Verifying Properties of Parallel Programs: An Axiomatic Approach

Susan Owicki and David Gries Communications of the ACM, 1976

> Presented by Almog Benin 1/6/2014

Outline of talk

- Introduction
- The language
- The axioms
- Theorems

- mutual exclusion, termination & deadlock

- Related work
- Conclusions

Introduction

- Concurrent programs becomes more popular
- It's harder to prove their correction
 - Scheduling can be changed
 - Regular testing is not enough
- The suggested solution:
 - Axiomatic proof system

The language

- Derived from Algol 60
- Contains the usual statements:
 - Assignment
 - Conditional
 - Loops: while $\$ for
 - Compound $\$ null

The language – cont'

- Denote by:
 - -r a set of variables
 - -S a statement
 - -B a boolean condition
- Parallel execution statement:

resource $r_1, ..., r_m$: cobegin $S_1//...//S_n$ coend

Critical section statement:
 with r when B do S

 ${x = 0}$ begin $y \coloneqq 0, z \coloneqq 0$; $\{y = 0 \land z = 0 \land I(r)\}$ resource r(x, y, z): cobegin $\{v = 0\}$ with r when true do $\{y = 0 \land I(r)\}$ **begin** $x \coloneqq x + 1$; $y \coloneqq 1$ end $\{y = 1 \land I(r)\}$ $\{y = 1\}$ // $\{z = 0\}$ with r when true do $\{z = 0 \land I(r)\}$ **begin** $x \coloneqq x + 1$; $z \coloneqq 1$ end $\{z = 1 \land I(r)\}$ $\{z = 1\}$ coend $\{y = 1 \land z = 1 \land I(r)\}$

end

 $\{x = 2\} \\ I(r) = \{x = y + z\}$

Example

- Each statement has:
 - Pre-condition P
 - Post-condition Q
- *Wrote as* {*P*} *S* {*Q*}
- We assume that sequential execution is simple to be proved.
- *I*(*r*) the invariant for the resource r
 - Remains true at all times outside critical sections for r

 ${x = 0}$ begin $y \coloneqq 0, z \coloneqq 0$; $\{v = 0 \land z = 0 \land I(r)\}$ resource r(x, y, z): cobegin $\{v = 0\}$ with r when true do $\{\mathbf{y} = \mathbf{0} \land \mathbf{I}(\mathbf{r})\}$ **begin** $x \coloneqq x + 1$; $y \coloneqq 1$ end $\{y = 1 \land I(r)\}$ $\{y = 1\}$ // $\{z = 0\}$ with r when true do $\{z = \mathbf{0} \land I(r)\}$ **begin** $x \coloneqq x + 1$; $z \coloneqq 1$ end $\{z = 1 \land I(r)\}$ $\{z = 1\}$

coend

$$\{y = 1 \land z = 1 \land I(r)\}$$

end

 ${x = 2}$ $I(r) = \{x = y + z\}$

Example – cont'

- Each statement has:
 - Pre-condition P
 - Post-condition Q
- Wrote as $\{P\}$ S $\{Q\}$
- We assume that sequential execution is simple to be proved.
- I(r) the invariant for the resource r
 - Remains true at all times outside critical sections for r

 ${x = 0}$ begin $y \coloneqq 0, z \coloneqq 0$; $\{v = 0 \land z = 0 \land I(r)\}$ resource r(x, y, z): cobegin $\{v = 0\}$ with r when true do $\{y = 0 \land I(r)\}$ begin $x \coloneqq x + 1$; $y \coloneqq 1$ end $\{y = 1 \land I(r)\}$ $\{y = 1\}$ // $\{z = 0\}$ with r when true do $\{z = 0 \land I(r)\}$ begin $x \coloneqq x + 1$; $z \coloneqq 1$ end $\{z = 1 \land I(r)\}$ $\{z = 1\}$ coend

$\{y = 1 \land z = 1 \land I(r)\}$

end

 ${x = 2}$ $I(r) = {x = y + z}$

Axiom #1

- The critical section axiom:
 If:
 - ${I(r) \land P \land B} S {I(r) \land Q}$
 - *I*(*r*) is the invariant from the cobegin statement
 - No variable free in P or Q is changed in another thread
 - Then:
 - {*P*} with *r* when *B* do *S* {*Q*}
- For example, set:
 - P = "y = 0"

$$-Q = "y = 1"$$

$$-B = true$$

 ${x = 0}$ begin $y \coloneqq 0, z \coloneqq 0$; $\{\mathbf{y} = \mathbf{0} \land \mathbf{z} = \mathbf{0} \land \mathbf{I}(\mathbf{r})\}$ resource r(x, y, z): cobegin $\{v = 0\}$ with r when true do $\{y = 0 \land I(r)\}$ begin $x \coloneqq x + 1$; $v \coloneqq 1$ end $\{y = 1 \land I(r)\}$ $\{y = 1\}$ // $\{z = 0\}$ with r when true do $\{z = 0 \land I(r)\}$ begin $x \coloneqq x + 1$; $z \coloneqq 1$ end $\{z = 1 \land I(r)\}$ $\{z = 1\}$ coend $\{y = 1 \land z = 1 \land I(r)\}$

end

 ${x = 2}$ $I(r) = {x = y + z}$

Axiom #2

- The parallel execution axiom:
 If:
 - $\{P_1\} S_1 \{Q_1\} \dots \{P_n\} S_n \{Q_n\}$
 - No variable free in P_i or Q_i is changed in S_j $(i \neq j)$
 - All variables in I(r) belong to resource r
 - Then:
 - $\{P_1 \land \dots \land P_n \land I(r)\}$ resource r: cobegin $S_1 / / \dots / / S_n$ coend $\{Q_1 \land \dots \land Q_n \land I(r)\}$
- For example, set:
 - $P_{1} = "y = 0"$ $- P_{2} = "z = 0"$ $- Q_{1} = "y = 1"$ $- Q_{2} = "z = 1"$

```
{x = 0}
begin y \coloneqq 0, z \coloneqq 0;
      \{y = 0 \land z = 0 \land I(r)\}
       resource r(x, y, z): cobegin
              \{v = 0\}
              with r when true do
                     \{y = 0 \land I(r)\}
                     begin x \coloneqq x + 1; y \coloneqq 1 end
                    \{y = 1 \land I(r)\}
              \{y = 1\}
      //
              \{z = 0\}
              with r when true do
                    \{z = 0 \land I(r)\}
                     begin x \coloneqq x + 1; z \coloneqq 1 end
                    \{z = 1 \land I(r)\}
              \{z = 1\}
       coend
       \{y = 1 \land z = 1 \land I(r)\}
end
{x = 2}
```

 $I(r) = \{x = y + z\}$

The consequence

Using the invariant, we have the result:

-x = 2

Axiom #3 - Auxiliary Variable Axiom:

```
resource r(x): cobegin

with r when true do

x \coloneqq x + 1

//

with r when true do

x \coloneqq x + 1

coend
```

- Unable to proof using the existing axioms.
- This program does the same as the former.

Axiom #3 - Auxiliary Variable Axiom:

resource r(x): cobegin with r when true do $x \coloneqq x + 1$ // with r when true do $x \coloneqq x + 1$

coend

- The solution: make use of auxiliary variables
 - Auxiliary variable is a variable which is assigned, but never used
 - Removing this variable doesn't change the program.

Axiom #3 - Auxiliary Variable Axiom:

resource r(x): cobegin with r when true do $x \coloneqq x + 1$ // with r when true do $x \coloneqq x + 1$ coend • If:

- AV is an auxiliary variable set for a statement S.
- S' obtained by deleting all assignments to variables in AV.
- $\{P\} S \{Q\}$ is true
- *P* and *Q* don't refer to variable any variables from AV.
- Then:
 - $\{P\} S' \{Q\}$ is also true.

The Dining Philosophers Problem

- 5 bowls of spaghetti
- 5 forks
- 5 philosophers
- Each philosopher repeatedly eats and then thinks
- Needs 2 forks for eating

begin

for $j \coloneqq 0$ step 1 until 4 begin af $[j] \coloneqq 2$; $eating[j] \coloneqq 0$ end $\{I(forks) \land eating[i] = 0, 0 \le i \le 4\}$ resource forks: cobegin $DP_0//\cdots//DP_4$

coend

 $\{I(forks) \land eating[i] = 0, 0 \le i \le 4\}$

end

eating - an auxiliary variable $forks \coloneqq af \& eating$ DP_i : {eating[i] = 0}

for $j \coloneqq 1$ step 1 until N_i

begin

with forks when af[i] = 2 do $\{eating[i] = 0 \land af[i] = 2 \land I(forks)\}$ begin $af[i \ominus 1] - -; af[i \oplus 1] - -; eating[i] = 1$ end $\{eating[i] = 1 \land I(forks)\}$

<eat *i*>

with forks when true do { $eating[i] = 1 \land I(forks)$ }

begin $af[i \ominus 1] + +; af[i \oplus 1] + +; eating[i] = 0$ end { $eating[i] = 0 \land I(forks)$ }

<think i>

end

 $\{eaing[i] = 0\}$

 $I(forks) = \left\{ \begin{bmatrix} 0 \le eating[i] \le 1 \land (eating[i] = 1 \Rightarrow af[i] = 2) \land \\ af[i] = 2 - (eating[i \ominus 1] + eating[i \oplus 1]) \end{bmatrix} 0 \le i \le 4 \right\}$

begin

end

for $j \coloneqq 0$ step 1 until 4 begin $af[j] \coloneqq 2$; $eating[j] \coloneqq 0$ end $\{I(forks) \land eating[i] = 0, 0 \le i \le 4\}$ resource forks: cobegin $DP_0 / / \cdots / / DP_4$ coend $\{I(forks) \land eating[i] = 0, 0 \le i \le 4\}$

eating - an auxiliary variable $forks \coloneqq af \& eating$ DP_i : $\{eating[i] = 0\}$ for $j \coloneqq 1$ step 1 until N_i begin with *forks* when af[i] = 2 do $\{eating[i] = 0 \land af[i] = 2 \land I(forks)\}$ begin $af[i \ominus 1] - -; af[i \oplus 1] - -; eating[i] = 1$ end $\{eating[i] = 1 \land I(forks)\}$ <eat *i*> with *forks* when true do $\{eating[i] = 1 \land I(forks)\}$ begin $af[i \ominus 1] + ; af[i \oplus 1] + ; eating[i] = 0$ end $\{eating[i] = 0 \land I(forks)\}$ <think i> end $\{eaing[i] = 0\}$

 $I(forks) = \left\{ \begin{bmatrix} 0 \le eating[i] \le 1 \land (eating[i] = 1 \Rightarrow af[i] = 2) \land \\ af[i] = 2 - (eating[i \ominus 1] + eating[i \oplus 1]) \end{bmatrix} 0 \le i \le 4 \right\}$

Mutual Exclusion

- We will prove that there are no 2 neighbors eating together.
- Assume by contradiction that there is *i* for which $eating[i] = eating[i \oplus 1] = 1$.
- We will derive a contradiction:
 - $$\begin{split} &-\left(eating[i]=1 \wedge eating[i \oplus 1]=1 \wedge I(forks)\right) \Rightarrow \\ &(af[i]=2 \wedge af[i]<2) \Rightarrow false \end{split}$$
 - For that, we need to proof a new theorem.
 - Because another philosopher may be in a critical section (I(r) will not hold).

Theorem #1: The Mutual Exclusion Theorem

Suppose:

- S₁ and S₂ are statements in different parallel threads of a program S
- Neither S_1 nor S_2 belongs to a critical section for resource r.
- Let P_1 and P_2 be assertions that holds during the execution of S_1 and S_2 , respectively.

•
$$(P_1 \land P_2 \land I(r)) \Rightarrow false$$

Then:

 S_1 and S_2 are mutually exclusive if P_1 and P_2 are true when the execution of S begins. Example:

- $S_1 = < eat i >$
- $S_2 = \langle eat \ i \oplus 1 \rangle$
- $P_1 = \{eating[i] = 1\}$
- $P_2 = \{eating[i \oplus 1] = 1\}$

By theorem #1: $(P_1 \land P_2 \land I(r)) \Rightarrow false$

In contradiction.

Deadlock

- A <u>thread</u> is <u>blocked</u> if it is stopped at the statement with r when B do S because B is false or because another thread is using resource r.
- A <u>parallel program</u> is <u>blocked</u> if at least one thread is blocked, and all other threads are either finished or blocked as well.
- A parallel program is <u>deadlock-free</u> if there is no computation lead it to be blocked.

Theorem #2: The Blocking Theorem

- Suppose program S contains the statement: $-S' = resource r; cobegin S_1 / / \cdots / / S_n coend$
- Let the **with-when** statements of thread S_k be $-S_k^j =$ **with** r_k^j **when** B_k^j **do** T_k^j
- Let pre(S^J_k) and I(r) be assertions derived from a proof of {P} S {Q}.

Theorem #2: The Blocking Theorem – cont'

 D₁ means: "for each thread, it is either finished or blocked at the beginning of one of its with-when statement":

$$D_{1} = \bigwedge_{k} \left\{ post(S_{k}) \lor \left[\bigvee_{j} \left(\neg B_{k}^{j} \land pre\left(S_{k}^{j}\right) \right) \right] \right\}$$

• D₂ means: "There is at least one thread that is blocked by one of the **with-when** statement":

$$D_2 = \bigvee_k \bigvee_j \left(\neg B_k^j \wedge pre\left(S_k^j\right) \right)$$

<u>Then if $D_1 \wedge D_2 \wedge I(r) \Rightarrow false, S$ is deadlock-free if P is</u> <u>true when execution begins.</u>

The Blocking Theorem in The Dining Philosophers

Let $S_i = DP_i$. Thus:

$$D_{1} = \bigwedge_{i} eating[i] = 0 \qquad D_{2} = \bigvee_{i} \exists i (af[i] \neq 2)$$
$$I(forks) = \left\{ \begin{bmatrix} 0 \le eating[i] \le 1 \land (eating[i] = 1 \Rightarrow af[i] = 2) \land \\ af[i] = 2 - (eating[i \ominus 1] + eating[i \oplus 1]) \end{bmatrix} 0 \le i \le 4 \right\}$$

$$D_1 \wedge D_2 \wedge I(forks) \Rightarrow false$$

And thus the dining philosophers program is deadlock free.

Theorem #3: Termination

- <u>Definition</u>: A statement T <u>terminates</u> <u>conditionally</u> if it can be proved to terminate under the assumption that it doesn't become blocked.
- <u>Theorem</u>: if T is a cobegin statement in a program S which is deadlock-free, T <u>terminates</u> if each of its parallel threads terminates conditionally.
- Easy to be proved for the dining philosophers

Related work

- This work uses a language presented by Hoare (1972).
 - However, Hoare's solution provides partial correctness (a program that produces the correct result or doesn't terminate).
 - It also fails to prove partial correctness for some simple programs.

Conclusion

- We presented an axiomatic proof system for parallel programs.
- We defined some theorems based on these axioms.
- We applied these theorems on the dinning philosophers problem.

Questions?

My thoughts

- Is that proof system cost-effective?
 Better than normal testing?
- What is the best way to use this proof system?
 - Manual?
 - Automatic?
 - Interactive?