜𝑟𝑘𝑠: cobegin  

  𝐷𝑃0//⋯//𝐷𝑃4  

 coend 

 𝐼 𝑓𝑜𝑟𝑘𝑠 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0,0 ≤ 𝑖 ≤ 4  

end 

𝐷𝑃𝑖:  
*𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0+ 

for 𝑗 ≔ 1 step 1 until 𝑁𝑖  

begin 

 with 𝑓𝑜𝑟𝑘𝑠 when 𝑎𝑓 𝑖 = 2 do 

 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0 ∧ 𝑎𝑓 𝑖 = 2 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠  

 begin 𝑎𝑓 𝑖 ⊖ 1 − − ; 𝑎𝑓 𝑖 ⊕ 1 − −; 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 end 

 *𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠 + 

 <eat 𝒊> 

 with 𝑓𝑜𝑟𝑘𝑠 when true do 

 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠  

 begin 𝑎𝑓 𝑖 ⊖ 1 + +;  𝑎𝑓 𝑖 ⊕ 1 + +;𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0 end 

 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠  

 <think 𝒊> 

end 
*𝑒𝑎𝑖𝑛𝑔 𝑖 = 0+ 

𝑒𝑎𝑡𝑖𝑛𝑔 – an auxiliary variable 
𝑓𝑜𝑟𝑘𝑠 ≔ 𝑎𝑓 & 𝑒𝑎𝑡𝑖𝑛𝑔 

𝐼 𝑓𝑜𝑟𝑘𝑠 =
0 ≤ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ≤ 1 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ⇒ 𝑎𝑓 𝑖 = 2 ∧

𝑎𝑓 𝑖 = 2 − 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊖ 1 + 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊕ 1
 0 ≤ 𝑖 ≤ 4  

 

  



begin 

 for 𝑗 ≔ 0 step 1 until 4 

 begin af,𝑗- ≔ 2; 𝑒𝑎𝑡𝑖𝑛𝑔,𝑗- ≔ 0 end 

 𝐼 𝑓𝑜𝑟𝑘𝑠 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0,0 ≤ 𝑖 ≤ 4  

 resource 𝑓𝑜𝑟𝑘𝑠: cobegin  

  𝐷𝑃0//⋯//𝐷𝑃4  

 coend 

 𝐼 𝑓𝑜𝑟𝑘𝑠 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0,0 ≤ 𝑖 ≤ 4  

end 

𝐷𝑃𝑖:  
*𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0+ 

for 𝑗 ≔ 1 step 1 until 𝑁𝑖  

begin 

 with 𝑓𝑜𝑟𝑘𝑠 when 𝑎𝑓 𝑖 = 2 do 

 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0 ∧ 𝑎𝑓 𝑖 = 2 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠  

 begin 𝑎𝑓 𝑖 ⊖ 1 − − ; 𝑎𝑓 𝑖 ⊕ 1 − −; 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 end 

 *𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠 + 

 <eat 𝒊> 

 with 𝑓𝑜𝑟𝑘𝑠 when true do 

 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠  

 begin 𝑎𝑓 𝑖 ⊖ 1 + +;  𝑎𝑓 𝑖 ⊕ 1 + +;𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0 end 

 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠  

 <think 𝒊> 

end 
*𝑒𝑎𝑖𝑛𝑔 𝑖 = 0+ 

𝑒𝑎𝑡𝑖𝑛𝑔 – an auxiliary variable 
𝑓𝑜𝑟𝑘𝑠 ≔ 𝑎𝑓 & 𝑒𝑎𝑡𝑖𝑛𝑔 

𝐼 𝑓𝑜𝑟𝑘𝑠 =
0 ≤ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ≤ 1 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ⇒ 𝑎𝑓 𝑖 = 2 ∧

𝑎𝑓 𝑖 = 2 − 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊖ 1 + 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊕ 1
 0 ≤ 𝑖 ≤ 4  

 

  



Mutual Exclusion 

• We will prove that there are no 2 neighbors 
eating together. 

• Assume by contradiction that there is 𝑖 for which 
𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊕ 1 = 1. 

• We will derive a contradiction: 

– 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊕ 1 = 1 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠 ⇒

𝑎𝑓 𝑖 = 2 ∧ 𝑎𝑓 𝑖 < 2 ⇒ 𝑓𝑎𝑙𝑠𝑒 

– For that, we need to proof a new theorem. 
• Because another philosopher may be in a critical section 

(𝐼 𝑟  will not hold). 

 



Theorem #1: 
The Mutual Exclusion Theorem 

Suppose: 
• 𝑆1 and 𝑆2 are statements in 

different parallel threads of a 
program 𝑆 

• Neither 𝑆1 nor 𝑆2 belongs to a 
critical section for resource 𝑟.  

• Let 𝑃1 and 𝑃2 be assertions that 
holds during the execution of 𝑆1 
and 𝑆2, respectively.  

• 𝑃1 ∧ 𝑃2 ∧ 𝐼 𝑟 ⇒ 𝑓𝑎𝑙𝑠𝑒 
Then: 
𝑆1 and 𝑆2 are mutually exclusive  
if 𝑃1 and 𝑃2 are true when the 

execution of 𝑆 begins. 

Example: 

• 𝑆1 =< 𝑒𝑎𝑡 𝑖 > 

• 𝑆2 =< 𝑒𝑎𝑡 𝑖 ⊕ 1 > 

• 𝑃1 = *𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1+ 

• 𝑃2 = 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊕ 1 = 1  
 
By theorem #1: 
𝑃1 ∧ 𝑃2 ∧ 𝐼 𝑟 ⇒ 𝑓𝑎𝑙𝑠𝑒 

 
In contradiction. 



Deadlock 

• A thread is blocked if it is stopped at the 
statement with 𝑟 when 𝐵 do 𝑆 because 𝐵 is 
false or because another thread is using 
resource 𝑟. 

• A parallel program is blocked if at least one 
thread is blocked, and all other threads are 
either finished or blocked as well. 

• A parallel program is deadlock-free if there is 
no computation lead it to be blocked. 

 



Theorem #2: The Blocking Theorem 

• Suppose program 𝑆 contains the statement: 

– 𝑆′ = resource 𝑟; cobegin 𝑆1//⋯//𝑆𝑛 coend 

• Let the with-when statements of thread 𝑆𝑘 be 

– 𝑆𝑘
𝑗
 = with 𝑟𝑘

𝑗
 when 𝐵𝑘

𝑗
 do 𝑇𝑘

𝑗
 

• Let pre(𝑆𝑘
𝑗
) and 𝐼 𝑟  be assertions derived 

from a proof of 𝑃  𝑆 *𝑄+.  



Theorem #2: The Blocking Theorem – cont’ 

• 𝐷1 means: “for each thread, it is either finished or 
blocked at the beginning of one of its with-when 
statement”: 

𝐷1 = 𝑝𝑜𝑠𝑡 𝑆𝑘 ⋁  ¬𝐵𝑘
𝑗
∧ 𝑝𝑟𝑒 𝑆𝑘

𝑗

𝑗𝑘

 

• 𝐷2 means: “There is at least one thread that is blocked 
by one of the with-when statement”: 

𝐷2 =  ¬𝐵𝑘
𝑗
∧ 𝑝𝑟𝑒 𝑆𝑘

𝑗

𝑗𝑘

 

Then if 𝐷1 ∧ 𝐷2 ∧ 𝐼 𝑟 ⇒ 𝑓𝑎𝑙𝑠𝑒, 𝑆 is deadlock-free if 𝑃 is 
true when execution begins. 

 



The Blocking Theorem in The 
Dining Philosophers 

Let 𝑆𝑖 = 𝐷𝑃𝑖 . Thus: 

𝐷1 = 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0

𝑖

               𝐷2 = ∃𝑖 𝑎𝑓 𝑖 ≠ 2

𝑖

 

𝐼 𝑓𝑜𝑟𝑘𝑠 =
0 ≤ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ≤ 1 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ⇒ 𝑎𝑓 𝑖 = 2 ∧

𝑎𝑓 𝑖 = 2 − 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊖ 1 + 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊕ 1
 0 ≤ 𝑖 ≤ 4  

 

𝐷1 ∧ 𝐷2 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠 ⇒ 𝑓𝑎𝑙𝑠𝑒 
 

And thus the dining philosophers program is deadlock free. 



Theorem #3: Termination 

• Definition: A statement 𝑇 terminates 
conditionally if it can be proved to terminate 
under the assumption that it doesn’t become 
blocked. 

• Theorem: if 𝑇 is a cobegin statement in a 
program 𝑆 which is deadlock-free, 𝑇 
terminates if each of its parallel threads 
terminates conditionally. 

• Easy to be proved for the dining philosophers 

 



Related work 

• This work uses a language presented by Hoare 
(1972). 

– However, Hoare’s solution provides partial 
correctness (a program that produces the correct 
result or doesn’t terminate).  

– It also fails to prove partial correctness for some 
simple programs. 

 



Conclusion 

• We presented an axiomatic proof system for 
parallel programs. 

• We defined some theorems based on these 
axioms. 

• We applied these theorems on the dinning 
philosophers problem. 



Questions? 



My thoughts 

• Is that proof system cost-effective? 

– Better than normal testing? 

• What is the best way to use this proof system? 

– Manual? 

– Automatic? 

– Interactive? 

 


