BACKWARDS-COMPATIBLE ARRAY
BOUNDS CHECKING FOR C
WITHVERY LOW OVERHEAD

Dinakar Dhurjati and Vikram Adve, ICSE 2006

Presented by Itay Polack, 02.03.2014

Introduction

We are dealing with the problem of detecting incorrect usage of pointers and arrays.

The purpose is to overcome issues such as buffer overflows, memory corruption and more.

The method is to monitor programs, during run-time, and detect memory access errors.

Real-world usage tends to uncover a lot of bugs and edge cases that were not discovered in
the testing phase. Therefore the goal is to monitor programs running in production
environments. The approach suggested in this paper is pointer analysis, but unlike previous
methods, the cost is relatively low (usually) - about 12% - so it can be used in production

systems .

Basic problems
1. Existing run-time monitoring frameworks carry a very high performance cost,
making it unsuitable for production code.
Backward compatibility — we don’t want to rewrite applications.
External libraries compatibility — we need to work with binary 3rd party libraries;
sometimes external libraries modify our memory as well.

The method
We will describe now the original method suggested by Jones and Kelly in a previous paper.
Our method will be based on their method.

Identifying Invalid Pointer Operations
Jones and Kelly suggested that the baseline definition for valid pointers should be derived
from the ANSI-C standard:

1. Pointers must refer to valid memory (memory allocated on the heap, stack, or
global).

2. When performing arithmetic operations on pointers, the result must stay either in
the same memory object referred to by the source pointer, or one byte after it.

The basic idea is to keep track of all live object in the memory (earlier approach include only
heap object, this paper extends it to all live objects including stack and global variables).

Notice that we are not monitoring pointers, we are monitoring live objects.



We will add special run-time checks for each pointer-arithmetic operation — we will locate
the object referenced by the source pointer, and make sure that this source pointer is valid
and that the arithmetic operation result is still within the allowed bounds of this pointer.

Creating an implementation of this method while the overhead is limited requires careful
design choices.

The data structure chosen for storing the live objects is a splay-tree: a variant of binary-tree,
which has a “splay” operation that rotates tree nodes, reordering the tree according to our
requirements. This data structure gives quick amortized search, insertion and deletion times.
It also allows quick searching by range — which we require.

In practice, it works by adding a pre-compilation phase, where a global splay-tree, with all
live objects, is updated on each allocation, de-allocation, entering and exiting a function.
Each pointer arithmetic operation is inspected to make sure that the source pointer is valid,
and that the result of the operation stays within the bound of the object originally
referenced by the source pointer .

For example, the following code (assuming the types match):
int * p;
p=q+5;

Will include two additional checks:

o, .n

1. The pointer “q” is valid.
2. The memory referenced by q is looked-up. A bound checking makes sure that q + 5 is
still within the bounds of this memory object (or one byte after it).

Assuming any of those validation checks failed, the target pointer will be modified to a
constant invalid value that will cause immediate program crash when trying to access the
memory referenced by this pointer (the authors chose the value -2). Why not crash
immediately? Probably because we might assign illegal values to pointers we have no
intention to touch anymore or to use as pointers.

The One-Off Problem

One additional complication is neighboring memory objects. It's perfectly legal for a pointer
to point to a memory location that is one byte after the memory object it referenced. When
we have object which was allocated right near this object, we might not know if pointers
that points exactly one byte after the first object is pointing on the end of the first object or
the beginning of the second one. We can solve this by changing memory allocation functions
to add one byte in the end of each object.

See illustration:



O
int a[3]
(@)
int a[3] int b[3]
O
int a[3] int b[3]

It worth mentioning that modifying allocators in such way introduce a problem when
external code is involved, as the external code cannot be aware to the fact that memory was
allocated in a different way, and will not use our customized allocators. In addition, changing
sizes of objects passed as function parameters can change the memory layout of the
parameters. Therefore, this workaround cannot be applied to objects and code that might
be involved with external libraries.

Out of Bound Objects

So far, this approach would immediately replace pointers that went out-of-bounds with
invalid values, crashing the program when accessing them (and so would be the results of all
pointer-arithmetic operations involved with such pointers that were changed to "-2"). In
reality, this is causing a huge backward compatibility problem — many programs tend to
assign illegal values to pointers while still using them in a perfectly correct manner. Most
common example — pointers that hold temporary values mid-calculations might refer to
illegal address, but the eventual result of the calculation is legal. With the original approach,
this temporary value will be invalidated and so will the eventual result.

In a paper following Jones and Kelly's method, Ruwase and Lam suggested a new method for
handling pointers that seemed to go out of bounds: out-of-bound objects. When pointer-
arithmetic operation ends in invalid value, we will create an out-of-bound object that will
contain the original source pointer address (before the arithmetic operation), and the
pointer arithmetic result. The target pointer will be replaced with pointer to the OOB object.
Now, when each pointer is accessed, we can see if it's an OOB object; we can check if
arithmetic operations resulted in valid values, and then we can replace the OOB object with
the original value. Otherwise, we can assign a new OOB object for the pointer arithmetic
result.

The OOB objects are stored in a hash-table, with the OOB addresses as keys and the objects
as values.

Performance Issues in Current Approaches

The JK methods includes a single splay-tree per application, and it’s getting slow for large
apps. The RL method is extending the detection capabilities, but the performance toll is even
larger: maintaining OOB objects would now require monitoring of all load/store operations
to make sure we are not accessing OOB objects. Also, each time when de-allocating
memory, we need to check all OOB objects in memory and see is there were any OOB
objects originally referencing this memory. RL suggested an optimization — only monitor



string operation. While this greatly reduces the performance penalty, it is still too high for
production, and the detection accuracy is not as good.

Optimizations
The work in this paper is focusing on optimizing and reducing the limitations of the previous
works.

Introduction - Automatic Pool Allocation

Automatic Pool Allocation - this is a previous work by Chris Lattner and Vikram Adve (one of
the paper writers). The idea - improve locality of objects by assigning separate pool for each
data structure. Implementation — create a "points-to" graph: a directional graph which
nodes are all memory objects. If one object refers another, there will be an edge from the
referring to the referee. Using this graph, we will create a separate pool for each node in this
graph, which should practically be any data-structure. For example: each linked list will have
its own pool.

Pools are as short-lived as possible, allocated in the beginning of the scope where they are
required, de-allocated right afterwards. When an object is transferred to another function,
its pool goes with it — the pool is added as another function parameter.

For global objects, we will use global pools that are allocated in the main function.

Leveraging Automatic Pool Allocations

The biggest performance issue in JK's approach was managing the splay-tree that holds all
live memory objects. We will now assume that our program was successfully transformed to
use automatic pool allocation. We know through compile time which object goes to which
pool, so looking up object's pool is highly efficient.

We will change the bound-checking code so that each pool will have its own splay-tree.
When pointer-arithmetic operations are performed, we only need to query the splay-tree of
this object's pool, which is usually much smaller. The off-by-one problem is mostly solved
now, as we can tell which object we "should" refer according to its pool.

Another thing: each pool will have its own OOB hash-table. In this way, going through the
OOB table during de-allocation is much shorter — we only go through the pool of a specific
object, and it is usually much smaller.

Optimizing Out-of-Bounds Object

OOB object in their original form required checking each load/store operation (because we
must know if this pointer is a real pointer or was replaced by OOB object). We can avoid this
by creating a new abstraction layer. Pointers that go out-of-bounds will be assigned values
from a preserved range (if such exist; for example, user-mode programs can use the range
assigned to the kernel. Accessing this range would cause an immediate hardware-trap). We
will keep another hash-table to map between values from this range and OOB objects. If no
such preserved range exists we will need to fall-back to RL approach.



Improving Effectiveness

For improve the effectiveness, they created an instrumented versions of common library
functions that include bounds-checking. This is crucial for getting good results, as misusing
library functions is a very common cause of illegal memory access.

And More Optimizations
1. Do not maintain splay-trees for single element objects — we can rely on the pool
meta-data in order to monitor bound checking for those objects.
2. Additional cache: avoids looking at the splay-trees, use a 2-elements cache.
3. LICM - loop-invariant code motion: For loop operations, extract operations that are
not part of the loop outside the loop, to avoid repeating the same operation (usually
done by the compiler).

Implementation
The authors used a compiler framework named LLVM to do all the compile-time
transformations. Then, GCC was used for compilation.

Evaluation
Evaluation purpose was to determine the performance of the new approach, both relatively
— did we improve the previous works, and objectively — is it good enough for production?

For start, they wanted to know the impact of adding bounds-checking on existing code. They
also wanted to know if using per-pool splay tree improves the performance of using one
global splay-tree.

They tested a few variances, including one vanilla-compiled code, one with pool allocation
enabled (but no bound-checking), with bounds-checking and all optimization, and with
bounds-checking that use a single pool.

Their results showed that in many cases, the performance penalty of adding bound-checking
with all the optimizations was quite small. However, in few cases, it was very high (39% and
69%). They did not suggest why was this difference, just showed that the average was good.

Regarding effectiveness, this framework (including standard-library bounds checking) gave
perfect results with the Zitser's test suite.

Olden benchmark source: http://www.sosy-lab.org/~dbeyer/blast mc/

Related Works

* Binary instrumentation (valgrind, purify) - binary instrumentation solves the
backward compatibility issue, but has huge performance cost.

* “Fat” pointers — add additional information to pointers, describing their bounds:
memory cost, huge issue with external libraries - need to explicitly wrap function
calls, and in some cases (such as global variables accessible from the external library)
it’s not practical.

* Keep pointers meta-data — do not modify pointers, maintain pointers meta data
separately: high lookup time cost, restrictive implementation and the compatibility



issue is still not solved (wrappers required for external libraries that modifies the
pointer, and if it’s global variables that’s still a problem).

Discussion

* Not all problems related with manual memory-management is addressed —
accessing uninitialized data, double free, memory leaks and more. It looks like the
framework suggested here can be used for detecting such problems with relatively
low cost.

* Why did we get the great performance difference in the benchmark? Why in some
cases the performance was merely affected, while in others the cost was great?
Knowing this can lead to both better usage of this framework, and would also open

a door for further improving it.



