Testing

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs (2008)

Cristian Cadar, Daniel Dunbar, Dawson Engler

EXE: Automatically Generating Inputs of Death (2006)

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, Dawson R. Engler

Presented by Oren Kishon
9/3/2014

Agenaa

Testing: Introduction

KLEE + STP: Technical details
Evaluation

Related work

Summary

Discussion

Agenaa

e Jesting: Introduction

lesting

 Purpose:
e Verifying functional correctness (vs. spec)

e Veritying software completeness - no crashes,
memory leaks, assert violations...

lesting

 Purpose:

e Veritying software completeness - no crashes,
memory leaks, assert violations...

lesting: example

Example [edi]

J'*-"'" °°~.,I Consider the program below, which reads in a value and fails if the input is 6.
> W
Q 1% ?}
R 2% ’// Y read()
N L rd Y 2 * Y
(Y 12)
WIKIPEDIA fail()

The Free Encyclopedia

print ("OK")

 Manual test creation: build test with input 6
e [Large number of fail paths”

* QA person works long hours...

* Jest auto-generation

Random Input test generation

v Much more tests generated than manually

e X Error path distribution is not uniform: Boundary
values, zero-division...

Back to example: y being a 32 bit int

Symbolic execution

Example [edi]

Consider the program below, which reads in a value and fails if the input is 6.
- y is symbolic:y=s
-~ yv=2*s //still symbolic

12)
R < Fork execution, add constraints
praint(OK")
true path constraint:

Need constraint solver

Constraint solver

2 *s==12

CNF: 1S1 A T1S2A 1S3 A 1S4 A S5A S A 1S7 A -0

/ \ SAT solver:
satisfiable? -> asserts

2 * S 1 2 instance -> test generate

S152S354S556S70 00001100

P RN

00000010 S0S1S25354S556S7 00001100

KLEE: symbolic executer

* Architecture: compiles C code to LLVM byte code.
Executes a symbolic interpreter.

 Map LLVM instructions to constraints. Constraint
solver: STP.

e generates executable tests, independent of KLEE.

 Used to check all GNU Coreutils and covered 90%
ines: more than 15 year on-going manual test suite
- In 89 hours.

lNtroauction

 Before technical details - any questions”?

Agenaa

e KLEE + STP: Technical details

Symbolic execution -
a deeper ook

e Definition: execution state
e [Ine number

» values of variables (symbolic/concrete): x=s1,
V=S2+3"S4

e Path Condition (PC): conjunction of constraints
(boolean formulas) over symbols:

S1>0 A A1+2782>0 A —(S3>0)

Symbolic Execution and Program Testing
JC King - 1976

Symbolic execution -
a deeper ook

* Execute assignment: evaluate RHS symbolically,
assign to LHS as part of the the state.

 Execute IF (r) / then / else: fork

e then: PC «— PC A

e else: PC «— PC A —r

e Jermination: solve constraint (supply values for

symbols, for test generation)
Symbolic Execution and Program Testing

JC King - 1976

1 int vy;
2 1int z;
3
4 int foo(int x)
5 if (x > 0) {
6 y =y + X;
4 } else {
8 y =y - X;
9 }
10 if (x > 0) {
11 zZ =z — V;
12 } else {
13 z =z + vy
14 }
15 }
Loc: 11
x: X
v: Y+ X

22 Z — (Y + X)
PC: (X > 0) A (X > 0)

Execution tree

Loc: 5
x: X
v: Y
z: Z
PC: true
Loc: 6 Loc: 8
x: X x: X
v: Y yv: Y
z: Z z: Z
PC: X >0 PC: X <0
| I
Loc: 10 Loc: 10
x: X x: X
yv: Y + X y: Y — X
z: Z z: Z
PC: X >0 PC: X <0
/ AN /
Loc: 13 Loc: 11
x: X x: X
v:i Y+ X yv: Y — X

2: Z + (Y + X)
PC: (X > 0) A (X < 0)

22 Z — (Y — X)
PC: (X < 0) A (X > 0)

Directed Incremental Symbolic Execution
Suzette Person; Guowei Yang; Neha Rungta; Sarfaz Khurshid

PLDI'11

Loc: 13

v:i Y — X
z: Z+ (Y — X)
PC: (X <0 A(X<O0)

EXecution tree properties

* For each satisfiable leaf exists a concrete input for
which the real program will reach same leaf =

can generate test

 PC's associated with any two satisfiable leaves are
distinct = code coverage.

Symbolic Execution and Program Testing
JC King - 1976

KLEE - usage

Compile C programs to LLVM byte code and run
KLEE Interpreter with wanted parameters:

S llvm-gcc --emit-1llvm -c tr.c -o tr.bc

S klee --max-time 2 --sym-args 1 10 10
-—-sym—-files 2 2000 --max-fail 1 tr.bc

KLEE - symbolic execution:
tr (Minix

3 symbc)lc arguments

: void expand(char *arg, unsigned char *buffer) { 8

©OCoOoONOOOGTPA~,WN =

int i, ac; 9
while (*arg) { 10*
if (farg == "\\") { 11*

?ri+:l-é - 0 31: int main(int argc, char* argv[]) { 1
. ’ 32: int index = 1; 2
f >= 0" && Targ <= "7’ !

l ((loar% e)1 33: if (argc > 1 && argv[index][0] == '-") { 3*
ac = (ac << 3) + farg++ — '0’; 34: 4
i++; gg } g

} while (i<4 && *arg>='0’' && "arg<='7"); R
*buffer++ = ac; 37: expand(argv[index++], index); 7
: * _ ’ 38 .. .
boelse if (arg 1= "A07) Fork execution
buffer++ = *arg++; 39: }
} else if (farg == '[’) { 12*

arg++; 13

i = *arg++; 14

if (farg++ = '-7) { 15!

*buffer++ = [’;
arg —= 2; ' e
continge. Fork, constraint arg[0]=="]

}

ac = *arg++;

while (i <= ac) “buffere+ = ix+; Detect bug (implicit array bounds checking)
arg++; * Skip] *

} else and generate test: input={"[", ", *"}

*buffer++ = *arg++;

all 37 paths in 2 minutes

KLEE architecture

* EXxecution state:
e |nstruction pointer
e Path condition
 Registers, heap and stack objects
« Above objects refer to trees of symbolic expressions.

« Expressions are of C language: arithmetic, shift, dereference,
assignment. ..

e checks inserted at dangerous operations: division,
dereferencing

STP - constraint solver

* A Decision Procedure tor Bit-Vectors and Arrays

* "Decision procedures are programs which
determine the satisfiability of logical formulas that

can express constraints relevant to software and
hardware”

e STP uses new efficient SAT solvers.

STP - constraint solver

* [reat everything as bit vectors - no types.

* Expressions on bit vectors: arithmetic (incl. non
inear), bitwise operations, relational operations.

* All formulas are converted to DAGSs of single bit
operations (node for every bit!)

STP

Input Formula

Substitution

Simplifications

ILinear Solving

Refinement Array Axioms

— '

BitBlast

DAG creation

CNF Conversion

SAT Solver

/

SAT

S

UNSAT

Fig.1. STP Architecture

Query optimizations

e Constraint solver dominates run time (NP-complete
problem in general...)

e Can pre-process calls to solver to make query
easler

 Two complicated optimizations (presented next)
and other basic ones (later on)

Query optimizations

Constraint independence

* Partition constraint set according to symbols

» Call solver with relevant subset only

 Example: {i < |, | < 20, k > 0}. a query of whether | = 20 just
requires the first two constraints

Query optimizations

Counter example cache

Cache results of previous constraint solver results

If constraint set C has no solution and C ¢ C’, then neither does C’
If constraint set C has solution s and C’ ¢ C, then C’ has solution s

It constraint set C has solution s and C ¢ C’, then C’ likely has
solution s

State choosing heuristics:

* A big challenge of symbolic executing: path
explosion

e Can't cover all paths: need to choose wisely

* Use different choosing heuristic at each selection
(using round robin)

State choosing heuristics:
Random Path Selection

 Maintain binary tree of paths

 \When branch reached, traverse randomly from root
to select state to execute

 Done to prevent starvation caused by large
subtrees (i.e loops with symbolic condition)

State choosing heuristics:
Coverage-optimize search

 Compute state weight using:
e Minimum distance to an uncovered instruction
e (Call stack of the state

 Whether the state recently covered new code

Environment modeling

* Another big challenge of symbolic executing:
symbolizing file systems, env. variables, network
packets, etc.

« KLEE's solution: model as much as you can.
modeling means to costumize code of system calls
(e.g. open, read, write, stat, Iseek, ftruncate, ioctl):
2500 lines of modeling code.

Environment modeling

* File system examples

 Read concrete file with symbolic offset: read() is
wrapped with pread()

e Open symbolic file-name:

* Program was initiated with a symbolic file system with up to N
files (user defined).

 QOpen all N files + one open() failure

Environment modeling

 How to generate tests after using symbolic env:

* Except of supplying input args, supply an
description of symbolic env for each test path.

* A special driver creates real OS objects from the
description

Other optimizations

* Copy On Write for forking - object level, not page
level

* Pointer to many possible objects - branch all
* Query optimizations

e Constraint set simplification: {x<10}, x==5 = {x==5}

e Implied Value Concretization: {x+1==10} = x =9

KLEE

e Questions?

Agenaa

e Evaluation

Evaluation - Metrics

* Line coverage, only executable: ELOC percentage
 Doesn't measure actual conditional paths used

* Used also because the gcov profiler outputs it and
its a common tool among testing tools.

Coreutils

* All 89 Coreutils programs ran with command:

./run <tool-name> --max—-time 60
-—-sym—-args 10 2 2
-—-sym—-files 2 8
[——max—-fail 1]

Coreutils

. 100% 0
76.9% line coverage of " [mm Base + Fail IR 1]1]'1'1 LI
all 89 Coreutils [3 Base
programs = 80% |
O B p—
S
=
b}
2 40%
T
>
S
20%
0% 7 N 25 50 75

Figure S: Line coveraor each application with and without
failing system calls.

pwd

| EE vSs. manual suilte

COREUTILS BUSYBOX
Coverage KLEE | Devel. KLEE | Devel.
(w/o lib) tests tests tests tests
100 % 16 1 31 4
90-100 % 40 6 24 3
80-90% 21 20 10 15
70-80% 7 23 5 6
60-70% 5 15 2 7
50-60% - 10 - 4
40-50% - 6 - -
30-40% - 3 - 2
20-30% - 1 - 1
10-20% - 3 - -
0-10% - 1 - 30
Overall cov. 84.5% | 67.7% 90.5% | 44.8%
Med cov/App || 94.7% | 72.5% 97.5% | 58.9%
Ave cov/App 90.9% | 684% || 93.5% | 43.7%

KLEE vs. Manual (ELOC %)

100%

50%

0%

—50%

—100%

10 25 50 75

(LxLee-Lman) / Liota

output tests of bugs

Cause:
modulus
negative

paste -d\\ abcdefghijklmnopgrstuvwxyz
pr -e t2.txt
tac -r t3.txt t3.txt

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

mdSsum -c tl.txt

ptx -F\\ abcdefghijklmnopgrstuvwxyz
ptx x t4.txt

seq -f 30 1

tl.txt: "\t \tMD5/("

2.txt: "\b\b\b\b\b\b\b\t"
t3.txt: "\n"

t4.txt: "a"

Since 1992

KLEE vs. random

1 Random B Devel B KLEE

100

80

60

QO oM
fb?" e
AS)

Observation: random quickly gets the cases it can, and then revisits them over and over

Program equivalence

e Needed In;:

e standard implementation

* New version testing

Program equivalence

: unsigned mod_opt(unsigned x, unsigned y) {
if((y & —y) == y) // power of two?
return x & (y—1);
else
return x % vy,

Need to
manually wrap

pProgrames:

>}

. unsigned mod(unsigned x, unsigned y) {
return x % vy,

>}

10: int main() {

11: unsigned x,y;

12: make_symbolic(&x, sizeof(x));
13: make_symbolic(&y, sizeof(y));
14: assert(mod(x,y) == mod_opt(x,y));
15: return O;

16: }

O©COoONOOTLPA~,WN =

Program equivalence

Coreutils vs. Busybox

[O “/'<"" 1]
sum -s <tl.txt
tail -21
unexpand -f
split -

ls --color-blah

"97 1 ="
[rejects]
[accepts]
[rejects]
[accepts]

Interesting
mismatches:

Input BUSYBOX COREUTILS

comm tl.txt t2.txt [does not show difference] [shows difference]

tee - [does not copy twice to stdout] [does]

tee "" <tl.txt [infinite loop] [terminates]

cksum / "4294967295 0 /" "/: Is a directory"
split / "/: Is a directory"

tr [duplicates input on stdout] "missing operand"

"binary operator expected”
"97 1"
laccepts]
[rejects]
laccepts]
[rejects]

tl.txt: a 12.txt: b

Agenaa

e Related work

Related work

* Similar to KLEE path choose heuristic:
generational search (Godefroid, P, Levin, M. Y., And Molnar,
D. Automated whitebox fuzz testing)

* (Give score to states according to line coverage
they done.

e But uses random values when symbolic execution
s hard (environment interfacing)

Related work

» Concolic (concrete/symbolic) testing:
Run on concrete random inputs. In parallel,
execute symbolically and solve constraints.
Generate inputs to other paths than the concrete
one along the way.

 (Godefroid, Patrice; Nils Klarlund, Koushik Sen (2005). "DART: Directed
Automated Random Testing”

e Sen, Koushik; Darko Marinov, Gul Agha (2005). "CUTE: a concolic unit
testing engine for C'

Agenaa

e Discussion

DIScuUsSsIon

 Code coverage is not good enough as a metric.
Path coverage is preferred (admitted in the paper)

e Symbolic environment interaction - how reliable can
the costume modeling really be” think about
concurrent programs, inter-process programs, etc.

 What is more commonly needed - functional testing
or security/completeness/crash testing”

Added subject

KleeNet: Discovering Insidious Interaction Bugs in Wireless Sensor Networks Before
Deployment

Raimondas Sasnauskas®, Olaf Landsiedel™, Muhammad Hamad Alizai*,
Carsten Weise*, Stefan Kowalewski*, Klaus Wehrle*

*Distributed Systems Group, *Embedded Software Laboratory RWTH Aachen University, Germany

e Sensor networks: network of nodes with unreliable, resource-
constrained devices

e On comm loss: hard to find/fix

* Packet loss/corruption, often reboots

KleeNet

e Node model - same as Klee’s environment model.
Focuses on TCP failures (invalid packets, etc)

 Network model: Holds status of network and
packet passing. Injects network wide failures.

e Essentially its a testing tool for distributed systems

KleeNet

Node B Case 0: initial state
packet received e send packet @

[validity check]

o valid 4 ¥ T oo
i Case 1: packet invalid Case 2: local delivery Case 3: packet to forward Case 4: B forwards & reboots
[destination check]

[M] local to forward @ . @ @ @ @
discard reply forward forward

~ P
~ P
~ P
~ -’
~ o’

\\ f’
~. K

~~~~~~~~~~~~
~~~~~~
\\\\\\\\\\\
reboot/" N\N. L 0SSO Lt USSGetSSG et s
\\\\\\\\\\\\

| | Injected node
Symbolic protocol reboot -
execution creates new
node!

KleeNet

* |nsight - after all, complicated systems need
customizing tests...

