DieHard: Probabilistic Memory
Safety for Unsafe Languages

Emery D. Berger and Benjamin G. Zorn
PLDI'O6

Presented by Uri Kanonov
23.02.2014

Outline

Introduction
Suggested Solution
Evaluation

Related work
Conclusions
Musings...
Discussion

Introduction

* Interested in “unsafe” languages: C/C++

 Why are those languages popular?
— Native code is faster than interpreted code
— Allow for more efficient optimizations
— Fine grained control (memory/execution)
— Can do a lot of hacky stuff !

Resulting Problems

* Programmers take control of (almost) everything
(memory, resources, code flow...)
e But they often...

— Forget to handle the resources properly

— Are unaware of their runtime environment (memory
layout, how to the heap works)

— Write poor code that leads to bugs ©
* End result

— Security vulnerabilities
— Crashes

Goal

 Efficiently detect /prevent such bugs

 Multiple approaches:
— Detect statically
— Countermeasures to avoid the bugs €=

— Detect at runtime and @é
\ 1l
e

* Tolerate @ 9‘
* Perform a controlled crash @

— Ignore ©

Proposed Solution: DieHard

* Takes on a “hardening” approach:
— Dangling pointersAvoiding + Tolerating
— Buffer overflows Avoiding + Tolerating
— Heap metadata overwrites Avoiding
— Uninitialized reads Detecting and crashing
— Invalid frees Tolerating
— Double frees Tolerating

DieHard

* Heap allocator based on “probabilistic memory
safety”

* |deal: an infinite heap
— Never freeing
— Infinite spacing

* Practical: heap M times larger than required

In Practice

* How allocations work?
— Heap initialized to random data

— Objects allocated at random locations across the
heap

* Separate heap metadata

* Run multiple copies to detect uninitialized
reads

Initialization

* Heap size: M times the needed size

* 12 regions
— Powers of two from 8 bytes to 16KB
— Larger objects allocated separately
— Filled up to 1/M of its size

* Heap meta-data
— Separate
— Bitmap per region consisting of bit per object

Motivation

 Why use regions per object size?
— To prevent external fragmentation
— Knowing the region tells you the object size

— Powers of two -> efficient calculations

* Why separate heap metadata®?
— Security

W 0 N O U1 p W IN B

e S S S S T
O Ul A WN RO

Pseudo-code

void DieHardInitHeap (int MaxHeapSize) {

// Initialize the random number generator

// with a truly random number.

rng.setSeed (realRandomSource);

// Clear counters and allocation bitmaps

// for each size class.

for (¢ = O; ¢ < NumClasses; c++) {
inUse[c] = 9;
isAllocated[c].clear();

}

// Get the heap memory.

heap = mmap (NULL, MaxHeapSize);

// REPLICATED: fill with random values

for (i = 9; 1 < MaxHeapSize; i += 4)

((long *) heap)[i] = rng.next();

Allocation

Allocating large objects with mmap

— Use “guard” (no-rw) pages

Locating empty slot in object’s region

— Fails if region is full (OOM) 1

— Expected time to find an empty slot: 1 (I/M)

Slot filled with random values
Occupying entire slot even if object is smaller

1 void * DieHardMalloc (size_t sz) { _

2 if (sz > MaxObjectSize) PseUdO COde
3 return allocateLargeObject(sz);

4 c = sizeClass (sz);

5 if (inUse[c] == PartitionSize / (M * sz))

6 // At threshold: no more memory.

7 return NULL;

8 do { // Probe for a free slot.

9 index = rng.next() % bitmap size;

10 if (lisAllocated[c][index]) {

11 // Found one, pick pointer corresponding to slot.
12 ptr = PartitionStart + index * sz;

13 inUse[c]++; // Mark it allocated.

14 isAllocated[c][index] = true;

15 // REPLICATED: fill with random values.

16 for (i = 9; i < getSize(c); i += 4)

17 ((long *) ptr)[i] = rng.next();

18 return ptr;

19 }

20 } while (true);

21 }

Deallocation

* |f address lies inside heap:
— If “large object” object, it is deallocated
— Otherwise, ignored

* Assertions:
— Object offset from region start is multiple of size
— The object must be allocated

* Eventually slot is marked as free

O 00 N O Ul »h W N B

IR
R ®

Pseudo-code

void DieHardFree (void * ptr) {

if (ptr is not in the heap area)
freeLargeObject(ptr);

c = partition ptr is in;

index = slot corresponding to ptr;

// Free only if currently allocated;

if (offset correct && isAllocated[c][index]) {
inUse[c]--; // Mark it free.
isAllocated[c][index] = false;

} // else, ignore

-’

Secure strcpy

* Override strcpy/strncpy to prevent buffer overflows
* Doesn’t mitigate other risks:

— memcpy / memmove
— User defined functions

1 void foo(char* user_input) {

2 char* buffer = (char*)malloc(100);
3 strcpy(buffer, user_input);
4

}

Repllcatlon

seed | replica;, N
input | . output
seed replica, | >
broadcast | seed replicas vate
execute
randomized
replicas

* Assumption
— Program’s output depends on data it reads

— Uninitialized data -> different outputs amongst replicas

e Output is buffered and voted on (majority voting)

Replication (cont.)

* Non-agreeing replicas are terminated
* Implementation limitations :

— What if a replica enters an infinite loop

— Non-deterministic or environment dependent
programs are not supported

— Significant memory/CPU overhead

Correctness

* Does DieHard follow through on its promises?

Heap metadata overwrites
— Separate metadata

Invalid/double frees

— Deallocation performs the required validations

Uninitialized reads
— Probabilistically

Dangling pointers and Buffer overflows
— Probabilistically

— Yep...

Masking Buffer Overflows

* Lets analyze how DieHard deals with buffer
overflows

* Some notations first:
— H - Heap expansion factor
— k - Number of replicas
— M - Max heap size
— [- Maximum live size [, <H/M
— I’ - Remaining free space FF = H - L
— O - Number of objects’ worth of bytes overflowed

Heap Layout

L = max live size £ H/2 F =free =H-L
A A
(O A
2 3 |

replica 1 I

\object size = 2

j object size = 2*1

H = max heap size, classi

replica 2 I

Masking Buffer Overflows (cont.)

* Theorem: P(NoOverflows)=1-

* Proof:

o

F

H

O

)

k

— Odds of O objects overwriting at least one live object
are 1 minus the odds of them

overwriting no live objects: 1—(

F

)

O

— Masking requires that at least one replica of the &£
replicas not overwrite any

of them overwriting at
least one live object:

] -

a

ive objects, alternatively all

F

H

O A

)

k

Probability

Probability of Avoiding Buffer Overflows

@8 full V4 full O¥2full

100%
90%
80%
0%
60%
50%
40%
30%
20%
10%
0%

1 3 4 3) 6

Replicas

Runtime Complexity

* |nitialization / Deallocation
— No significant runtime overhead

 Allocation:

— “Mild” impact due to the empty slot search

* Accessing allocated memory

— No “spatial locality” -> many TLB misses
— Need the heap to fit into the physical RAM

Memory Complexity

Heap size

— 12M times more memory is required
Object size rounding

— Up to X2 memory is used

— Same approach used in many allocators

Heap metadata takes up little very little space

Segregated regions
— Eliminate external fragmentation

Evaluation

* DieHard was evaluated on two criteria:
— Runtime overhead (complexity)
— Error avoidance (correctness)

e We will elaborate on each in detail

Runtime Overhead Evaluation

e Benchmark suite:
— SPECint2000

— Allocation-intensive benchmarks (100K - 1.7M
allocations per sec)

* Heap size: 384MB with % available for
allocation

* Operating Systems
— StandAlone: Windows XP & Linux
— Repliacted: Solaris

Experiments

* Linux:
— DieHard
— Native (GNU libc) allocator
— Boehm-Demers-Weiser garbage collector

e Windows XP:

— DieHard
— Native allocator

e Solaris
— Replicated version

Runtime on Linux

il

B malloc BGC EDieHard

ues |\ ‘099

3IOM}Y00€

zdizq-ogz

X81J0A'GGZ

deb 6z

ywqlledggz

uoagqc

Jasied /6l

Ayjern 9gl

general-purpose

pwigl

206°9/1

1da'g/)

R
T
 —

T
E—

T

"
—
I
I
"
R

dizby9|

ues |\ 099

dooqo.

Aespul|

ossaJudsa

oeljo

Q\

2.5
5
1
0.5
0

-

awllunJ pazijewJop

Linux Results

* High overhead (16.5% to 63%):

— Allocation intensive applications
— Wide usage of different object sizes -> TLB misses

* Low overhead:
— General purpose (SPECint2000) benchmarks

Normalized runtime

2.5

N

-
€)]

—

O
o

Runtime on Windows XP

B malloc EDieHard

cfrac espresso lindsay p2c roboop

Geo. Mean

Windows XP Results

* Surprise!

— DieHard performs on average like the default allocator
* The authors’ explanation

— Windows XP’s allocator is much slower than GNU libc’s

— The compiler on Windows XP (Visual Studio) produces
more efficient code than g++ on Linux

* Interesting question
— How would DieHard perform on modern Windows?

Solaris Results

* Experiment
— Use a 16-core Solaris server
— Run 16 replicates of the allocation-intensive benchmarks

e Results

— One benchmark terminated by DieHard due to an
uninitialized read

— Rest of the benchmarks incurred 50% runtime overhead

— Process creation overhead would be amortized by
longer-running benchmarks

Error Avoidance — Real Scenario

* Version of the Squid web cache server containing
a buffer overflow bug

e Results
— DieHard contains this overflow

— GNU libc allocator and the BDW collector crash

* Impressive!

— Interesting to see DieHard pitted against more bugs

Error Avoidance — Injected Faults

Performed on a UNIX machine
Single allocation-intensive benchmark
strcpy and strncpy were not overriden

MITM’ing allocations
— Buffer overflows: Caused by under-allocating buffers

— Dangling pointers: Freeing an object sooner than its
actual free

Dangling Pointers - Results

* One out of every two objects is freed ten
allocations too early

* Results
— Default allocator (GNU libc)

 The benchmark failed to complete all 10 times

— DieHard

e Ran correctly 9 out of 10 times

Buffer Overflows - Results

 Under-allocating by 4 bytes one out of every 100
allocations for >= 32 bytes

e Results

— Default allocator

* 9 crashes and one infinite loop

— DieHard

* 10 successful runs

Evaluation Conclusions

e Runtime overhead
— Is suitable for general purpose applications
— Is NOT suitable for allocation-intensive ones

— The replicated version scales well to computers
with a large number of processors

* Error avoidance

— Seems to contain well both artificial and real
faults

Related work — Fail-Stop Approach

Prototype
— CCured / Cyclone
ldea

— Provide type/memory safety to C/C++ using runtime
checks and static analysis

Pros
— May detect other errors that DieHard can’t

Cons
— Requires code modification
— May abort errors that DieHard can “contain”

Related work — Failure Masking

e |dea

— Ignore illegal writes and manufacture values for
uninitialized reads.

* Pros
— May incur less overhead than DieHard

* Cons

— May result in unpredictable program behavior

Related work - Rollback

Prototype
— Rx

ldea

— Utilize logging and rollbacks to restart programs after
detectable errors (like a crash)

Pros
— May incur less overhead than DieHard
Cons

— Rollbacks aren’t suitable for every program
— Not all errors are detectable externally

Conclusions

* “Probabilistic memory safety” has its merits!
— Especially revolutionary for 2006...

* DieHard can contain avoid/contain certain errors
but at a high cost

— Not suitable for all applications

* DieHard uses many common-practice techniques
— Separation of heap meta-data
— Separate regions by object size
Meaning... they work!

Musings...

* Nowadays when RAM is usually not an issue
DieHard can be a suitable solution for general

purpose applications

 Randomness is useful against “bugs” but not
against those who try to exploit them

* Modern OS use more efficient/simple ways to
protect against overflows
— Heap cookies!
— For example: i0OS 6

IOS 6 Heap Cookies

next_pointer *
poisoned_cookie

Previous Data _
next_pointer #

nonpoisoned_cookie

Non-poisoned Free Block Poisoned Free Block

iIOS 6 Heap Cookies

 alloc() ensures next_pointer matches encoded
pointer at end of block

— Tries both cookies

— If poisoned cookie matches, check whole block for
modification of sentinel (Oxdeadbeef) values

* Next pointer and cookie replaced by Oxdeadbeef
when allocated

Questions?

Discussion

* What do you think about DieHard?
— Is it practical?
— Would you use it in your application?

* |s heap cookie solution secure enough?
* Any other suggestions?

