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Testing

• Purpose : 

• Verifying functional correctness (vs. spec) 

• Verifying software completeness - no crashes, 
memory leaks, assert violations…
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Testing: example

• Manual test creation: build test with input 6 
• Large number of fail paths? 

• QA person works long hours… 
• Test auto-generation



Random input test generation

• ✔ Much more tests generated than manually 

• ✘ Error path distribution is not uniform: Boundary 
values, zero-division… 

Back to example: y being a 32 bit int



Symbolic execution

y is symbolic: y = s
y = 2 * s  // still symbolic
Fork execution, add constraints  
to each path

true path constraint: 2*s==12

Need constraint solver



Constraint solver
2 * s == 12

2 * s 12

0000110000000010 s0s1s2s3s4s5s6s7

s1s2s3s4s5s6s70 00001100

CNF: ¬s1 ∧ ¬s2 ∧ ¬s3 ∧ ¬s4 ∧ s5 ∧ s6 ∧ ¬s7 ∧ ¬0

SAT solver: 
satisfiable? -> asserts  
instance -> test generate  



KLEE: symbolic executer
• Architecture: compiles C code to LLVM byte code. 

Executes a symbolic interpreter. 

• Map LLVM instructions to constraints. Constraint 
solver: STP. 

• generates executable tests, independent of KLEE. 

• Used to check all GNU Coreutils and covered 90% 
lines: more than 15 year on-going manual test suite 
- in 89 hours.



Introduction

• Before technical details - any questions?
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Symbolic execution -  
a deeper look

• Definition: execution state 

• Line number 

• values of variables (symbolic/concrete): x=s1, 
y=s2+3*s4 

• Path Condition (PC): conjunction of constraints 
(boolean formulas) over symbols:  
 s1>0 ∧ α1+2*s2>0 ∧ ¬(s3>0)

Symbolic Execution and Program Testing  
JC King - 1976



Symbolic execution -  
a deeper look

• Execute assignment: evaluate RHS symbolically, 
assign to LHS as part of the the state.  

• Execute IF (r) / then / else: fork  

• then: PC ⟵ PC ∧ r 

• else: PC ⟵ PC ∧ ¬r 

• Termination: solve constraint (supply values for 
symbols, for test generation)

Symbolic Execution and Program Testing  
JC King - 1976



Execution treeSymbolic Execution: Example A

Loc: 5

x: X
y: Y
z: Z

PC: true

Loc: 6

x: X
y: Y
z: Z

PC: X > 0

Loc: 10

x: X
y: Y + X

z: Z
PC: X > 0

Loc: 11

x: X
y: Y + X

z: Z � (Y + X )
PC: (X > 0) ^ (X > 0)

Loc: 13

x: X
y: Y + X

z: Z + (Y + X )
PC: (X > 0) ^ (X  0)

Loc: 8

x: X
y: Y
z: Z

PC: X  0

Loc: 10

x: X
y: Y � X

z: Z
PC: X  0

Loc: 11

x: X
y: Y � X

z: Z � (Y � X )
PC: (X  0) ^ (X > 0)

Loc: 13

x: X
y: Y � X

z: Z + (Y � X )
PC: (X  0) ^ (X  0)

DiSE 4

Symbolic Execution: Example A

1 int y;

2 int z;

3 ...

4 int foo(int x) {

5 if (x > 0) {

6 y = y + x;

7 } else {

8 y = y - x;

9 }

10 if (x > 0) {

11 z = z - y;

12 } else {

13 z = z + y

14 }

15 }

DiSE 3

Directed Incremental Symbolic Execution
Suzette Person; Guowei Yang; Neha Rungta; Sarfaz Khurshid

PLDI’11

DiSE 1



Execution tree properties

• For each satisfiable leaf exists a concrete input for 
which the real program will reach same leaf ⇒  
can generate test 

• PC's associated with any two satisfiable leaves are 
distinct ⇒ code coverage.

Symbolic Execution and Program Testing  
JC King - 1976



KLEE - usage

Compile C programs to LLVM byte code and run 
KLEE interpreter with wanted parameters:  
 
$ llvm-gcc --emit-llvm -c tr.c -o tr.bc  
 
$ klee --max-time 2 --sym-args 1 10 10  
   --sym-files 2 2000 --max-fail 1 tr.bc  



KLEE - symbolic execution: 
tr (Minix)

2 Environmental Dependencies. Most of the code is
controlled by values derived from environmental in-
put. Command line arguments determine what pro-
cedures execute, input values determine which way
if-statements trigger, and the program depends on the
ability to read from the file system. Since inputs can
be invalid (or even malicious), the code must handle
these cases gracefully. It is not trivial to test all im-
portant values and boundary cases.

The code illustrates two additional common features.
First, it has bugs, which KLEE finds and generates test
cases for. Second, KLEE quickly achieves good code
coverage: in two minutes it generates 37 tests that cover
all executable statements. 2
KLEE has two goals: (1) hit every line of executable

code in the program and (2) detect at each dangerous op-
eration (e.g., dereference, assertion) if any input value
exists that could cause an error. KLEE does so by running
programs symbolically: unlike normal execution, where
operations produce concrete values from their operands,
here they generate constraints that exactly describe the
set of values possible on a given path. When KLEE de-
tects an error or when a path reaches an exit call, KLEE
solves the current path’s constraints (called its path con-
dition) to produce a test case that will follow the same
path when rerun on an unmodified version of the checked
program (e.g, compiled with gcc).
KLEE is designed so that the paths followed by the

unmodified program will always follow the same path
KLEE took (i.e., there are no false positives). However,
non-determinism in checked code and bugs in KLEE or
its models have produced false positives in practice. The
ability to rerun tests outside of KLEE, in conjunctionwith
standard tools such as gdb and gcov is invaluable for
diagnosing such errors and for validating our results.
We next show how to use KLEE, then give an overview

of how it works.

2.1 Usage

A user can start checking many real programs with KLEE
in seconds: KLEE typically requires no source modifi-
cations or manual work. Users first compile their code
to bytecode using the publicly-available LLVM com-
piler [33] for GNU C. We compiled tr using:

llvm-gcc --emit-llvm -c tr.c -o tr.bc

Users then run KLEE on the generated bytecode, option-
ally stating the number, size, and type of symbolic inputs
to test the code on. For tr we used the command:

klee --max-time 2 --sym-args 1 10 10
--sym-files 2 2000 --max-fail 1 tr.bc

2The program has one line of dead code, an unreachable return
statement, which, reassuringly, KLEE cannot run.

1 : void expand(char *arg, unsigned char *buffer) { 8
2 : int i, ac; 9
3 : while (*arg) { 10*
4 : if (*arg == ’\\’) { 11*
5 : arg++;
6 : i = ac = 0;
7 : if (*arg >= ’0’ && *arg <= ’7’) {
8 : do {
9 : ac = (ac << 3) + *arg++ − ’0’;
10: i++;
11: } while (i<4 && *arg>=’0’ && *arg<=’7’);
12: *buffer++ = ac;
13: } else if (*arg != ’\0’)
14: *buffer++ = *arg++;
15: } else if (*arg == ’[’) { 12*
16: arg++; 13
17: i = *arg++; 14
18: if (*arg++ != ’-’) { 15!
19: *buffer++ = ’[’;
20: arg −= 2;
21: continue;
22: }
23: ac = *arg++;
24: while (i <= ac) *buffer++ = i++;
25: arg++; /* Skip ’]’ */
26: } else
27: *buffer++ = *arg++;
28: }
29: }
30: . . .
31: int main(int argc, char* argv[ ]) { 1
32: int index = 1; 2
33: if (argc > 1 && argv[index][0] == ’-’) { 3*
34: . . . 4
35: } 5
36: . . . 6
37: expand(argv[index++], index); 7
38: . . .
39: }

Figure 1: Code snippet from MINIX’s tr, representative
of the programs checked in this paper: tricky, non-obvious,
difficult to verify by inspection or testing. The order of the
statements on the path to the error at line 18 are numbered on
the right hand side.

The first option, --max-time, tells KLEE to check
tr.bc for at most two minutes. The rest describe the
symbolic inputs. The option --sym-args 1 10 10
says to use zero to three command line arguments, the
first 1 character long, the others 10 characters long. 3 The
option --sym-files 2 2000 says to use standard
input and one file, each holding 2000 bytes of symbolic
data. The option --max-fail 1 says to fail at most
one system call along each program path (see § 4.2).

2.2 Symbolic execution with KLEE

When KLEE runs on tr, it finds a buffer overflow error
at line 18 in Figure 1 and then produces a concrete test

3Since strings in C are zero terminated, this essentially generates
arguments of up to that size.

3
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Figure 1: Code snippet from MINIX’s tr, representative
of the programs checked in this paper: tricky, non-obvious,
difficult to verify by inspection or testing. The order of the
statements on the path to the error at line 18 are numbered on
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The first option, --max-time, tells KLEE to check
tr.bc for at most two minutes. The rest describe the
symbolic inputs. The option --sym-args 1 10 10
says to use zero to three command line arguments, the
first 1 character long, the others 10 characters long. 3 The
option --sym-files 2 2000 says to use standard
input and one file, each holding 2000 bytes of symbolic
data. The option --max-fail 1 says to fail at most
one system call along each program path (see § 4.2).

2.2 Symbolic execution with KLEE

When KLEE runs on tr, it finds a buffer overflow error
at line 18 in Figure 1 and then produces a concrete test

3Since strings in C are zero terminated, this essentially generates
arguments of up to that size.

3

3 symbolic arguments

Fork execution

Fork, constraint arg[0]==‘[‘

Detect bug (implicit array bounds checking)  
and generate test: input={“[“, “”, “”}

all 37 paths in 2 minutes



KLEE architecture
• Execution state: 

• Instruction pointer 

• Path condition 

• Registers, heap and stack objects 

• Above objects refer to trees of symbolic expressions. 

• Expressions are of C language: arithmetic, shift, dereference, 
assignment… 

• checks inserted at dangerous operations: division, 
dereferencing



STP - constraint solver

• A Decision Procedure for Bit-Vectors and Arrays 

• “Decision procedures are programs which 
determine the satisfiability of logical formulas that 
can express constraints relevant to software and 
hardware” 

• STP uses new efficient SAT solvers.



STP - constraint solver

• Treat everything as bit vectors - no types. 

• Expressions on bit vectors: arithmetic (incl. non 
linear), bitwise operations, relational operations. 

• All formulas are converted to DAGs of single bit 
operations (node for every bit!)



STP

       Substitution

    

Refinement Array Axioms

     Simplifications 

      Linear Solving

Input Formula

BitBlast      

CNF Conversion

SAT Solver

SAT
UNSAT

Fig. 1. STP Architecture

In more detail, STP’s architecture is depicted in Figure 1. Processing consists of
three phases of word-level transformations; followed by conversion to a purely Boolean
formula and Boolean simplifi cations (this process is called “Bit Blasting”); and fi nally
conversion to propositional CNF and solving by a SAT solver. The primary focus of this
paper is on word level optimizations for arithmetic, arrays and refi nement for arrays.

Expressions are represented as directed acyclic graphs (DAGs), from the time they
are created by the parser or through the C-interface, until they are converted to CNF. In
the DAG representation, isomorphic subtrees are represented by a single node, which
may be pointed to by many parent nodes. This representation has advantages and dis-
advantages, but the overwhelming advantage is compactness.

It is possible to identify some design principles that have worked well during the
development of STP. The overarching principle is to procrastinate when faced with
hard problems. That principle is applied in many ways. Transformations that are risky
because they can signifi cantly expand the size of the expression DAG are postponed
until other, less risky, transformations are performed, in the hope that the less risky
transformation will reduce the size and number of expressions requiring more risky
transformations. This approach is particularly helpful for array expressions.

Counter-example-guided abstraction/refi nement is now a standard paradigm in for-
mal tools, which can be applied in a variety of ways. It is another application of the
procrastination principle. For example, the UCLID tool abstracts and refi nes the preci-
sion of integer variables.

A major novelty of STP’s implementation is the particular implementation of the
refi nement loop in Figure 1. In STP, abstraction is implemented (i.e. an abstract formula
is obtained) by omitting conjunctive constraints from a concrete formula, where the
concrete formula must be equisatisfi able with the original formula. (Logical formulas
φ and ψ are equisatisfi able iff φ is satisfi able exactly when ψ is satisfi able.)

When testing an abstract formula for satisfi ability, there can be three results. First,
STP can determine that the abstracted formula is unsatisfi able. In this case, it is clear
that the original formula is unsatisfi able, and hence STP can return “unsatisfi able” with-
out additional refi nement, potentially saving a massive amount of work.

A second possible outcome is that STP fi nds a satisfying assignment to the abstract
formula. In this case, STP converts the satisfying assignment to a (purported) concrete

DAG creation



Query optimizations

• Constraint solver dominates run time (NP-complete 
problem in general…) 

• Can pre-process calls to solver to make query 
easier 

• Two complicated optimizations (presented next) 
and other basic ones (later on)



Query optimizations

• Partition constraint set according to symbols 

• Call solver with relevant subset only 

• Example: {i < j, j < 20, k > 0}. a query of whether i = 20 just 
requires the first two constraints

Constraint independence



Query optimizations
Counter example cache

• Cache results of previous constraint solver results 

• If constraint set C has no solution and C ⊆ C’, then neither does C’  

• If constraint set C has solution s and C’ ⊆ C, then C’ has solution s  

• If constraint set C has solution s and C ⊆ C’, then C’ likely has  
solution s



State choosing heuristics:

• A big challenge of symbolic executing: path 
explosion 

• Can’t cover all paths: need to choose wisely 

• Use different choosing heuristic at each selection 
(using round robin)



State choosing heuristics:

• Maintain binary tree of paths 

• When branch reached, traverse randomly from root 
to select state to execute 

• Done to prevent starvation caused by large 
subtrees (i.e loops with symbolic condition)

Random Path Selection



State choosing heuristics:

• Compute state weight using: 

• Minimum distance to an uncovered instruction 

• Call stack of the state 

• Whether the state recently covered new code

Coverage-optimize search



Environment modeling

• Another big challenge of symbolic executing: 
symbolizing file systems, env. variables, network 
packets, etc. 

• KLEE’s solution: model as much as you can. 
modeling means to costumize code of system calls 
(e.g. open, read, write, stat, lseek, ftruncate, ioctl): 
2500 lines of modeling code.



Environment modeling
• File system examples 

• Read concrete file with symbolic offset: read() is 
wrapped with pread() 

• Open symbolic file-name:  

• Program was initiated with a symbolic file system with up to N 
files (user defined). 

• Open all N files + one open() failure



Environment modeling

• How to generate tests after using symbolic env: 

• Except of supplying input args, supply an 
description of symbolic env for each test path. 

• A special driver creates real OS objects from the 
description



Other optimizations
• Copy On Write for forking - object level, not page 

level 

• Pointer to many possible objects - branch all 

• Query optimizations 

• Constraint set simplification: {x<10}, x==5 ⇒ {x==5} 

• Implied Value Concretization: {x+1==10} ⇒ x = 9



KLEE

• Questions?
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Evaluation - Metrics

• Line coverage, only executable: ELOC percentage 

• Doesn’t measure actual conditional paths used 

• Used also because the gcov profiler outputs it and 
its a common tool among testing tools.



Coreutils

• All 89 Coreutils programs ran with command:  
./run <tool-name> --max-time 60  
                  --sym-args 10 2 2  
                  --sym-files 2 8  
                  [--max-fail 1]



Coreutils
COREUTILS BUSYBOX

Coverage KLEE Devel. KLEE Devel.
(w/o lib) tests tests tests tests
100% 16 1 31 4
90-100% 40 6 24 3
80-90% 21 20 10 15
70-80% 7 23 5 6
60-70% 5 15 2 7
50-60% - 10 - 4
40-50% - 6 - -
30-40% - 3 - 2
20-30% - 1 - 1
10-20% - 3 - -
0-10% - 1 - 30

Overall cov. 84.5% 67.7% 90.5% 44.8%
Med cov/App 94.7% 72.5% 97.5% 58.9%
Ave cov/App 90.9% 68.4% 93.5% 43.7%

Table 2: Number of COREUTILS tools which achieve line
coverage in the given ranges for KLEE and developers’ tests
(library code not included). The last rows shows the aggre-
gate coverage achieved by each method and the average and
median coverage per application.

generates by only emitting tests cases for paths that hit a
new statement or branch in the main utility code. A user
that wants high library coverage can change this setting.

5.2 GNU COREUTILS
We now give KLEE coverage results for all 89 GNU
COREUTILS utilities.
Figure 4 breaks down the tools by executable lines

of code (ELOC), including library code the tool calls.
While relatively small, the tools are not toys— the small-
est five have between 2K and 3K ELOC, over half (52)
have between 3K and 4K, and ten have over 6K.
Previous work, ours included, has evaluated

constraint-based execution on a small number of
hand-selected benchmarks. Reporting results for the
entire COREUTILS suite, the worst along with the best,
prevents us from hand-picking results or unintentionally
cheating through the use of fragile optimizations.
Almost all tools were tested using the same command

(command arguments explained in § 2.1):
./run <tool-name> --max-time 60

--sym-args 10 2 2
--sym-files 2 8
[--max-fail 1]

As specified by the --max-time option, we ran each
tool for about 60minutes (some finished before this limit,
a few up to three minutes after). For eight tools where the
coverage results of these values were unsatisfactory, we
consulted the man page and increased the number and
size of arguments and files. We found this easy to do,
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Figure 5: Line coverage for each application with and without
failing system calls.

so presumably a tool implementer or user would as well.
After these runs completed, we improved them by failing
system calls (see § 4.2).
5.2.1 Line coverage results
The first two columns in Table 2 give aggregate line
coverage results. On average our tests cover 90.9% of
the lines in each tool (median: 94.7%), with an overall
(aggregate) coverage across all tools of 84.5%. We get
100% line coverage on 16 tools, over 90% on 56 tools,
and over 80% on 77 tools (86.5% of all tools). The min-
imum coverage achieved on any tool is 62.6%.
We believe such high coverage on a broad swath of ap-

plications “out of the box” convincingly shows the power
of the approach, especially since it is across the entire
tool suite rather than focusing on a few particular appli-
cations.
Importantly, KLEE generates high coverage with few

test cases: for our non-failing runs, it needs a total of
3,321 tests, with a per-tool average of 37 (median: 33).
The maximum number needed was 129 (for the “[” tool)
and six needed 5. As a crudemeasure of path complexity,
we counted the number of static branches run by each test
case using gcov6 (i.e., an executed branch counts once
no matter how many times the branch ran dynamically).
The average path length was 76 (median: 53), the maxi-
mum was 512 and (to pick a random number) 160 were
at least 250 branches long.
Figure 5 shows the coverage KLEE achieved on each

tool, with and without failing system call invocations.
Hitting system call failure paths is useful for getting the
last few lines of high-coverage tools, rather than signif-
icantly improving the overall results (which it improves
from 79.9% to 84.5%). The one exception is pwd which
requires system call failures to go from a dismal 21.2%
to 72.6%. The second best improvement for a single tool
is a more modest 13.1% extra coverage on the df tool.

6In gcov terminology, a branch is a possible branch direction, i.e.
a simple if statement has two branches.

9

pwd

76.9% line coverage of 
all 89 Coreutils 
programs



KLEE vs. manual suite

COREUTILS BUSYBOX
Coverage KLEE Devel. KLEE Devel.
(w/o lib) tests tests tests tests
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generates by only emitting tests cases for paths that hit a
new statement or branch in the main utility code. A user
that wants high library coverage can change this setting.

5.2 GNU COREUTILS
We now give KLEE coverage results for all 89 GNU
COREUTILS utilities.
Figure 4 breaks down the tools by executable lines

of code (ELOC), including library code the tool calls.
While relatively small, the tools are not toys— the small-
est five have between 2K and 3K ELOC, over half (52)
have between 3K and 4K, and ten have over 6K.
Previous work, ours included, has evaluated

constraint-based execution on a small number of
hand-selected benchmarks. Reporting results for the
entire COREUTILS suite, the worst along with the best,
prevents us from hand-picking results or unintentionally
cheating through the use of fragile optimizations.
Almost all tools were tested using the same command

(command arguments explained in § 2.1):
./run <tool-name> --max-time 60

--sym-args 10 2 2
--sym-files 2 8
[--max-fail 1]

As specified by the --max-time option, we ran each
tool for about 60minutes (some finished before this limit,
a few up to three minutes after). For eight tools where the
coverage results of these values were unsatisfactory, we
consulted the man page and increased the number and
size of arguments and files. We found this easy to do,
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so presumably a tool implementer or user would as well.
After these runs completed, we improved them by failing
system calls (see § 4.2).
5.2.1 Line coverage results
The first two columns in Table 2 give aggregate line
coverage results. On average our tests cover 90.9% of
the lines in each tool (median: 94.7%), with an overall
(aggregate) coverage across all tools of 84.5%. We get
100% line coverage on 16 tools, over 90% on 56 tools,
and over 80% on 77 tools (86.5% of all tools). The min-
imum coverage achieved on any tool is 62.6%.
We believe such high coverage on a broad swath of ap-

plications “out of the box” convincingly shows the power
of the approach, especially since it is across the entire
tool suite rather than focusing on a few particular appli-
cations.
Importantly, KLEE generates high coverage with few

test cases: for our non-failing runs, it needs a total of
3,321 tests, with a per-tool average of 37 (median: 33).
The maximum number needed was 129 (for the “[” tool)
and six needed 5. As a crudemeasure of path complexity,
we counted the number of static branches run by each test
case using gcov6 (i.e., an executed branch counts once
no matter how many times the branch ran dynamically).
The average path length was 76 (median: 53), the maxi-
mum was 512 and (to pick a random number) 160 were
at least 250 branches long.
Figure 5 shows the coverage KLEE achieved on each

tool, with and without failing system call invocations.
Hitting system call failure paths is useful for getting the
last few lines of high-coverage tools, rather than signif-
icantly improving the overall results (which it improves
from 79.9% to 84.5%). The one exception is pwd which
requires system call failures to go from a dismal 21.2%
to 72.6%. The second best improvement for a single tool
is a more modest 13.1% extra coverage on the df tool.

6In gcov terminology, a branch is a possible branch direction, i.e.
a simple if statement has two branches.
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Figure 6: Relative coverage difference between KLEE and
the COREUTILS manual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lman)
from KLEE tests (Lklee) and dividing by the total possible:
(Lklee − Lman)/Ltotal. Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.

5.2.2 Comparison against developer test suites

Each utility in COREUTILS comes with an extensive
manually-written test suite extended each time a new bug
fix or extra feature is added. 7 As Table 2 shows, KLEE
beats developer tests handily on all aggregate measures:
overall total line coverage (84.5% versus 67.7%), aver-
age coverage per tool (90.9% versus 68.4%) and median
coverage per tool (94.7% versus 72.5%). At a more de-
tailed level, KLEE gets 100% coverage on 16 tools and
over 90% coverage on 56 while the developer tests get
100% on a single utility (true) and reach over 90% on
only 7. Finally, the developers tests get below 60% cov-
erage on 24 tools while KLEE always achieves over 60%.
In total, an 89 hour run of KLEE (about one hour per ap-
plication) exceeds the coverage of a test suite built over
a period of fifteen years by 16.8%!
Figure 6 gives a relative view of KLEE versus devel-

oper tests by subtracting the lines hit by manual testing
from those hit by KLEE and dividing this by the total pos-
sible. A bar above zero indicates that KLEE beat the man-
ual test (and by how much); a bar below shows the oppo-
site. KLEE beats manual testing, often significantly, on
the vast majority of the applications.
To guard against hidden bias in line coverage, we

also compared the taken branch coverage (as reported by
gcov) of the manual and KLEE test suites. While the
absolute coverage for both test suites decreases, KLEE’s
relative improvement over the developers’ tests remains:

7We ran the test suite using the commands: env RUN EXPENSIVE
TESTS=YES RUN VERY EXPENSIVE TESTS=YES make
check and make check-root (as root). A small number of tests
(14 out of 393) which require special configuration were not run; from
manual inspection we do not expect these to have a significant impact
on our results.

paste -d\\ abcdefghijklmnopqrstuvwxyz
pr -e t2.txt
tac -r t3.txt t3.txt
mkdir -Z a b
mkfifo -Z a b
mknod -Z a b p
md5sum -c t1.txt
ptx -F\\ abcdefghijklmnopqrstuvwxyz
ptx x t4.txt
seq -f %0 1

t1.txt: "\t \tMD5("
t2.txt: "\b\b\b\b\b\b\b\t"
t3.txt: "\n"
t4.txt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

KLEE achieves 76.9% overall branch coverage, while the
developers’ tests get only 56.5%.
Finally, it is important to note that although KLEE’s

runs significantly beat the developers’ tests in terms of
coverage, KLEE only checks for low-level errors and vi-
olations of user-level asserts. In contrast, developer tests
typically validate that the application output matches the
expected one. We partially address this limitation by val-
idating the output of these utilities against the output pro-
duces by a different implementation (see § 5.5).

5.2.3 Bugs found

KLEE found ten unique bugs in COREUTILS (usually
memory error crashes). Figure 7 gives the command
lines used to trigger them. The first three errors ex-
isted since at least 1992, so should theoretically crash any
COREUTILS distribution up to 6.10. The others are more
recent, and do not crash older COREUTILS distributions.
While one bug (in seq) had been fixed in the develop-
ers’ unreleased version, the other bugs were confirmed
and fixed within two days of our report. In addition, ver-
sions of the KLEE-generated test cases for the new bugs
were added to the official COREUTILS test suite.
As an illustrative example, we discuss the bug in pr

(used to paginate files before printing) hit by the invoca-
tion “pr -e t2.txt” in Figure 7. The code contain-
ing the bug is shown in Figure 8. On the path that hits
the bug, both chars per input tab and chars per c

equal tab width (let’s call it T ). Line 2665 computes
width = (T − input position mod T ) using the
macro on line 602. The root cause of the bug is the in-
correct assumption that 0 ≤ x mod y < y, which only
holds for positive integers. When input position

is positive, width will be less than T since 0 ≤

input position mod T < T . However, in the pres-
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Figure 6: Relative coverage difference between KLEE and
the COREUTILS manual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lman)
from KLEE tests (Lklee) and dividing by the total possible:
(Lklee − Lman)/Ltotal. Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.

5.2.2 Comparison against developer test suites

Each utility in COREUTILS comes with an extensive
manually-written test suite extended each time a new bug
fix or extra feature is added. 7 As Table 2 shows, KLEE
beats developer tests handily on all aggregate measures:
overall total line coverage (84.5% versus 67.7%), aver-
age coverage per tool (90.9% versus 68.4%) and median
coverage per tool (94.7% versus 72.5%). At a more de-
tailed level, KLEE gets 100% coverage on 16 tools and
over 90% coverage on 56 while the developer tests get
100% on a single utility (true) and reach over 90% on
only 7. Finally, the developers tests get below 60% cov-
erage on 24 tools while KLEE always achieves over 60%.
In total, an 89 hour run of KLEE (about one hour per ap-
plication) exceeds the coverage of a test suite built over
a period of fifteen years by 16.8%!
Figure 6 gives a relative view of KLEE versus devel-

oper tests by subtracting the lines hit by manual testing
from those hit by KLEE and dividing this by the total pos-
sible. A bar above zero indicates that KLEE beat the man-
ual test (and by how much); a bar below shows the oppo-
site. KLEE beats manual testing, often significantly, on
the vast majority of the applications.
To guard against hidden bias in line coverage, we

also compared the taken branch coverage (as reported by
gcov) of the manual and KLEE test suites. While the
absolute coverage for both test suites decreases, KLEE’s
relative improvement over the developers’ tests remains:

7We ran the test suite using the commands: env RUN EXPENSIVE
TESTS=YES RUN VERY EXPENSIVE TESTS=YES make
check and make check-root (as root). A small number of tests
(14 out of 393) which require special configuration were not run; from
manual inspection we do not expect these to have a significant impact
on our results.
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Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

KLEE achieves 76.9% overall branch coverage, while the
developers’ tests get only 56.5%.
Finally, it is important to note that although KLEE’s

runs significantly beat the developers’ tests in terms of
coverage, KLEE only checks for low-level errors and vi-
olations of user-level asserts. In contrast, developer tests
typically validate that the application output matches the
expected one. We partially address this limitation by val-
idating the output of these utilities against the output pro-
duces by a different implementation (see § 5.5).

5.2.3 Bugs found

KLEE found ten unique bugs in COREUTILS (usually
memory error crashes). Figure 7 gives the command
lines used to trigger them. The first three errors ex-
isted since at least 1992, so should theoretically crash any
COREUTILS distribution up to 6.10. The others are more
recent, and do not crash older COREUTILS distributions.
While one bug (in seq) had been fixed in the develop-
ers’ unreleased version, the other bugs were confirmed
and fixed within two days of our report. In addition, ver-
sions of the KLEE-generated test cases for the new bugs
were added to the official COREUTILS test suite.
As an illustrative example, we discuss the bug in pr

(used to paginate files before printing) hit by the invoca-
tion “pr -e t2.txt” in Figure 7. The code contain-
ing the bug is shown in Figure 8. On the path that hits
the bug, both chars per input tab and chars per c

equal tab width (let’s call it T ). Line 2665 computes
width = (T − input position mod T ) using the
macro on line 602. The root cause of the bug is the in-
correct assumption that 0 ≤ x mod y < y, which only
holds for positive integers. When input position

is positive, width will be less than T since 0 ≤

input position mod T < T . However, in the pres-

10

Since 1992

Cause: 
modulus  
negative



KLEE vs. random
602: #define TAB WIDTH(c , h ) ((c ) − ((h ) % (c )))
. . .
1322: clump buff = xmalloc(MAX(8,chars per input tab));
. . . // (set s to clump buff)
2665: width = TAB WIDTH(chars per c, input position);
2666:
2667: if (untabify input)
2668: {
2669: for (i = width; i; −−i)
2670: *s++ = ’ ’;
2671: chars = width;
2672: }

Figure 8: Code snippet from pr where a memory
overflow of clump buff via pointer s is possible if
chars per input tab == chars per c and
input position < 0.

ence of backspaces, input position can become neg-
ative, so (−T < input position mod T < T ). Con-
sequently, width can be as large as 2T − 1.
The bug arises when the code allocates a buffer

clump buff of size T (line 1322) and then writes width
characters into this buffer (lines 2669–2670) via the
pointer s (initially set to clump buff). Because width
can be as large as 2T −1, a memory overflow is possible.
This is a prime example of the power of symbolic ex-

ecution in finding complex errors in code which is hard
to reason about manually — this bug has existed in pr
since at least 1992, when COREUTILS was first added to
a CVS repository.

5.2.4 Comparison with random tests

In our opinion, the COREUTILS manual tests are un-
usually comprehensive. However, we compare to ran-
dom testing both to guard against deficiencies, and to get
a feel for how constraint-based reasoning compares to
blind random guessing. We tried to make the comparison
apples-to-apples by building a tool that takes the same
command line as KLEE, and generates random values for
the specified type, number, and size range of inputs. It
then runs the checked program on these values using the
same replay infrastructure as KLEE. For time reasons,
we randomly chose 15 benchmarks (shown in Figure 9)
and ran them for 65 minutes (to always exceed the time
given to KLEE) with the same command lines used when
run with KLEE.
Figure 9 shows the coverage for these programs

achieved by random, manual, and KLEE tests. Unsurpris-
ingly, given the complexity of COREUTILS programs and
the concerted effort of the COREUTILS maintainers, the
manual tests get significantly more coverage than ran-
dom. KLEE handily beats both.
Because gcov introduces some overhead, we also

performed a second experiment in which we ran each
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Figure 9: Coverage of random vs. manual vs. KLEE testing
for 15 randomly-chosen COREUTILS utilities. Manual testing
beats random on average, while KLEE beats both by a signifi-
cant margin.

tool natively without gcov for 65 minutes (using the
same random seed as the first run), recorded the number
of test cases generated, and then reran using gcov for
that number. This run completely eliminates the gcov
overhead, and overall it generates 44% more tests than
during the initial run.
However, these 44% extra tests increase the average

coverage per tool by only 1%, with 11 out of 15 utili-
ties not seeing any improvement— showing that random
gets stuck for most applications. We have seen this pat-
tern repeatedly in previous work: random quickly gets
the cases it can, and then revisits them over and over. In-
tuitively, satisfying even a single 32-bit equality requires
correctly guessing one value out of four billion. Cor-
rectly getting a sequence of such conditionals is hope-
less. Utilities such as csplit (the worst performer), il-
lustrate this dynamic well: their input has structure, and
the difficulty of blindly guessing values that satisfy its
rules causes most inputs to be rejected.
One unexpected result was that for 11 of these 15

programs, KLEE explores paths to termination (i.e., the
checked code calls exit()) only a few times slower
than random does! KLEE explored paths to termina-
tion in roughly the same time for three programs and,
in fact, was actually faster for three others (seq, tee,
and nohup). We were surprised by these numbers, be-
cause we had assumed a constraint-based tool would run
orders of magnitude more slowly than raw testing on a
per-path basis, but would have the advantage of explor-
ing more unique paths over time (with all values) because
it did not get stuck. While the overhead on four pro-
grams matched this expectation (where constraint solver
overhead made paths ran 7x to 220x more slowly than
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Program equivalence

1 : unsigned mod opt(unsigned x, unsigned y) {
2 : if((y & −y) == y) // power of two?
3 : return x & (y−1);
4 : else
5 : return x % y;
6 : }
7 : unsigned mod(unsigned x, unsigned y) {
8 : return x % y;
9 : }
10: int main() {
11: unsigned x,y;
12: make symbolic(&x, sizeof(x));
13: make symbolic(&y, sizeof(y));
14: assert(mod(x,y) == mod opt(x,y));
15: return 0;
16: }

Figure 11: Trivial program illustrating equivalence checking.
KLEE proves total equivalence when y ̸= 0.

modulo bugs in KLEE or non-determinism in the code. 9
Importantly, KLEE will do such proofs for any condition
the programmer expresses as C code, from a simple non-
null pointer check, to one verifying the correctness of a
program’s output.
This property can be leveraged to perform deeper

checking as follows. Assume we have two procedures
f and f’ that take a single argument and purport to im-
plement the same interface. We can verify functional
equivalence on a per-path basis by simply feeding them
the same symbolic argument and asserting they return
the same value: assert(f(x) == f’(x)). Each
time KLEE follows a path that reaches this assertion, it
checks if any value exists on that path that violates it. If
it finds none exists, then it has proven functional equiv-
alence on that path. By implication, if one function is
correct along the path, then equivalence proves the other
one is as well. Conversely, if the functions compute dif-
ferent values along the path and the assert fires, then
KLEE will produce a test case demonstrating this differ-
ence. These are both powerful results, completely be-
yond the reach of traditional testing. One way to look at
KLEE is that it automatically translates a path through a
C program into a form that a theorem prover can reason
about. As a result, proving path equivalence just takes a
few lines of C code (the assertion above), rather than an
enormous manual exercise in theorem proving.
Note that equivalence results only hold on the finite set

of paths that KLEE explores. Like traditional testing, it
cannot make statements about paths it misses. However,
if KLEE is able to exhaust all paths then it has shown total
equivalence of the functions. Although not tractable in
general, many isolated algorithms can be tested this way,
at least up to some input size.
We help make these points concrete using the con-
9Code that depends on the values of memory addresses will not

satisfy determinism since KLEE will almost certainly allocate memory
objects at different addresses than native runs.

trived example in Figure 11, which crosschecks a triv-
ial modulo implementation (mod) against one that opti-
mizes for modulo by powers of two (mod opt). It first
makes the inputs x and y symbolic and then uses the
assert (line 14) to check for differences. Two code
paths reach this assert, depending on whether the
test for power-of-two (line 2) succeeds or fails. (Along
the way, KLEE generates a division-by-zero test case for
when y = 0.) The true path uses the solver to check that
the constraint (y& − y) == y implies (x&(y − 1)) ==
x%y holds for all values. This query succeeds. The
false path checks the vacuous tautology that the con-
straint (y& − y) ̸= y implies that x%y == x%y also
holds. The KLEE checking run then terminates, which
means that KLEE has proved equivalence for all non-zero
values using only a few lines of code.
This methodology is useful in a broad range of con-

texts. Most standardized interfaces — such as libraries,
networking servers, or compilers — have multiple im-
plementations (a partial motivation for and consequence
of standardization). In addition, there are other common
cases where multiple implementations exist:
1 f is a simple reference implementation and f’ a real-
world optimized version.

2 f’ is a patched version of f that purports only to
remove bugs (so should have strictly fewer crashes)
or refactor code without changing functionality.

3 f has an inverse, which means we can change our
equivalence check to verify f−1(f(x)) ≡ x, such as:
assert(uncompress(compress(x))==x).
Experimental results. We show that this technique

can find deep correctness errors and scale to real pro-
grams by crosschecking 67 COREUTILS tools against
their allegedly equivalent BUSYBOX implementations.
For example, given the same input, the BUSYBOX and
COREUTILS versions of wc should output the same num-
ber of lines, words and bytes. In fact, both the BUSYBOX
and COREUTILS tools intend to conform to IEEE Stan-
dard 1003.1 [3] which specifies their behavior.
We built a simple infrastructure to make crosschecking

automatic. Given two tools, it renames all their global
symbols and then links them together. It then runs both
with the same symbolic environment (same symbolic ar-
guments, files, etc.) and compares the data printed to
stdout. When it detects a mismatch, it generates a test
case that can be run to natively to confirm the difference.
Table 3 shows a subset of the mismatches found by

KLEE. The first three lines show hard correctness er-
rors (which were promptly fixed by developers), while
the others mostly reveal missing functionality. As an ex-
ample of a serious correctness bug, the first line gives the
inputs that when run on BUSYBOX’s comm causes it to
behave as if two non-identical files were identical.
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Program equivalence

Input BUSYBOX COREUTILS
comm t1.txt t2.txt [does not show difference] [shows difference]
tee - [does not copy twice to stdout] [does]
tee "" <t1.txt [infinite loop] [terminates]
cksum / "4294967295 0 /" "/: Is a directory"
split / "/: Is a directory"
tr [duplicates input on stdout] "missing operand"
[ 0 ‘‘<’’ 1 ] "binary operator expected"
sum -s <t1.txt "97 1 -" "97 1"
tail -2l [rejects] [accepts]
unexpand -f [accepts] [rejects]
split - [rejects] [accepts]
ls --color-blah [accepts] [rejects]
t1.txt: a t2.txt: b

Table 3: Very small subset of the mismatches KLEE found between the BUSYBOX and COREUTILS versions of equivalent utili-
ties. The first three are serious correctness errors; most of the others are revealing missing functionality.

Test Random KLEE ELOC
With Disk 50.1% 67.1% 4617
No Disk 48.0% 76.4% 2662

Table 4: Coverage on the HISTAR kernel for runs with up to
three system calls, configured with and without a disk. For
comparison we did the same runs using random inputs for one
million trials.

5.6 The HiStar OS kernel

We have also applied KLEE to checking non-application
code by using it to check the HiStar [39] kernel. We used
a simple test driver based on a user-mode HISTAR ker-
nel. The driver creates the core kernel data structures and
initializes a single process with access to a single page of
user memory. It then calls the test function in Figure 12,
which makes the user memory symbolic and executes a
predefined number of system calls using entirely sym-
bolic arguments. As the system call number is encoded
in the first argument, this simple driver effectively tests
all (sequences of) system calls in the kernel.
Although the setup is restrictive, in practice we have

found that it can quickly generate test cases— sequences
of system call vectors and memory contents — which
cover a large portion of the kernel code and uncover
interesting behaviors. Table 4 shows the coverage ob-
tained for the core kernel for runs with and without a
disk. When configured with a disk, a majority of the un-
covered code can only be triggeredwhen there are a large
number of kernel objects. This currently does not happen
in our testing environment; we are investigating ways to
exercise this code adequately during testing. As a quick
comparison, we ran one million random tests through
the same driver (similar to § 5.2.4). As Table 4 shows,
KLEE’s tests achieve significantly more coverage than
random testing both for runs with (+17.0%) and without
(+28.4%) a disk.

1 : static void test(void *upage, unsigned num calls) {
2 : make symbolic(upage, PGSIZE);
3 : for (int i=0; i<num calls; i++) {
4 : uint64 t args[8];
5 : for (int j=0; j<8; j++)
6 : make symbolic(&args[j], sizeof(args[j]));
7 : kern syscall(args[0], args[1], args[2], args[3],
8 : args[4], args[5], args[6], args[7]);
9 : }
10: sys self halt();
11: }

Figure 12: Test driver for HISTAR: it makes a single page of
user memory symbolic and executes a user-specified number
of system calls with entirely symbolic arguments.

KLEE’s constraint-based reasoning allowed it to find a
tricky, critical security bug in the 32-bit version of HIS-
TAR. Figure 13 shows the code for the function contain-
ing the bug. The function safe addptr is supposed
to set *of to true if the addition overflows. However,
because the inputs are 64 bit long, the test used is insuf-
ficient (it should be (r < a) || (r < b)) and the
function can fail to indicate overflow for large values of
b.
The safe addptr function validates user memory

addresses prior to copying data to or from user space. A
kernel routine takes a user address and a size and com-
putes if the user is allowed to access the memory in that
range; this routine uses the overflow to prevent access
when a computation could overflow. This bug in com-
puting overflow therefore allows a malicious process to
gain access to memory regions outside its control.

6 Related Work
Many recent tools are based on symbolic execution [11,
14–16, 20–22, 24, 26, 27, 36]. We contrast how KLEE
deals with the environment and path explosion problems.
To the best of our knowledge, traditional symbolic ex-
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Related work
• Similar to KLEE path choose heuristic:  

generational search (Godefroid, P., Levin, M. Y., And Molnar, 
D. Automated whitebox fuzz testing) 

• Give score to states according to line coverage 
they done. 

• But uses random values when symbolic execution 
is hard (environment interfacing)



Related work
• Concolic (concrete/symbolic) testing:  

Run on concrete random inputs. In parallel, 
execute symbolically and solve constraints. 
Generate inputs to other paths than the concrete 
one along the way.  

• Godefroid, Patrice; Nils Klarlund, Koushik Sen (2005). "DART: Directed 
Automated Random Testing” 

•  Sen, Koushik; Darko Marinov, Gul Agha (2005). "CUTE: a concolic unit 
testing engine for C"  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Discussion
• Code coverage is not good enough as a metric. 

Path coverage is preferred (admitted in the paper) 

• Symbolic environment interaction - how reliable can 
the costume modeling really be? think about 
concurrent programs, inter-process programs, etc. 

• What is more commonly needed - functional testing 
or security/completeness/crash testing?
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KleeNet: Discovering Insidious Interaction Bugs in Wireless Sensor Networks Before 
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• Sensor networks: network of nodes with unreliable, resource-
constrained devices 

• On comm loss: hard to find/fix 

• Packet loss/corruption, often reboots 

!



KleeNet

• Node model - same as Klee’s environment model. 
Focuses on TCP failures (invalid packets, etc) 

• Network model: Holds status of network and 
packet passing. Injects network wide failures. 

• Essentially its a testing tool for distributed systems



KleeNet
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Figure 1: KleeNet’s debugging approach. The initial execution path (A broadcasts a packet to B) splits after
packet reception at node B into four execution paths: packet invalid, local delivery, packet to forward, and
packet to forward followed by a reboot of node B. Following these execution paths, KleeNet provides a high
program coverage including non-deterministic failures such as reboots and packet losses.

In the case of a valid packet, B next checks the destination
of the packet. Here, B again splits the execution path to
”packet to forward” and ”local delivery”. Case 2 in Figure
1 represents the latter path where node B consumes the
packet and sends a reply back to node A. Whereas, in Case
3, B forwards the packet to its next neighbor C. These
two execution paths represent a node’s protocol behavior
for valid packets and are covered by KleeNet as well.

Cases 1–3 result from B’s functional decisions due to the
uncertain packet data. In deployed wireless sensor networks,
applications have to be aware of non-determinism: For ex-
ample, a node might experience a reboot, receive dupli-
cate packets or packets might get lost due to interference.
Case 4 illustrates one of these failures: After forwarding
the packet to C, B encounters a reboot and looses its state
information. As a result, a new node execution path oc-
curs, which can reveal further aspects of a distributed pro-
tocol execution. Such communication aspects are either
impossible to observe in traditional pre-deployment test-
ing mechanisms, or require laborious manual e↵ort by the
developers to generate them. In contrast, KleeNet—based
on high-coverage symbolic execution—automatically injects
such non-deterministic and low-probability events into the
program flow and thus explores corner-case situations.

4. SYMBOLIC EXECUTION
Our debugging approach is built on the symbolic virtual

machine KLEE [4]. Therefore, we give a short overview on
symbolic execution. This background information is neces-
sary to explain the context of KleeNet’s environment as well
as to understand the challenges that influenced our design
decisions.

Symbolic execution [13] allows the automatic exploration
of execution paths in complex applications. The idea is to
execute program code on symbolic input, e.g., incoming net-
work packets, which are initially allowed to take any value.
During symbolic execution code is executed normally until it
reaches a symbolic value. At this point, program execution
is branched into all possible states and execution is resumed
for each branch. For example, if the program flow reaches
the code line addr = packet->src where the packet is sym-
bolic, the symbolic execution engine assigns addr with a
constraint containing symbolic memory access. Next, upon
reaching a symbolic branch, e.g., checking whether addr

equals myAddr, the engine forks the active program path
and follows both program paths independently with addi-
tional path constraints, namely addr == myAddr and addr

!= myAddr, respectively. If an explored application path ter-
minates or detects a bug such as a bu↵er overflow, a test case
with the respective input values that led to this execution
path is generated. The easy way of bug reproduction makes
this testing approach very e↵ective and attractive for many
developers.

Existing symbolic execution frameworks such as KLEE,
JPF-SE [1], and CUTE [28] are designed to explore non-
distributed applications including the GNU core utilities ls
and mkdir, and the Vim editor. For interaction with the en-
vironment, e.g., file system or network socket they assemble
models that abstract from the complexity of the underly-
ing hardware, system libraries, and network communication
logic. Thus, in contrast to our work, these tools do not
support symbolic distributed execution, which controls and
groups independently explored execution paths into valid
distributed execution scenarios.

In our previous work [26], which is also built on top of
KLEE, we showed that it is possible to symbolically execute
a single TinyOS instance and check applications for data
input safety before deployment. In this paper we extend this
preliminary work to enable symbolic execution of distributed
sensor network applications.

Moreover, we designed non-deterministic failure models
that uncover new distributed execution paths.

5. DESIGN
Detection of low-probability bugs in WSNs demands a

high-coverage of possible distributed execution paths. In
the following we discuss the design of KleeNet and its tech-
niques that enable automated generation of such paths in
distributed systems. These paths also include non-determi-
nistic events such as packet loss or node failure.

KleeNet provides the following four mechanisms to gener-
ate high-coverage paths and to test the state of a distributed
system (see Figure 2):

• Symbolic Input: Testing behavior of applications
on arbitrary environment input (packets, sensor data)
enhances software reliability. We extend this concept
with node and network models to reflect the distributed
nature of WSNs.
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• Insight - after all, complicated systems need 
customizing tests…


