Backwards-Compatible Array
Bounds Checking for C with
Very Low Overhead



Introduction

* Unsafe programming language gives unlimited
freedom to programmers

— Direct access to memory
—Manual resource handling
* This has many benefits:

— Performance
— Flexibility
— Simpler compilers



Resulting Problems

* The programmer is responsible for
maintaining correct code

— In particular, only access valid memory
 Stack, global or heap

— But things can easily go wrong

* Accessing memory that was not allocated or already
released

* Pointer arithmetic that goes out of bounds



Resulting Problems - Cont.

* Consequences are severe and unpredictable
— Program crashes
* Unexpected
* Hard to debug
— Unexpected behavior
— Security vulnerabilities



Goal

* Detect out-of-bounds bugs

* |Input-sensitve bugs

— For example: string manipulation

— Not always caught on development or testing
systems

— Detect on production systems
— And then what?



Proposed Solution: Runtime
Monitoring

* Monitor programs during runtime
* Detect out-of-bounds errors during runtime

— lllegal pointer access
— Out-of-bounds arrays access

e Crash and burn!



Runtime Monitoring

* Keep track of all pointers during runtime
* Detectillegal access and react immediately

* This is not easy to achieve
— Performance cost
— Memory cost
— Compile time cost
— Compatibility
* External libraries

* Legacy code



How Can We Achieve That?

* Runtime bounds checking

— Add checks during compile time
— Keep and validate pointers state during runtime

e Standard library function wrappers
* Optimizations!



Pointer Tracking

* Based on the ANSI-C standard
— Pointers must point at valid memory

— Pointer arithmetic result must stay within the same
object or one byte after it

* We will keep track of all objects
— For a given pointer value, search the object it's
pointing on
— Make sure that arithemtic operations are not
getting out of the same object bounds(+1)
* Assign illegal pointer values for illegal operations

— Immediate crash when the program tries to
access it



Pointer Tracking - Example

int *p = (int*)malloc(sizeof(int)*4);
ple] = 1;
if (p[4] !=5) {

}



Pointer Tracking - Example

int *p = (int*)my alloc(sizeof(int)*4);
int *tmp_p = bounds check(p + 9);
*tmp_ p = 1;

int *tmp p2 = bounds _check(p + 4);

if (*tmp p2 1= 5) {



Pointer Tracking - Example

my alloc(void *ptr, size t size) {
ptr = malloc(size);
add object(ptr, size);

}

bounds_check(void * ptr) {
if (ptr == -2 || !find_object(ptr)) return -2;
return ptr;

}



Pointer Tracking - One Off

 We are allowed to point one byte past an
object

— How can we distinguish pointing one byte past an
object, and pointing on another one?

— Solution: padding
— ...but what about backward compatibility?



Pointer Tracking - One Off

O

i

int a[3]

int a[3] int b[3]

o| | | |

int a[3] char pad[1] int b[3]

i




Pointer Tracking - Data Structures

e What data structure should we use to store the
memory objects mapping?

* Splay-tree: quick insertion and lookup, range
searching, good locality

— Provides O(log(N)) for basic operations

— Use a global splay-tree for the whole application.
What happens when N is large



Splay Tree - Reminder

* Binary tree
 Self-adjusting (splay)
* O(log(N)) amortized time for basic operations
e Splay operation

— Re-arrange the tree - bring elements to the top

* Perform tree rotations
— Faster access
— Can perform on local variables



Monitoring Out-Of-Bounds Pointers:
Improvement

e Real-world: many programs (~“60%) do not follow the rules
— lllegal values are fine if we do not access them

— We need to keep track of pointers even if they are out-of-
bounds

* Introduce out-of-bound objects

— When pointer arithmetic operation results in illegal values,
replace in a special out-of-bounds (OOB) object
— Keep track of the pointer using this OOB object
* Holds the original pointer value, and the pre-OOB operation value

e Use a hash-table to map address-to-OOB
— Restore the pointer when its value got back to safety



Maintaining OOB Objects Is Pricey

Allocate a new object if arithmetic operation led
to illegal value

Search the OOB for any pointer arithmetic
operation resulting in unknown memory

All load/store operations must be checked for OOB

De-allocation of any object requires extensive
search
— Any OOB might originally pointed on this object

— Must search the whole OOB table



Are We Done?

 We have good detection of illegal pointer access,
illegal arithmetic operations, and maybe more

* Backward compatibility is still an issue
— Padding requirement

* Performance cost is very high, it is not really
suitable for production

— We can limit the checks to string operations
only

— Still not good enough



Introduction: Automatic Pool
Allocation

* Original purpose: memory access optimization
and easier analysis
* Allocate whole data-structures in a desighated
pool
— All data-structure nodes are in the same
memory pool
— Locality — better cache and prefetching
performance

— Easier to analyze



Automatic Pool Allocation -
Implementation

Pointer analysis

Build a data-structure graph
— Each node represent memory object

— Edge between memory objects that might
point to each other

— Merge nodes that point on the same data-
structure

Order all nodes of a data-structure subgraph
in their own pool

Pools are short-lived, and follow the call-graph



Automatic Pool Allocation

struct List { Patient *data; List *next }

void addList (List #*1list,
Patient *data) {
List *b = NULL, *nlist;

while (list # NULL) {

b = list;

list = list—onext;
}
nlist = wmalloc(List);

nlist—>data = data;
nlist—onext = NULL;
b—onext = nlist;




Automatic Pool Allocation

void addList(Lizt =«list,
Patient *data) ;

void ProcessLists (int N) {
List *L1 =

List *L2 = czzal!

/* populate lists */

for (int i=0; i#N; ++i) {
tmpl = malloc(Patient) ;
addList (L1, tmpl);

tmp2 = malloc (Patient) ;
addList (L2, tmp2) ;



Automatic Pool Allocation

void ProcessLists (unsigned N) {
PoolDescriptor t LlPool, PPool;

poolinit (&Ll1Pool, sizeof(List));
poolinit (&PPool, sizeof (Patient));

List = poolalloc(&Ll1lPool) ;

for (unsigned i=0;i#N;++1i)
tmp = poolalloc (&PPool) ;

pa_addList(Ll, tmp, &LlPool)

}
pooldestroy (&PPool) ;

pooldestroy (&L1Pool) ;
}



Leveraging Automatic Pool Allocation

* Reminder: previous works used a single data-
structure to maintain all memory objects

—Huge splay-tree - high performance cost

* Apply automatic pool allocation
— Each pool will have its own splay-tree

— Computed in compile time



Leveraging Automatic Pool Allocation

e Validating pointer arithmetic operations
is much faster now

— Result of pointer arithmetic must stay in the
same pool

—We only need to search one, smaller, splay tree

—The pool ID is already known - low
overhead



Leveraging Automatic Pool Allocation

£ {
A = malloc(...)

while(..) {
ALL] = ...

}
}



Leveraging Automatic Pool Allocation

£O {

PoolDescriptor PD
A = poolalloc(&PD,...)

while(..) {
Atmp = getreferent(&PD, A);

boundscheck (Atmp, A+i);
}



Leveraging Automatic Pool Allocation -
Challenges

* Do we always have the pool descriptor?
— Casting
— External code
—Just ignore

 What about non-heap objects?
— Global variables

—Stack allocated objects
— Create dummy pool descriptors



Handling Out-Of-Bound Objects

 Reminder: previous works used a special
“out-of-bounds” objects

— Keep track of pointer arithmetic operations
that went out-of-bounds

—Very high cost



Handling Out-Of-Bound Objects

* Assign special memory values to out-of-bounds
pointers

— Use a reserved range

* For example: kernel-reserved memory range
— Unique address for each OOB pointer

— Maintain an additional table for mapping those
addresses to OOBs

— Hash-table per pool
 Immediate crash on load/store — no need to monitor
* Very little to search on free



Compatibility With External Code

* The modifications we introduced cannot
always work with external libraries

* Memory allocation and deallocation is
changed

— External libraries are not aware of it
— Sometimes they modify variables

* Functions interfaces change

— Functions passed as callbacks cannot change their
interface



Compatibility - Solutions

* Do not change calls to external code

* Suspect pointers that were passed to external
code

— Check if they still reside in the same pool

e Callback functions

— Maintain “checked” and “unchecked” versions
of the function

— Not always possible - exclude functions from
bound checking



Library Functions

* Incorrect usage of library functions is extremely
common

* Considered as an external code
— But too important to skip
* Create instrumented standard library wrappers

— Bounds checking based on parameters and
pointers status

— Optional



Library Functions - Example

memcpy(void *pl, void *p2, size t
n) {

// Is n > @?

// Are pl and p2 valid?

// Is (pl + n) valid?

// Is (p2 + n) valid?

}



Library Functions - Challenges

* Wrapper functions need to be hand-crafted

* We don't always have all the information
— For example: strlen()
—Wrapper might not be always enough



More Optimizations

* Single-object elements objects are common
— Scalar values
— Single-element arrays

— We still need to check for out-of-bounds errors

* Avoid entering such objects to splay-trees
— Detection: pool size equals the object size

— If it has no splay tree but belongs to the pool —
it's a single-object element



And Even More Optimizations

* Caching
—Very small cache, before even checking the
splay-tree
e LICM

— Do we really need to check the same object
each loop iteration?



Implementation

* LLVM
— Compiler infrastructure

— Supports automatic pool allocation

* Apply optimizations and then use GCC
for generating the binaries



Evaluation

e Performance

—How are we doing compared to previous
works?

—How is the overall performance?

* Effectiveness
—Did we spot all the bugs?



Evaluation - Benchmarks

* Use the Olden benchmark and Linux
daemons for comparing performance

— Common benchmark used in many relevant
works

* Use Zitser's suite for testing the
detection ratio



Evaluation - Baselines

e Baselines: standard compilation with no
Instrumentation

* We want to evaluate each of the steps
— Are they really effective?
— Pool allocation, with no bounds checking (PA)

— Pool allocation, with bound checking
(BoundsCheck)

— Pool allocation with one pool

— Pool allocation with one pool and bound
checking




Evaluation — Performance Results

Benchmark | LOC | Base LLVM PA BoundsCheck | Our slowdown | PA with | PA with one pool | One-pool
ratio one pool | + boundschecks ratio
bh 2053 9.146 9.156 9.138 1.00 9.175 10.062 1.10
bisort 707 12.982 12.454 12.443 0.96 12.425 14.172 1.14
em3d 557 6.753 6.785 11.388 1.69 6.803 11.419 1.68
health 725 14.305 13.822 19.902 1.39 13.618 - -
mst 617 12.952 12.017 15.137 1.17 12.203 28.925 2.37
perimeter 395 2.963 2.601 2.587 0.87 2.547 6.306 2.48
power 763 2.943 2.920 2.928 0.99 2.925 2.931 1.00
treeadd 385 17.704 17.729 17.310 0.98 17.706 21.063 1.19
tsp 561 7.086 6.989 7.219 1.02 6.978 8.897 1.27
AVG 1.12
Applications
fingerd 336 2.379 2.384 2.475 1.04 2.510 2.607 1.04
ghttpd 837 11.405 9.423 9.466 0.83 11.737 12.182 1.03
ftpd 23033 1.551 1.539 1.542 0.99 1.551 1.546 1.00




Evaluation - Discussion

* Automatic pool allocation by itself
usually improves performances

* Average slowdown ratiois 12%

— In some cases, it’s much worse
— In some cases, it’s better
— Why?



Evaluation — Efficiency Results

* All known bugs were found in the test-
suite

* Checking standard-library functions was
mandatory



Evaluation — Conclusions

* Low overhead in many scenarios

— Could be useful for non-critical production
systems

—|s it possible to evaluate the possible
overhead?

* Good bug-detection ratio
— Still limited
— Do we really cover anything?




Related Works— Augmented Pointers

* Pointers hold additional meta-data
— Pointer base address and size
— Efficient lookup

 Compatibility with external code is
problematic

— Need to strip pointers before calling external
functions

— Need manually written wrappers

— What if external library modifies a global
variable?



Related Works— Augmented Pointers

* Suggested improvement: decouple meta-
data

— Keep the pointers meta-data in a separate
table

—High performance cost
— Global variables issue is not resolved



Related Works — Binary
Instrumentation

* Tools such as Valgrind and Purify

* Binary instrumentation
—No backward compatibility problem

Performance cost is too high for production



Questions?




Discussion

* |s it ready for production?

e What about other problems?
—Double-free?
— Accessing initialized data?
—Memory leaks?

* Could we use a better data-structure?
— Hash-map with partial keys?

* Other suggestions?



