
Verifying Properties of Parallel
Programs: An Axiomatic Approach

Susan Owicki and David Gries
Communications of the ACM, 1976

Presented by Almog Benin

1/6/2014

Outline of talk

• Introduction

• The language

• The axioms

• Theorems

– mutual exclusion, termination & deadlock

• Related work

• Conclusions

Introduction

• Concurrent programs becomes more popular

• It’s harder to prove their correction

– Scheduling can be changed

– Regular testing is not enough

• The suggested solution:

– Axiomatic proof system

The language

• Derived from Algol 60

• Contains the usual statements:

– Assignment

– Conditional

– Loops: while \ for

– Compound \ null

The language – cont’

• Denote by:
– 𝑟 – a set of variables

– 𝑆 – a statement

– 𝐵 – a boolean condition

• Parallel execution statement:
resource 𝑟1,…,𝑟𝑚:

cobegin 𝑆1//…//𝑆𝑛 coend

• Critical section statement:
with r when 𝐵 do 𝑆

*𝑥 = 0+

begin 𝑦 ≔ 0, 𝑧 ≔ 0;
*𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼 𝑟 +

resource 𝑟(𝑥, 𝑦, 𝑧): cobegin
*𝑦 = 0+

with 𝑟 when 𝑡𝑟𝑢𝑒 do
*𝑦 = 0 ∧ 𝐼 𝑟 +

begin 𝑥 ≔ 𝑥 + 1; 𝑦 ≔ 1 end
*𝑦 = 1 ∧ 𝐼 𝑟 +

*𝑦 = 1+

//
𝑧 = 0

with 𝑟 when 𝑡𝑟𝑢𝑒 do
*𝑧 = 0 ∧ 𝐼 𝑟 +

begin 𝑥 ≔ 𝑥 + 1; z ≔ 1 end
*𝑧 = 1 ∧ 𝐼 𝑟 +

*𝑧 = 1+

coend
𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼 𝑟

end
*𝑥 = 2+
𝐼 𝑟 = *𝑥 = 𝑦 + 𝑧+

• Each statement has:
– Pre-condition 𝑃

– Post-condition 𝑄

• Wrote as 𝑃 𝑆 *𝑄+

• We assume that sequential
execution is simple to be proved.

• 𝐼(𝑟) – the invariant for the
resource r
– Remains true at all times outside

critical sections for r

Example

*𝒙 = 𝟎+

begin 𝑦 ≔ 0, 𝑧 ≔ 0;
*𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼 𝑟 +

resource 𝑟(𝑥, 𝑦, 𝑧): cobegin
*𝑦 = 0+

with 𝑟 when 𝑡𝑟𝑢𝑒 do
*𝒚 = 𝟎 ∧ 𝑰 𝒓 +

begin 𝑥 ≔ 𝑥 + 1; 𝑦 ≔ 1 end
*𝒚 = 𝟏 ∧ 𝑰 𝒓 +

*𝑦 = 1+

//
𝑧 = 0

with 𝑟 when 𝑡𝑟𝑢𝑒 do
*𝒛 = 𝟎 ∧ 𝑰 𝒓 +

begin 𝑥 ≔ 𝑥 + 1; z ≔ 1 end
*𝒛 = 𝟏 ∧ 𝑰 𝒓 +

*𝑧 = 1+

coend
𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼 𝑟

end
*𝑥 = 2+
𝑰 𝒓 = *𝒙 = 𝒚 + 𝒛+

• Each statement has:
– Pre-condition 𝑃

– Post-condition 𝑄

• Wrote as 𝑃 𝑆 *𝑄+

• We assume that sequential
execution is simple to be proved.

• 𝑰(𝒓) – the invariant for the
resource r
– Remains true at all times outside

critical sections for r

Example – cont’

*𝑥 = 0+

begin 𝑦 ≔ 0, 𝑧 ≔ 0;
*𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼 𝑟 +

resource 𝑟(𝑥, 𝑦, 𝑧): cobegin
*𝒚 = 𝟎+

with 𝑟 when 𝑡𝑟𝑢𝑒 do
*𝑦 = 0 ∧ 𝐼 𝑟 +

begin 𝑥 ≔ 𝑥 + 1; 𝑦 ≔ 1 end
*𝑦 = 1 ∧ 𝐼 𝑟 +

*𝒚 = 𝟏+

//
𝒛 = 𝟎

with 𝑟 when 𝑡𝑟𝑢𝑒 do
*𝑧 = 0 ∧ 𝐼 𝑟 +

begin 𝑥 ≔ 𝑥 + 1; z ≔ 1 end
*𝑧 = 1 ∧ 𝐼 𝑟 +

*𝒛 = 𝟏+

coend
𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼 𝑟

end
*𝑥 = 2+
𝐼 𝑟 = *𝑥 = 𝑦 + 𝑧+

• The critical section axiom:
– If:

• 𝐼 𝑟 ∧ 𝑃 ∧ 𝐵 𝑆 *𝐼 𝑟 ∧ 𝑄+

• 𝐼(𝑟) is the invariant from the
cobegin statement

• No variable free in P or Q is
changed in another thread

– Then:
• 𝑃 with 𝑟 when 𝐵 do 𝑆 *𝑄+

• For example, set:
– 𝑃 = "y = 0"

– 𝑄 = "𝑦 = 1"

– 𝐵 = 𝑡𝑟𝑢𝑒

Axiom #1

*𝑥 = 0+

begin 𝑦 ≔ 0, 𝑧 ≔ 0;
*𝒚 = 𝟎 ∧ 𝒛 = 𝟎 ∧ 𝑰 𝒓 +

resource 𝑟(𝑥, 𝑦, 𝑧): cobegin
*𝑦 = 0+

with 𝑟 when 𝑡𝑟𝑢𝑒 do
*𝑦 = 0 ∧ 𝐼 𝑟 +

begin 𝑥 ≔ 𝑥 + 1; 𝑦 ≔ 1 end
*𝑦 = 1 ∧ 𝐼 𝑟 +

*𝑦 = 1+

//
𝑧 = 0

with 𝑟 when 𝑡𝑟𝑢𝑒 do
*𝑧 = 0 ∧ 𝐼 𝑟 +

begin 𝑥 ≔ 𝑥 + 1; z ≔ 1 end
*𝑧 = 1 ∧ 𝐼 𝑟 +

*𝑧 = 1+

coend
𝒚 = 𝟏 ∧ 𝒛 = 𝟏 ∧ 𝑰 𝒓

end
*𝑥 = 2+
𝐼 𝑟 = *𝑥 = 𝑦 + 𝑧+

• The parallel execution axiom:
– If:

• 𝑃1 𝑆1 *𝑄1+ … 𝑃𝑛 𝑆𝑛 *𝑄𝑛+
• No variable free in 𝑃𝑖 or 𝑄𝑖 is

changed in 𝑆𝑗 (𝑖 ≠ 𝑗)
• All variables in 𝐼(𝑟) belong to

resource 𝑟

– Then:
• *𝑃1 ∧ ⋯∧ 𝑃𝑛 ∧ 𝐼 𝑟 + resource 𝑟:

cobegin 𝑆1//⋯//𝑆𝑛 coend
𝑄1 ∧ ⋯∧ 𝑄𝑛 ∧ 𝐼 𝑟

• For example, set:

– 𝑃1 = "𝑦 = 0"

– 𝑃2 = "𝑧 = 0“

– 𝑄1 = "𝑦 = 1"

– 𝑄2 = "𝑧 = 1"

Axiom #2

*𝑥 = 0+

begin 𝑦 ≔ 0, 𝑧 ≔ 0;
*𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼 𝑟 +

resource 𝑟(𝑥, 𝑦, 𝑧): cobegin
*𝑦 = 0+

with 𝑟 when 𝑡𝑟𝑢𝑒 do
*𝑦 = 0 ∧ 𝐼 𝑟 +

begin 𝑥 ≔ 𝑥 + 1; 𝑦 ≔ 1 end
*𝑦 = 1 ∧ 𝐼 𝑟 +

*𝑦 = 1+

//
𝑧 = 0

with 𝑟 when 𝑡𝑟𝑢𝑒 do
*𝑧 = 0 ∧ 𝐼 𝑟 +

begin 𝑥 ≔ 𝑥 + 1; z ≔ 1 end
*𝑧 = 1 ∧ 𝐼 𝑟 +

*𝑧 = 1+

coend
𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼 𝑟

end
*𝒙 = 𝟐+
𝐼 𝑟 = *𝑥 = 𝑦 + 𝑧+

• Using the invariant, we
have the result:

– 𝒙 = 𝟐

The consequence

Axiom #3 - Auxiliary Variable Axiom:

resource r(x): cobegin

with 𝑟 when true do
𝑥 ≔ 𝑥 + 1

//

with r when true do
𝑥 ≔ 𝑥 + 1

coend

• Unable to proof using
the existing axioms.

• This program does the
same as the former.

Axiom #3 - Auxiliary Variable Axiom:

resource r(x): cobegin

with 𝑟 when true do
𝑥 ≔ 𝑥 + 1

//

with r when true do
𝑥 ≔ 𝑥 + 1

coend

• The solution: make use
of auxiliary variables

– Auxiliary variable is a
variable which is
assigned, but never used

– Removing this variable
doesn’t change the
program.

𝑦 ≔ 1

Axiom #3 - Auxiliary Variable Axiom:

resource r(x): cobegin

with 𝑟 when true do
𝑥 ≔ 𝑥 + 1

//

with r when true do
𝑥 ≔ 𝑥 + 1

coend

• If:
– AV is an auxiliary variable

set for a statement 𝑆.

– 𝑆’ obtained by deleting all
assignments to variables in
AV.

– 𝑃 𝑆 *𝑄+ is true

– 𝑃 and 𝑄 don’t refer to
variable any variables from
AV.

• Then:
– 𝑃 𝑆′ *𝑄+ is also true.

The Dining Philosophers Problem

 • 5 bowls of spaghetti

• 5 forks

• 5 philosophers

• Each philosopher
repeatedly eats and
then thinks

• Needs 2 forks for eating

begin

 for 𝑗 ≔ 0 step 1 until 4

 begin af,𝑗- ≔ 2; 𝑒𝑎𝑡𝑖𝑛𝑔,𝑗- ≔ 0 end

 𝐼 𝑓𝑜𝑟𝑘𝑠 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0,0 ≤ 𝑖 ≤ 4

 resource 𝑓𝑜𝑟𝑘𝑠: cobegin

 𝐷𝑃0//⋯//𝐷𝑃4

 coend

 𝐼 𝑓𝑜𝑟𝑘𝑠 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0,0 ≤ 𝑖 ≤ 4

end

𝐷𝑃𝑖:
*𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0+

for 𝑗 ≔ 1 step 1 until 𝑁𝑖

begin

 with 𝑓𝑜𝑟𝑘𝑠 when 𝑎𝑓 𝑖 = 2 do

 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0 ∧ 𝑎𝑓 𝑖 = 2 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠

 begin 𝑎𝑓 𝑖 ⊖ 1 − − ; 𝑎𝑓 𝑖 ⊕ 1 − −; 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 end

 *𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠 +

 <eat 𝒊>

 with 𝑓𝑜𝑟𝑘𝑠 when true do

 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠

 begin 𝑎𝑓 𝑖 ⊖ 1 + +; 𝑎𝑓 𝑖 ⊕ 1 + +;𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0 end

 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠

 <think 𝒊>

end
*𝑒𝑎𝑖𝑛𝑔 𝑖 = 0+

𝑒𝑎𝑡𝑖𝑛𝑔 – an auxiliary variable
𝑓𝑜𝑟𝑘𝑠 ≔ 𝑎𝑓 & 𝑒𝑎𝑡𝑖𝑛𝑔

𝐼 𝑓𝑜𝑟𝑘𝑠 =
0 ≤ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ≤ 1 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ⇒ 𝑎𝑓 𝑖 = 2 ∧

𝑎𝑓 𝑖 = 2 − 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊖ 1 + 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊕ 1
 0 ≤ 𝑖 ≤ 4

begin

 for 𝑗 ≔ 0 step 1 until 4

 begin af,𝑗- ≔ 2; 𝑒𝑎𝑡𝑖𝑛𝑔,𝑗- ≔ 0 end

 𝐼 𝑓𝑜𝑟𝑘𝑠 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0,0 ≤ 𝑖 ≤ 4

 resource 𝑓𝑜𝑟𝑘𝑠: cobegin

 𝐷𝑃0//⋯//𝐷𝑃4

 coend

 𝐼 𝑓𝑜𝑟𝑘𝑠 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0,0 ≤ 𝑖 ≤ 4

end

𝐷𝑃𝑖:
*𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0+

for 𝑗 ≔ 1 step 1 until 𝑁𝑖

begin

 with 𝑓𝑜𝑟𝑘𝑠 when 𝑎𝑓 𝑖 = 2 do

 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0 ∧ 𝑎𝑓 𝑖 = 2 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠

 begin 𝑎𝑓 𝑖 ⊖ 1 − − ; 𝑎𝑓 𝑖 ⊕ 1 − −; 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 end

 *𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠 +

 <eat 𝒊>

 with 𝑓𝑜𝑟𝑘𝑠 when true do

 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠

 begin 𝑎𝑓 𝑖 ⊖ 1 + +; 𝑎𝑓 𝑖 ⊕ 1 + +;𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0 end

 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠

 <think 𝒊>

end
*𝑒𝑎𝑖𝑛𝑔 𝑖 = 0+

𝑒𝑎𝑡𝑖𝑛𝑔 – an auxiliary variable
𝑓𝑜𝑟𝑘𝑠 ≔ 𝑎𝑓 & 𝑒𝑎𝑡𝑖𝑛𝑔

𝐼 𝑓𝑜𝑟𝑘𝑠 =
0 ≤ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ≤ 1 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ⇒ 𝑎𝑓 𝑖 = 2 ∧

𝑎𝑓 𝑖 = 2 − 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊖ 1 + 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊕ 1
 0 ≤ 𝑖 ≤ 4

Mutual Exclusion

• We will prove that there are no 2 neighbors
eating together.

• Assume by contradiction that there is 𝑖 for which
𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊕ 1 = 1.

• We will derive a contradiction:

– 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊕ 1 = 1 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠 ⇒

𝑎𝑓 𝑖 = 2 ∧ 𝑎𝑓 𝑖 < 2 ⇒ 𝑓𝑎𝑙𝑠𝑒

– For that, we need to proof a new theorem.
• Because another philosopher may be in a critical section

(𝐼 𝑟 will not hold).

Theorem #1:
The Mutual Exclusion Theorem

Suppose:
• 𝑆1 and 𝑆2 are statements in

different parallel threads of a
program 𝑆

• Neither 𝑆1 nor 𝑆2 belongs to a
critical section for resource 𝑟.

• Let 𝑃1 and 𝑃2 be assertions that
holds during the execution of 𝑆1
and 𝑆2, respectively.

• 𝑃1 ∧ 𝑃2 ∧ 𝐼 𝑟 ⇒ 𝑓𝑎𝑙𝑠𝑒
Then:
𝑆1 and 𝑆2 are mutually exclusive
if 𝑃1 and 𝑃2 are true when the

execution of 𝑆 begins.

Example:

• 𝑆1 =< 𝑒𝑎𝑡 𝑖 >

• 𝑆2 =< 𝑒𝑎𝑡 𝑖 ⊕ 1 >

• 𝑃1 = *𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1+

• 𝑃2 = 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊕ 1 = 1

By theorem #1:
𝑃1 ∧ 𝑃2 ∧ 𝐼 𝑟 ⇒ 𝑓𝑎𝑙𝑠𝑒

In contradiction.

Deadlock

• A thread is blocked if it is stopped at the
statement with 𝑟 when 𝐵 do 𝑆 because 𝐵 is
false or because another thread is using
resource 𝑟.

• A parallel program is blocked if at least one
thread is blocked, and all other threads are
either finished or blocked as well.

• A parallel program is deadlock-free if there is
no computation lead it to be blocked.

Theorem #2: The Blocking Theorem

• Suppose program 𝑆 contains the statement:

– 𝑆′ = resource 𝑟; cobegin 𝑆1//⋯//𝑆𝑛 coend

• Let the with-when statements of thread 𝑆𝑘 be

– 𝑆𝑘
𝑗
 = with 𝑟𝑘

𝑗
 when 𝐵𝑘

𝑗
 do 𝑇𝑘

𝑗

• Let pre(𝑆𝑘
𝑗
) and 𝐼 𝑟 be assertions derived

from a proof of 𝑃 𝑆 *𝑄+.

Theorem #2: The Blocking Theorem – cont’

• 𝐷1 means: “for each thread, it is either finished or
blocked at the beginning of one of its with-when
statement”:

𝐷1 = 𝑝𝑜𝑠𝑡 𝑆𝑘 ⋁ ¬𝐵𝑘
𝑗
∧ 𝑝𝑟𝑒 𝑆𝑘

𝑗

𝑗𝑘

• 𝐷2 means: “There is at least one thread that is blocked
by one of the with-when statement”:

𝐷2 = ¬𝐵𝑘
𝑗
∧ 𝑝𝑟𝑒 𝑆𝑘

𝑗

𝑗𝑘

Then if 𝐷1 ∧ 𝐷2 ∧ 𝐼 𝑟 ⇒ 𝑓𝑎𝑙𝑠𝑒, 𝑆 is deadlock-free if 𝑃 is
true when execution begins.

The Blocking Theorem in The
Dining Philosophers

Let 𝑆𝑖 = 𝐷𝑃𝑖 . Thus:

𝐷1 = 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 0

𝑖

 𝐷2 = ∃𝑖 𝑎𝑓 𝑖 ≠ 2

𝑖

𝐼 𝑓𝑜𝑟𝑘𝑠 =
0 ≤ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ≤ 1 ∧ 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 = 1 ⇒ 𝑎𝑓 𝑖 = 2 ∧

𝑎𝑓 𝑖 = 2 − 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊖ 1 + 𝑒𝑎𝑡𝑖𝑛𝑔 𝑖 ⊕ 1
 0 ≤ 𝑖 ≤ 4

𝐷1 ∧ 𝐷2 ∧ 𝐼 𝑓𝑜𝑟𝑘𝑠 ⇒ 𝑓𝑎𝑙𝑠𝑒

And thus the dining philosophers program is deadlock free.

Theorem #3: Termination

• Definition: A statement 𝑇 terminates
conditionally if it can be proved to terminate
under the assumption that it doesn’t become
blocked.

• Theorem: if 𝑇 is a cobegin statement in a
program 𝑆 which is deadlock-free, 𝑇
terminates if each of its parallel threads
terminates conditionally.

• Easy to be proved for the dining philosophers

Related work

• This work uses a language presented by Hoare
(1972).

– However, Hoare’s solution provides partial
correctness (a program that produces the correct
result or doesn’t terminate).

– It also fails to prove partial correctness for some
simple programs.

Conclusion

• We presented an axiomatic proof system for
parallel programs.

• We defined some theorems based on these
axioms.

• We applied these theorems on the dinning
philosophers problem.

Questions?

My thoughts

• Is that proof system cost-effective?

– Better than normal testing?

• What is the best way to use this proof system?

– Manual?

– Automatic?

– Interactive?

